

Ę

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Preliminary Sizing of Large Propeller Driven Aeroplanes

Dieter Scholz

Hamburg University of Applied Sciences

Mihaela Niță

Hamburg University of Applied Sciences

RRDPAE 2008

Recent Research and Design Progress in Aeronautical Engineering and its Influence on Education

Brno University of Technology, Czech Republic, 16-17 October 2008

- Introduction
- Overview
- Optimization Parameters from Requirements
- Combining Results
- Example Calculation: ATR 72
- Conclusions

Introduction

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Preliminary Sizing

Requirements

- Payload, m_{PL}
- Range, R
- Mach number in cruise, M_{CR} or speed, V_{CR}
- Take-off field length, S_{TOFL}
- Landing field length, S_{LFL} or approach speed, V_{APP} or stall speed, V_S
- Climb gradient γ during second segment
- Climb gradient γ during missed approach

Aircraft Parameters

- Take-off mass, m_{MTO}
- Fuel mass, m_F
- Operating empty mass, m_{OE}
- Wing area, S_W
- Take-off thrust, T_{TO} or take-off power, P_{TO}

Aeroplane Categories, Propulsion System and Certification Rules

- 1. large jet aeroplanes are certified to CS-25 respectively FAR Part 25,
- 2. very light jets are certified to CS-23 respectively FAR Part 23,
- 3. large propeller driven aeroplanes are also certified to CS-25 respectively FAR Part 25
- smaller propeller driven aeroplanes (normal, utility, aerobatic and commuter aeroplanes) are certified to CS-23 respectively FAR Part 23,
- 5. very light propeller driven aeroplanes (up to a maximum take-off mass of 750 kg) can be certified to CS-VLA,
- 6. different certification rules exist for ultra light aircraft.

General Approach

7

Overview

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

8

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Optimization Parameters

• Power to mass ratio

• Wing loading

$$rac{m_{MTO}}{S_W}$$

 $P_{\underline{TO}}$

 m_{MTO}

• The requirements are specified for the various phases of flight

Approach Speed

The landing requirements can be stated in terms of approach speed or landing field length.

One can be converted into the other:

$$s_{LFL} = \left(\frac{V_{APP}}{k_{APP}}\right)^2$$

 $k_{APP} = 1.93 \sqrt{\frac{\text{m}}{\text{s}^2}}$ Statistical factor for large turboprop aircrafts (calculated from k_L)

or

$$k_{APP} = \sqrt{\frac{2g \cdot 1.3^2}{\rho_0}} k_L = 5.20 \sqrt{k_L}$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Landing Field Length

 $m_{MTO} / S_W \leq \frac{(k_L) \sigma \cdot C_{L,max,L} \cdot S_{LFL}}{m_{ML} / m_{MTO}}$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Landing Field Length

 $k_L = 0.137 \, \frac{\mathrm{kg}}{\mathrm{m}^3}$

Statistical factor for large turboprop aircrafts

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Take-Off Field Length

 $\frac{P_{TO} / m_{MTO}}{m_{MTO} / S_{W}} \ge \frac{(k_{TO} \cdot V \cdot g)}{s_{TOFL} \cdot \sigma \cdot C_{L,max,TO}} \eta_{P,TO}$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Speed [m/s]

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Climb Rate during 2nd Segment

$$\frac{P_{TO}}{m_{MTO}} \ge \frac{n_E}{n_E - 1} \cdot \left(\frac{1}{E} + \sin\gamma\right) \cdot \left(\frac{V_2 \cdot g}{\eta_{P,CL}}\right)$$

$$E = \frac{C_L}{C_D} = \frac{C_L}{C_{D,P} + \frac{C_L^2}{\pi \cdot A \cdot e}} \qquad C_L = \frac{C_{L,\max,TO}}{1.2^2}$$

$$e = 0.7$$

$$C_{D,P} = 0.05C_L - 0.035$$

$$C_L \ge 1.1$$

$$C_L \text{ depends on flap settings}$$

Climb Rate during Missed Approach

$$\frac{P_{TO}}{m_{MTO}} \ge \frac{n_E}{n_E - 1} \cdot \left(\frac{1}{E} + \sin\gamma\right) \cdot \left(\frac{V_{APP} \cdot g}{\eta_{P,L}}\right) \cdot \left(\frac{m_{ML}}{m_{MTO}}\right)$$

$$E = \frac{C_L}{C_D} = \frac{C_L}{C_{D,P} + \frac{C_L^2}{\pi \cdot A \cdot e}} \qquad \frac{C_{L,max,L}}{1.3^2}$$

$$e = 0.7$$

$$C_{D,P} = 0.05C_L - 0.035 + \Delta C_{D,gear}$$

$$C_L \ge 1.1$$

$$C_L \text{ depends on flap settings}$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Cruise

Lift = Weight

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Cruise

Drag = Thrust

$$\frac{P_{TO}}{m_{MTO}} = \frac{M_{CR} \cdot a(H) \cdot g}{P_{CR} / P_{TO} \cdot E \cdot \eta_{P,CR}}$$

or

 $\frac{P_{TO}}{m_{MTO}} = \frac{V_{CR} \cdot g}{P_{CR} / P_{TO} \cdot E \cdot \eta_{P,CR}}$

$$E = \frac{2E_{\max}}{\left(\frac{1}{\left(\frac{C_L}{C_{L,md}}\right)} + \left(\frac{C_L}{C_{L,md}}\right)\right)}$$

with $C_L / C_{L,md} = 1 / (V / V_{md})^2$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Cruise

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Cruise

Engine Power Estimation

$$P/P_0 = AM^m \sigma^n$$

for turboprop engines

Author	Ref.Nr.	Page	Engine	A	m	n
Schaufele	[14]	187	generic	1.036	0.101	0.851
Brüning	[15]	58	T 64-GE-7	1.121	0.168	0.755
Russel	[16]	16	Rolls-Royce	1.725	0.267	0.966
Loftin	[7]	375	generic	1.089	0.091	0.924
McCormick & Barnes	[17]	351	PW 120	1.883	0.740	0.929
Average				1.371	0.273	0.885

1) Generation of matching chart from optimization parameters

Requirements

Landing:	$S_{LFL} = 1067 \text{ m}$			
Take off:	$S_{TOFL} = 1290 \text{ m}$			
2 nd Segment:	$n_E = 2$	$\sin \gamma = 0.024$		
Missed Approach:	$n_E = 2$	$\sin\gamma=0.021$		
Cruise:	M = 0.42	1		
Range:	R = 715 M	M		
Payload:	$m_{PL} = 646$	50 kg		

Results

Aerodynamics and Propeller Efficiency

Flight Phase	$C_{L,max}$	C_L	E_{max}	Ε	η_P
Landing	2.5				
Take-off	2.1				0.64
2 nd Segment		1.46		12.28	0.73
Missed Approach		1.48		10.79	0.73
Cruise		0.503	15.74	12.49	0.86

Example Calculation: ATR 72

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Results

Aircraft Parameters

Parameter	Original ATR 72	Redesigned ATR 72	Difference
m _{MTO} [kg]	22800	22925	0.5%
m_L [kg]	22350	22466	0.5%
m_{OE} [kg]	12950	13021	0.5%
$S_W[\mathrm{m}^2]$	61	61.35	0.6%
<i>b</i> [m]	27.05	27.13	0.3%
P_{TO} (one engine) [kW]	2051	2061	0.5%
m_{MTO}/S_W [kg/m ²]	373.8	373.7	0.0%
P_{TO}/m_{MTO} [W/kg]	179.9	179.8	-0.1%

- A preliminary sizing method for turboprop aeroplanes was presented.
- The method includes where necessary equations based on aircraft statistics.
- The preliminary sizing method was successfully tested with a redesign task of an ATR 72.

For further information see http://FE.ProfScholz.de