

Aircraft Design Studies Based on the ATR 72

Mihaela Florentina Niță Supervisor: Prof. Dr.-Ing. Dieter Scholz HAW Hamburg RRDPAE 2008

Recent Research and Design Progress in Aeronautical Engineering and its Influence on Education

Brno University of Technology, Czech Republic, 16-17 October 2008

- Preliminary sizing

(Paper on RRDPAE CD)

- Conceptual Design

(Master Thesis on WWW)

Emphasis of this presentation

Preliminary sizing

- Gives input parameters for the conceptual design:
 - » Maximum take-off mass, m_{MTO}
 - » Fuel mass, m_F
 - » Maximum operating empty mass, m_{OE}
 - » Wing area, S_W
 - » Take-off thrust, T_{TO} or take-off power, P_{TO}

<u>Conceptual design</u>

- The Fuselage
 - Requirements:
 - » Passengers comfort
 - » Drag
 - » Weight
 - Cross section:
 - » Given: Number of passengers $n_{PAX} = 70$
 - **»** Yields: Number of seats abreast $n_{SA} = 0.45 \cdot \sqrt{n_{PAX}} = 4$

and number of aisles $n_{SA} \le 6 \Rightarrow 1$ Aisle

(CS 25.817)

» Interior diameter of the fuselage

 $d_{F,I} = (2 \times Bench \ width + Aisle \ width)m + 2 \times 0.025m = 2.57m$

Exterior diameter of the fuselage

 $\Delta d = d_{F,O} - d_{F,I} = 0.084m + 0.045 \cdot d_{F,I} \Leftrightarrow d_{F,O} \underbrace{2.77m}_{2.77m}$

- Other parameters:

» Slenderness parameter

$$\lambda_F = \frac{l_F}{d_F} = 9.79 \approx 10$$

Important parameter that determines drag and structural weight

- Results

$$\oint c_r = \frac{2b}{A[(1-\lambda)\eta_k + \lambda_l + \lambda]} = 2.6m$$

$$c_t = \lambda c_r = 1.5m$$

$$\oint V_{\text{tank}} = 0.54 \cdot S_W^{1.5} \cdot (t/c)_r \cdot \frac{1}{\sqrt{A}} \cdot \frac{1 + \lambda \cdot \sqrt{\tau} + \lambda^2 \cdot \tau}{(1+\lambda)^2} = 9.3m^3 > V_{\text{tank,nec}} = 4.5m^3$$
where
$$\tau = \frac{(t/c)_t}{(t/c)_r} = 0.72$$
From preliminary sizing

<u>The high lift system</u>

- Estimating the empennage area from statistics
 - Horizontal tail, vertical tail
 - Configuration: T-tail

(engine location on a high wing)

Surface area from statistical approach

- Other parameters

- Aspect ratio and taper ratio:

$$A_{H} = 0.5 A_{w} = 6$$
 $\lambda_{H} = 0.6$
 $A_{V} = 1.6$ $\lambda_{V} = 0.6$

- Dihedral and sweep:

$$V_H = 80^0$$
 $\varphi_{25,H} = 8^0$
 $V_V = 0^0$ $\varphi_{25,V} = 25^0$

– Airfoil: NACA 0012 for the vertical tailplane

NACA 0009 for the horizontal tailplane

- Mass estimation and CG location
 - Estimation per each component using a Class II method (Torenbeek)
 - Example calculation: wing mass

$$\frac{m_W}{m_{MZF}} = 6.67 \cdot 10^{-3} \cdot b_s^{0.75} \cdot \left(1 + \sqrt{\frac{b_{ref}}{b_s}}\right) \cdot n_{ult}^{0.55} \cdot \left(\frac{b_s / t_r}{m_{MZF} / S_W}\right)^{0.30} = 0.17$$

 $m_W = 0.17 \cdot m_{MZF} = 3045 kg$

The approximations are made by taking into account variations with specific parameters, as it is shown in the next table

	Parameters used for the mass estimation	Results [kg]
Wing	B _{ref} /b _s ; m _{MZF} /S _W ;n _{ult}	3045
Fuselage	$S_{wet,F}; I_{H}; V_{D}; d_{F}$	2323
Horizontal Tailplane	S _H ; V _D	124
Vertical Tailplane	S _V ; V _D	179
Landing gear	m _{MTO} and coefficients	961
Engine nacelle	T, respectively P,η,V	242
Installed engine	n _E ; m _E	1533
Systems	m _{MTO}	3114
Supplemental mass	n _{Seat} ; n _{Pax}	1050
Operating empty mass	Sum of components	12834

CG position and position of the wing towards the fuselage

- <u>Sizing the empennage according to stability and</u> <u>control requirements</u>
 - Horizontal Tail

• Sizing after control requirements $S_H / S_W = a \cdot \overline{x_{CG-AC}} + b$

- Sizing after stability requirements $S_H / S_W = a \cdot \overline{x_{CG-AC}}$ $a = \frac{C_{L,\alpha,W}}{C_{L,\alpha,H} \cdot \eta_H \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) \cdot \left(\frac{l_H}{c_{WA}}\right)} = 0.305$
- Intersection of requirements

$$\frac{S_H}{S_W} = 0.156 \Longrightarrow S_H = 9.701m^2$$

Following the introduction of the stability margin, according to the next graph

Stability and Control

- Vertical Tail

Sizing after control requirements

$$S_{V} = \frac{N_{E} + N_{D}}{\frac{1}{2} \rho V_{MC}^{2} \cdot \delta_{F} \left[\frac{c_{L,\delta}}{(c_{L,\delta})_{theory}} \right] \cdot (c_{L,\delta})_{theory} \cdot K' \cdot K_{\Lambda} \cdot l_{V}} = 14.085m^{2}$$

Sizing after stability requirements

$$\frac{S_V}{S_W} = \frac{C_{N,\beta} - C_{N,\beta,F}}{-C_{Y,\beta,V}} \cdot \frac{b_W}{l_V} = 0.1539$$
$$\Rightarrow S_V = 9.57m^2$$

- Evaluation of the results
 - If the area S_H does not match *Empennage* results then:
 - m_H would need to be re-evaluated
 - and wing position adjusted
 - For the vertical tail the *larger* area of the two was chosen

Landing Gear

- Drag estimation and polar
 - Three major components:
 - Zero lift drag it is being estimated for each component, according to the formula: $C_{D,0} = \sum C_f \cdot FF_c \cdot Q_c \cdot S_{wett} / S_{ref}$
 - Lift dependent drag

•	Mach drag – we neglect this from the beginning, as the aircraft flies
	at lower speed

	C _f	FF _c	Q _c	S _{wett} /S _{ref}	C _{D,0}
Fuselage	2.24·10 ⁻³	1.088	1	3.3	8.053·10 ⁻³
Wing	3.56·10 ⁻³	1.84	1	2.08	14·10 ⁻³
Horizontal Tailplane	3.392·10 ⁻³	1.368	1.04	0.17	0.8347·10 ⁻³
Vertical Tailplane	3.933·10 ⁻³	1.419	1.04	0.22	1.315·10 ⁻³
Nacelle	3.292·10 ⁻³	1.072	1.5	0.3	2·1.6·10 ⁻³
Total				\langle	27.4.10-3

- The polar is given by

$$C_D = C_{D,0} + \frac{C_L^2}{\pi \cdot A \cdot e} \Leftrightarrow C_D = 0.027403 + 0.031 \cdot C_L^2$$

» In the preliminary sizing calculation the value e = 0.85 was used

Design evaluation

 AEA method (Association of European Airliners) for estimating the direct operating costs (DOC)

		Parameters used for the estimation	Results [mil\$/year]
Depreciation		Service life, residual value	0.99
Interest		Average interest rate, total price of the aircraft	0.73
Insurance		% of aircrafts price	0.07
Fuel		Price and mass fuel, no. of flights per year	2.37
Maintenance		Labor and material, inflation factor	1.44
Crew		No. of crew members	2.07
Fees:	– Landing	Maximum take-off mass, no. of flights/year, inflation factor	0.39
	– Navigation	Maximum take-off mass, inflation factor	0.93
	– Handling	Maximum payload, inflation factor	1.45

Total DOC = the sum of the costs of each of the following elements:

$$C_{DOC} = C_{DEP} + C_{INT} + C_{INS} + C_F + C_M + C_C + C_{FEE}$$

C_{DOC}=10.5 mil US\$/year

<u>Components</u>	<u>Redesign</u>	<u>Original</u>	<u>Deviation</u>
Fuselage			
Length	27.13 m	27.17 m	0.1%
Diameter	2.77 m	2.57 m	-2.0%
Cabin Length	19.25 m	19.21 m	0.1%
Wing			
Wing Span	27.13 m	27.05 m	0.3 %
Wing Surface	61.3 m ²	61.0 m ²	0.5 %
Wing Loading	373.7 kg/m ²	373.8 kg/m ²	0.0 %
High Lift Device	Double sloted flaps and slats	Double sloted flaps	
Power Plant			
Power Loading	179.8 W/kg	179.9 W/kg	-0.1 %
Horizontal Tail			
Surface	9.7 m ²	11.7 m ²	-17.1 %
Vertical Tail			
Surface	14 1 m ²	12.5 m ²	128%
		12.0 11	12:0 /0
Mass			
Maximum Take-Off Mass	22925 kg	22800 kg	0.5%
Operating Empty Mass	12834 kg	12950 kg	0.9%

For more information please visit the digital library:

http://bibliothek.ProfScholz.de

and check the RRDPAE CD

