

Deutscher Luft- und Raumfahrtkongress 2005

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Studiendepartment Fahrzeugtechnik und Flugzeugbau

Mach Number, Relative Thickness, Sweep and Lift Coefficient of the Wing –

An Empirical Investigation of Parameters and Equations

> Simona Ciornei Dieter Scholz

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Table of contents

Background: Preliminary sizing in aircraft design

Introduction

Fundamentals

Equations for the calculation of the relative thickness

Investigation, comparison and adaptation of equations

Summary and conclusions

Background: Preliminary Sizing in Aircraft Design

Preliminary sizing requires quick estimates of e.g.:

- maximum lift coefficient
- zero lift drag, induced drag, wave drag
- buffet onset boundary
- aircraft mass, CG position
- floation (ACN)
- ...
- relative thickness of the wing

Introduction (Motivation)

Wing design requirements:

- High lift requirements (takeoff and landing)
- Cruise Mach number
- Buffet-free high altitude flight
- Low wing weight
- High wing stiffness
- Sufficient fuel volume in the wing
- ...

Wing parameters:

- relative thickness t/c, sweep, cruise lift coefficient
- taper ratio, dihedral angle, incidence angle, ...

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Introduction (Motivation)

- Suitable sequence to obtain parameters
 - 1. Lift coefficient

3. Relative thickness *t/c*

Introduction (Literature)

- There are a number of equations presented in the literature trying to establish a relationship among the parameters that are of interest in this paper. 12 equations have been investigated.
- No reference has been found in the literature that
 - a) extensively compares these equations with one another or
 - b) tries to check the equations against a large set of statistical data.

Fundamentals (1)

- Mach number, M
 - "The ratio of the true airspeed to the speed of sound under prevailing atmospheric conditions."
- Free stream Mach number, M
 - The Mach number of the moving body. M = v/a with v being the true airspeed and a the speed of sound.
- Critical Mach number, M_{cr}
 - That freestream Mach number at which sonic flow is first obtained somewhere on the airfoil.
- Crest critical Mach number, M_{cc}
 - That freestream Mach number at which sonic flow is first obtained at the airfoil crest.

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Fundamentals (2)

- Drag rise Mach number
 - The Mach number beyond which a rapid increase in compressibility drag occurs.
- Drag divergence Mach number, M_{DD}
 - At Airbus and Boeing M_{DD} is that Mach number where the wave drag coefficient reaches 20 drag counts ($\Delta C_{D,wave} = 0.002$).
- Drag divergence Mach number, M_{DIV}
 - At Douglas M_{DIV} was defined as that Mach number at which the rate of change in compressibility drag with Mach number is $dC_D/dM = 0.1$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Fundamentals (3)

• Drag divergence Mach number, M_{DD}

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Fundamentals (4)

• Effective parameters of swept wings (cosine-rule)

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Fundamentals (5)

- Effective Mach number (real flows)
 - The real flow does not necessarily follow the cosine-rule. More generally it can be said that

$$M_{eff} = M \left(\cos\varphi_{25}\right)^x$$

- 0 < x < 1.
- Standard: x = 0.5,
- STAUFENBIEL: x = 0.75,
- $M_{DD,eff} = M_{DD} \sqrt{\cos \varphi_{25}}$

- cosine-rule: x = 1.0.

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Fundamentals (6)

- Airfoils for transonic flow
 - Conventional airfoils
 - NACA 64-series airfoils. Originally designed to encourage laminar flow, turned out to have relative high values of M_{cr} in comparison with other NACA shapes.

- Peaky airfoils

• A peaky pressure distribution intentionally creates supersonic velocities and suction forces close to the leading edge. Drag rise is postponed to high speeds.

- Supercritical airfoils

- The supercritical airfoil has a relatively flat top in turn, the terminating shock is weaker, thus creating less drag.
- This paper distinguishes arbitrarily between older supercritical airfoils (1965-1987) and modern supercritical airfoils (1988-today).

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

• Equation based on TORENBEEK

$$\frac{t}{c} = 0.30 \left\{ \left[1 - \left\{ \frac{5 + M^2}{5 + (M^*)^2} \right\}^{3,5} \right] \frac{\sqrt{1 - M^2}}{M^2} \right\}^{2/3}$$

M* depending on airfoil

$$\frac{t}{c} = 0.3 \cos \varphi_{25}$$

$$\left\{ \left[1 - \left\{ \frac{5 + M_{DD,eff}^2}{5 + (M^* - 0.25 C_L)^2} \right\}^{3,5} \right] \frac{\sqrt{1 - M_{DD,eff}^2}}{M_{DD,eff}^2} \right\}^{2/3}$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

- Equations from Aerodynamic Similarity based on ANDERSON
 - Similarity Parameter K

$$K = \frac{1 - M_{\infty}}{\tau^{2/3}}$$

Solved for relative thickness

$$t/c = \left(\frac{1 - M_{DD}}{K}\right)^{3/2} \qquad t/c = \left(\frac{1 - M_{DD,eff}}{K_{eff}}\right)^{3/2}$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

Equation from SHEVELL

$$\frac{M_{\infty}^{2}\cos^{2}\Lambda}{\sqrt{1-M_{\infty}^{2}\cos^{2}\Lambda}} \cdot (t/c)_{\infty}} + \left(\frac{\gamma+1}{2}\right)\frac{2.64(t/c)_{\infty}(0.34C_{L})}{\cos^{3}\Lambda} = \frac{M_{\infty}^{2}\cos^{2}\Lambda}{1-M_{\infty}^{2}\cos^{2}\Lambda} \cdot M_{\infty} = \frac{M_{\infty}^{2}\cos^{2}\Lambda}{\left[\left(\frac{\gamma+1}{2}\right)\left[\frac{1.32(t/c)_{\infty}}{\cos\Lambda}\right]^{2}\right]} + \frac{M_{\infty}^{2}\cos^{2}\Lambda}{\cos^{2}\Lambda} \cdot \left[1+\left(\frac{\gamma+1}{2}\right)\frac{(0.68C_{L})}{\cos^{2}\Lambda} + \frac{\gamma+1}{2}\left(\frac{0.34C_{L}}{\cos^{2}\Lambda}\right)^{2}\right] - 1 = 0$$

$$(t/c)_{\infty} = t/c$$

$$M_{\infty} = M_{CC} \qquad \Lambda = \varphi_{25}$$

$$t / c = f(M_{CC}, \varphi_{25}, C_l)$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

• Equation from SHEVELL (continued)

$$t/c = f(M_{CC}, \varphi_{25}, C_l)$$

$$M_{CC} = \frac{M_{DIV,conventional}}{1.025 + 0.08(1 - \cos\varphi_{25})}$$

$$M_{DIV,conventional} = M_{DIV,supercritical} - 0.06$$

$$M_{DIV} = M_{DD} - 0.02$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

Equation based on KROO

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

Equation from HOWE

$$M_{DD,eff} = A_F - 0.1 C_L - t / c$$

- "A_F is a number, which depends upon the design standard of the aerofoil section. For older aerofoil A_F was around 0.8 but a value of 0.95 should be possible with an optimized advanced aerofoil."
- We can think of as A_F being the effective drag divergence Mach number of an airfoil of zero thickness at zero lift coefficient.

$$t / c = A_F - 0.1 C_L - M_{DD,eff}$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

• Equation from JENKINSON

$$M_{DD} = 0.9965 - 1.387 \cdot t / c + 4.31 \cdot 10^{-5} \varphi_{25} - 0.18 \cdot C_{L}$$

- We can think of M_{DD} = 0.9965 for a wing with zero relative thickness at zero lift coefficient and with zero sweep

$$t/c = 0.7185 + 3.107 \cdot 10^{-5} \varphi_{25} - 0.1298 \cdot C_L - 0.7210 \cdot M_{DD}$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

• Equation from WEISSHAAR

$$M_{DD} = \frac{K_A}{\cos \varphi_{25}} - \frac{t/c}{\cos^2 \varphi_{25}} - \frac{C_L}{10\cos^3 \varphi_{25}}$$

- K_A is approximately 0.80 ... 0.90.
- We can think of K_A as being the drag divergence Mach number of an unswept wing of zero thickness at zero lift coefficient

$$t/c = K_A \cos \varphi_{25} - M_{DD} \cos^2 \varphi_{25} - \frac{C_L}{10 \cos \varphi_{25}}$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

Equation based on BÖTTGER

$$t/c = \frac{27}{30} \Big[a(C_L - b)^d + c + 0.00288(\varphi_{25} - 29.8^\circ) - M_{DD} \Big] + 0.113$$

with

a = -1.147 b = 0.200 c = 0.838 d = 4.057

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

• Equation based on RAYMER

$$M_{DD} = M_{DD} (C_L = 0) LF_{DD} - 0.05 \cdot C_L$$

$$M_{DD}(C_{L} = 0) = 1 + k_{M,DD} \left(u(90^{\circ} - \rho_{25})^{3} + v(90^{\circ} - \rho_{25})^{2} + w(90^{\circ} - \rho_{25}) \right)$$

with

$$u = 8.029 \cdot 10^{-7}$$
 $1/deg^3$ $v = -1.126 \cdot 10^{-4}$ $1/deg^2$ $w = 8.437 \cdot 10^{-4}$ $1/deg$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

• Equation based on RAYMER (continued)

$$k_{M,DD} = 1317 \cdot (t/c)^{3} - 324.3 \cdot (t/c)^{2} + 28.948 \cdot (t/c) - 0.0782$$
$$LF_{DD} = k_{LF,DD} \left(a C_{L}^{2} + b C_{L} \right) + 1$$
with

a = -0.1953 *b* = -0.1494

$$k_{LF,DD} = 23.056 \cdot (t/c)^2 + 3.889 \cdot (t/c)$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

Equation based on Linear Regression

$$t/c = a M_{DD} + b \varphi_{25} + c C_L + d k_m$$

or knowing that

$$M_{DD,eff} = M_{DD} \sqrt{\cos \varphi_{25}}$$

better

$$t / c = a M_{DD,eff} + b C_L + c k_m$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Equations for the calculation of the relative thickness

Equation based on Nonlinear Regression

$$t / c = k_t \cdot M_{DD}^t \cdot \cos \varphi_{25}^u \cdot c_L^v \cdot k_M^w$$

The parameters k_t , t, u, v, w are fit to given aircraft data

- Input from aircraft data covers a range of different values
 - sweep: from 0° to 35°
 - drag divergence Mach numbers M_{DD} : from 0.65 to 0.88
 - average relative wing thickness t/c: from 9% to 13.4%
 - cruise lift coefficient C_1 : from 0.22 to 0.73
 - type of airfoil:
 - conventional (NACA)
 - peaky
 - older supercritical airfoils (1965-1987)
 - modern supercritical airfoils (1988-today)

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

- Aircraft considered with conventional (NACA) airfoils
 - IAI 1124A Westwind 2
 - Sud Aviation Caravelle
 - VFW 614
 - HFB 320
 - Gates Lear Jet Model 23
 - Lockheed C-141 Starlifter
 - Lockheed Jetstar II
 - Dassault Falcon 20

- Aircraft considered with peaky airfoils
 - BAC One-Eleven Series 500
 - McDonnell Douglas DC-9 Series 30
 - Vickers VC-10 Super VC-10
 - McDonnell Douglas DC-8 Series 63
 - McDonnell Douglas DC-10 Series 10
 - Lockheed C-5A

- Aircraft considered with older supercritical airfoils (1965-1987)
 - Mitsubishi Diamond I
 - Airbus A300-600
 - Boeing 767-200
 - Cessna 650 Citation VI
 - Airbus A310-300
 - Raytheon Hawker 800XP
 - Raytheon Beechjet 400A
 - Beriev Be-40

- Aircraft considered with modern supercritical airfoils (1988-today)
 - Bombardier Global Express
 - Bombardier Challenger CRJ 200 LR
 - Tupolev Tu-204-300
 - BAe RJ85
 - Embraer EMB-145
 - Airbus A321-200
 - Airbus A340-300

- M_{DD} was taken as M_{MO} (following Boeing and Airbus design principles) if M_{MO} was known.
- M_{DD} was taken as a Mach number (calculated from V_{MO} and a known or assumed altitude *h* up to which V_{MO} is flown) if M_{MO} was unknown.
- Average relative thickness of the wing *t/c* from JENKINSON:

$$t/c = \frac{3(t/c)_{tip} + (t/c)_{root}}{4}$$

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Investigation, comparison and adaptation of equations

• Standard Error of Estimate SEE

$$SEE = \sqrt{\frac{\sum (y_{estimate} - y)^2}{n}}$$

- Optimization
 - Optimized values of the free parameters determined
 - Leads to a minimum Standard Error of Estimate SEE
 - Calculated with EXCEL and the modified Newton method of the "Solver"

Investigation, comparison and adaptation of equations

• Comparison of the SEE of the equations

ranking	Method	SEE	optimized
1	nonlinear regression	0.75 %	yes
2	TORENBEEK (with term C_L)	0.80 %	yes
3	linear regression	1.18 %	yes
4	similarity with sweep	2.43 %	yes
5	Howe	3.67 %	yes
6	similarity without sweep	3.71 %	yes
7	WEISSHAAR	3.95 %	yes
8	JENKINSON	4.23 %	no
9	Böttger	4.32 %	no
10	RAYMER	4.54 %	no
11	Kroo	4.59 %	no
12	Shevell	8.06 %	no
	average SEE	3.25 %	

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Investigation, comparison and adaptation of equations

TORENBEEK's equation optimized

$$\frac{t}{c} = k_T \cos \varphi_{25} \left\{ \left[1 - \left\{ \frac{5 + M_{DD,eff}^2}{5 + (M^* - 0.25 C_L)^2} \right\}^{3,5} \right] \frac{\sqrt{1 - M_{DD,eff}^2}}{M_{DD,eff}^2} \right\}^E$$

parameter	standard	optimized
M* for conventional	1.000	0.907
M* for peaky	1.050	1.209
M* for older supercritical	1.135	4.703
M* for modern supercritical	1.135	1.735
k_{T}	0.300	0.130
E	0.667	0.038

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Investigation, comparison and adaptation of equations

• Equation from nonlinear regression optimized

$$t / c = k_t \cdot M_{DD}^t \cdot \cos \varphi_{25}^u \cdot c_L^v \cdot k_M^w$$

$k_{T} = 0.127$	k_M for conventional	0.921
t = -0.204	<i>k_M</i> for peaky	0.928
u = 0.573	k_M for older supercritical	1.017
v = 0.065	k_M for modern supercritical	0.932
w = 0.556	airfoils	

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Investigation, comparison and adaptation of equations

HOWE's equation optimized

$$t / c = A_F - 0.1 C_L - M_{DD,eff}$$

A _F	standard	optimized
A_F for conventional	0.80	0.861
A _F for peaky	0.85	0.935
A _F for older supercritical	0.90	0.907
A_F for modern supercritical	0.95	0.926

Summary and conclusions

- Goal: Relate the parameters Mach number, relative thickness, sweep, and lift coefficient to one another
- 12 equation were found in the literature
- Some equations draw strongly from *aerodynamic theory* but other equations are purely based on *statistical considerations*
- Data from 29 transport aircraft was used
- The equation based on nonlinear regression and TORENBEEK's equation can be recommended
- Many equation in the literature lead to unacceptable results!