Prof. Dr.-Ing. Dieter Scholz, MSME

Solution

Flugzeugentwurf / Aircraft Design SS 2023

Date: 14.07.2023
Duration of examination: 180 minutes

1. Part

45 points, 90 minutes, closed books
1.1) Please translate to German.

Please find the vocabulary given as part of the Lecture Notes.
1.2) Please translate to English.

```
Please find the vocabulary given as part of the Lecture Notes.
```

1.3) Shown is the X-66A. It is an experimental airliner under development by Boeing. It is part of the X-plane series and has been developed in collaboration with NASA.

https://www.nasa.gov/press-release/next-generation-experimental-aircraft-becomes-nasa-s-newest-x-plane https://www.nasa.gov/press-release/nasa-issues-award-for-greener-more-fuel-efficient-airliner-of-future Please name 4 technical characteristics and for each characteristic at least one advantage and one disadvantage!

```
1. Large span (or aspect ratio):
    Advantage: lower induced drag
    Disadvantage: heavier wing
2. Braced wing:
    Advantage: lighter wing
    Disadvantage: due to struts more zero lift drag and interference drag
```

```
3. High wing:
    Advantage: braced wing configuration becomes possible,
    installation space for high by-pass-ratio
    engines available
    Disadvantage: wing box goes through cabin or hump on fuselage,
    difficult landing gear integration
4. T-Tail:
    Advantage: smaller horizontal tail
    Disadvantage: heavier vertical tail, possibility of deep stall
```

1.4) Please describe the preliminary sizing process for jets (based on Loftin 1980). A full answer requires maybe a diagram and a little more text. (This gives a maximum of 4 points!)

Please see Lecture Notes Chapter 5.
1.5) What is the ratio of the maximum lift coefficient and the actual lift coefficient at minimum approach speed of an aircraft certified by CS-25? (You may need to calculate!)
$1.3^{2}=1.69$
1.6) An unswept wing with high lift system has a maximum lift coefficient of 3.6. Estimate the maximum lift coefficient of a similar wing with 60° sweep!
Factor is $\cos \left(60^{\circ}\right)=0.5$. Lift coefficient gets 1.8.
1.7) You are asked to design an ultra long range passenger aircraft. What is your proposal for the ratio of maximum landing mass to maximum take-off mass.
0.6
1.8) What is the defined end of the 2nd Segment?

An altitude of 400 ft.
1.9) What gradient of climb may Airbus have used to calculate the 2nd Segment $O E I$ thrust-to-weight requirements for the ZEROe aircraft pictured? (This answer goes beyond a simple repetition of information from the Lecture Notes. Think!)

The aircraft has 8 engines. CS-25 defines the gradient of climb only up to 4 engines. The gradient is increasing with the number of engines. With many engines certification may require considering more than one engine inoperative. The chosen number of engines may have disadvantages based on certification rules, which however at this moment are not even given. This adds development risk.
1.10) Describe the influence of thrust-to-weigh ratio on the ratio of operating empty mass to maximum take-off mass! Please write down the equation if you can!

$$
\frac{m_{O E}}{m_{\text {MTO }}}=0.23+1.04 \cdot \frac{T_{T O}}{m_{\text {MTO }} \cdot g}
$$

1.11) What is a typical value for the ratio of operating empty mass and maximum take-off mass for passenger aircraft?
0,5
1.12) Write down the equation known as First Law of Aircraft Design from which you can calculate the maximum take-off mass $m_{M T O}$ from payload $m_{P L}$!

$$
m_{M T O}=\frac{m_{P L}}{1-\frac{m_{F}}{m_{M T O}}-\frac{m_{O E}}{m_{M T O}}}
$$

1.13) From which two aircraft mass values is the mission segment mass fraction for the cruise phase calculated? From which equation is the ratio of these two mass values calculated?

$$
\frac{m_{L O I}}{m_{C R}}=e^{-\frac{s_{C R}}{B_{s}}}
$$

1.14) What is wetted aspect ratio? Give the equation from which maximum L / D in cruise can be estimated from wetted aspect ratio!

$$
\begin{aligned}
& \operatorname{maximum} L / D= \\
& E_{\max }=k_{E} \sqrt{\frac{A}{S_{\text {wet }} / S_{W}}} \\
& \text { wetted aspect ratio is the term } \\
& \frac{A}{S_{\text {wet }} / S_{W}}
\end{aligned}
$$

1.15) Passenger jet aircraft may fly 3.5 times as fast in cruise compared to approach. This has consequences for the lift coefficient. Please name three measures (or effects) acting together to make this large speed range possible!

```
Without any measures, the lift coefficient in cruise (at high speed) would
be too low and the drag would be very high, because the aircraft would fly
far from the optimum lift coefficient (called Cl,minimum drag). Measures are
taken to bridge the gap between approach speed and cruise speed:
a. Use the natural difference of an airfoil, wing, and aircraft between
    lift coefficient for minimum drag and lift coefficient for maximum lift.
b. Increase the lift coefficient at approach speed with high lift devices.
c. Increase the necessary lift coefficient by cruising at high altitude
        (low air density).
```

1.16) What is a typical value of the equivalent skin friction coefficient for passenger aircraft? 0.003
1.17) Based on this cabin design equation: $\quad n_{S A}=0.45 \cdot \sqrt{n_{P A X}}$, calculate the ratio of number of rows, n_{R} to the number of seats abreast, $n_{S A}$ that is the underlying assumption for the equation!
1.18) Now, write the cabin design equation in a more general form and replace the " 0.45 " by $k_{S A}$ which is a function of n_{R} and $n_{S A}$. Determine this function!

$$
\begin{aligned}
& n_{S A}=0.45 \sqrt{n_{\text {pax }}} \\
& n_{S A}^{2}=0.45^{2} \cdot n_{\text {pax }}=0.45^{2} \cdot n_{R} \cdot n_{S A} \\
& \frac{n_{S A}}{n_{R}}=0.45^{2} \\
& \frac{n_{R}}{n_{S A}}=\frac{1}{0.45^{2}}=4.938 \\
& \frac{1}{k_{S A}^{2}}=\frac{n_{R}}{n_{S A}} \\
& k_{S A}=\sqrt{\frac{n_{S A}}{n_{R}}} \\
& n_{S A}=k_{S A} \cdot \sqrt{n_{\text {pax }}} \\
& \text { 个 } \sqrt{\frac{n_{S A}}{n_{R}}}
\end{aligned}
$$

1.19) How many passengers may at most be evacuated through a Type A door? 110
1.20) Please name the equation from which you can estimate the zero-lift drag coefficient, $C_{D 0}$ from maximum glide ratio $E_{\max }$!
$C_{D, 0}=\frac{\pi \cdot A \cdot e}{4 \cdot E_{\max }^{2}}$
1.21) Which parameter has the strongest influence on the Oswald factor of a jet aircraft in cruise?

```
Most influence has the factor ke,m, which takes care of the Mach effect on
Oswald factor.
```

1.22) What is the non-planar wing system with the potential for the highest Oswald factor (lowest induced drag)?

```
It is the box wing also called Prandtl wing.
```

1.23) Please write down the equation to estimate the horizontal tail area from the horizontal tail volume coefficient!
$S_{H}=\frac{C_{H} S_{W} c_{M A C}}{l_{H}}$
1.24) What is the benefit of adding a (standard) dorsal fin compared to the same increase in vertical tail area?
The dorsal fin allows higher side slip angles. As such, it protects the vertical tail from a stall.
1.25) What is the wave drag coefficient a) at critical Mach number, b) at drag divergence Mach number?
a. 0
b. 0.002
1.26) Propose a dihedral angle for an aircraft with a 30° swept high wing!

Both (aft) seep and high wing stabilize the aircraft in roll. This gets al-
ready too much and needs to be compensated by anhedral (negative dihedral
or V-shape). Select dihedral -5° to -2° (Lecture Notes), or -3.5° (calcu-
lated from the Nutshell).
1.27) An aircraft has these parameters: maximum take-off mass 73500 kg , maximum zero-fuel mass 62800 kg , range 3180 km , 150 passengers. Please calculate the fuel consumption per passenger!
The simple equation considers fuel reserves used. Fuel mass is 73500 kg $62800 \mathrm{~kg}=10700 \mathrm{~kg}$. This divided by 3180 km and 150 passengers, multiplied by 100 gives a fuel consumption expressed as 2.24 kg per passenger and per 100 km.
1.28) Hamburg Airport claims that its airport operation is CO 2 -neutral since 2022 due to CO 2 compensation. Even better, the airport now follows the strategy "Net Zero 2035", where by 2035 no CO 2 compensation will be necessary anymore. a) How can this be achieved? b) What generates the most CO 2 within the airport fence? Is the largest contributor to these CO 2 addressed in "Net Zero 2035"?

```
a. Hamburg Airport intends to install wind and solar power plants.
b. The aircraft generate most CO2 within the airport fence.
c. The largest contributor to the CO2 within the fence of the airport is
    not considered in the airport environmental strategy.
```

1.29) We look at Effective Radiative Forcing, ERF from kerosene combustion. What is the share of
a) CO 2, b) contrails and resulting contrail cirrus, c) consequences of NOx emissions?

```
a. 2/6 = 1/3
b. 3/6 = 1/2
c. 1/6
```

1.30) What is the annual growth rate, if the number of aircraft is doubling from 2023 to 2040 ? $2^{(1 / 17)}=1.0416$, the growth rate is 4.16%.
1.31) Airbus: "SAFs [Sustainable Aviation Fuels, from biological processes] are a good solution here as they produce around 80 percent less CO2". How can that be, if SAF are hydrocarbons ($\mathrm{C}_{\mathrm{x}} \mathrm{Hy}$) like kerosine?
SAF from biological processes are made from plants that have absorbed CO2 during their life. This CO 2 is put back into the atmosphere when the SAF (that does not differ much from kerosene) is burned in flight. SAF is sustainable, because it generates a carbon cycle. Due to inefficiencies in the cycle (trucks burning diesel fuel shipping goods, ...) the carbon cycle does not safe 100\% CO2, but only an estimated 80% (depending on the fuel production process).
1.32) The EU is calling for 70% Sustainable Aviation Fuel (SAF) by 2050 (a blend of 70% SAF and 30% kerosene). Let's assume SAFs "produce around 80 percent less CO2" (Airbus). a) To what percentage are CO 2 emissions left? b) It is estimated that aviation will have grown by a factor of 2.9 by 2050. Based on this: How much more CO2 will be emitted in 2050 compared to today?

```
a. The 70% SAF are 35% from biofuel (CO2-efficiency 80%) hence as good as
    0.8 . 35% = 28%. The other 35% are from e-fuel, which may be considered
    to have a CO2-efficiency of 100%. Together SAF is as good as 63%. The
    fuel in the tank is producing CO2 as 37% of the kerosene before.
b. Due to traffic growth, the 37% become 37% . 2.9 = 107%. This means cO2
    emission in 2050 are increased(!) by about 7% compared to today (despite
    the ambitious introduction of SAF).
```


Questions from the Evening Lectures

1.33) What suggestion does Prof. Poll make to eliminate aviation's contribution to climate change?

In aviation, "contrail management" is a major weapon in the fight against climate change. Avoid warming contrails and produce cooling contrails. As such aviation could become net cooling.
1.34) The carbon footprint varies in size. We look at the 1% of the world's population who fly the most. What percentage of CO 2 from aviation is caused by this 1% of the world's population? 1% of the population produces 50% of the CO2 from aviation. Source: https://doi.org/10.1016/j.gloenvcha.2020.102194 and many others.
1.35) If you have 1 MWh of renewable energy in the form of electricity, what should you do with it to save as much CO 2 as possible? Here are some initial suggestions: production of SAF for aviation, production of LH 2 for aviation, powering a CO2 capture system, powering a heat pump, ... Choose one option or name an even better option that is not mentioned here!
The best option would be to reduce the output of a coal power plant (and with more MWh to close the coal power plant). It is not wise to spend the limited renewable energy on aviation. See here: http://PTL.ProfScholz.de.

2. Part

49 points, 90 minutes, open books

Task 2.1 (22 points)

Redesign of an Airbus A320: neo engines, high wing, large span

In 2008, NASA awarded research contracts (each worth about $\$ 2$ million) to six industry teams to study advanced concepts for commercial transport aircraft. The Subsonic Ultra-Green Aircraft Research (SUGAR) project led by the Boeing Company resulted in the NASA N+3 initiative (entry into service in 2030 to 2035) of high wing, large span, strut braced aircraft with different propulsion technologies. Phase 1 results were presented in early 2011 (picture). Time flies! Boeing received more
 contracts over the years. Work has started now on a full scale design with flight test: the Boeing X-66A, which is part of the famous X-plane series of experimental US aircraft. Check out what Airbus could do in a similar way!

These are the requirements for the aircraft:

- Payload: 180 passengers with baggage (93 kg per passenger). Additional payload: 2516 kg .
- Range 1510 NM at a cruise Mach number $M_{C R}=0.76$ (payload as above, with international reserves as given in FAR Part 121, with 5\% extra fuel on distance flown, distance to alternate: 200 NM).
- \quad Take-off field length $s_{T O F L} \leq 1768 \mathrm{~m}$ (ISA, MSL).
- Landing field length $s_{L F L} \leq 1448 \mathrm{~m}$ (ISA, MSL).
- Furthermore, the requirements from FAR Part 25 §121(b) (2. Segment) and FAR Part 25 §121(d) (missed approach) shall be met.

For your calculation

- \quad The factor $k_{A P P}$ for approach, k_{L} for landing and $k_{T O}$ for take-off should be selected according to the spread sheet and to the lecture notes.
- Maximum lift coefficient of the aircraft in landing configuration $C_{L, m a x, L}=3.41$
- Maximum lift coefficient of the aircraft in take-off configuration $C_{L, \max , T O}=2.58$
- The glide ratio is calculated for take-off and landing with $C_{D 0}=0.02$ and Oswald factor $e=0.7$
- Oswald factor in cruise $e=0.75$ (lower due to larger aspect ratio)
- Aspect ratio $A=25.0$!
- Maximum glide ratio in cruise, $E_{\max }$ calculated from theory with equivalent surface friction coefficient, $C_{f e}=0.003$ and relative wetted area, $S_{\text {wet }} / S_{W}=6.8$ (higher due to smaller wing).
- The ratio of cruise speed and speed for minimum drag $V_{C R} / V_{m d}$ has to be found such that a favorable matching chart is obtained. Find $V_{C R} / V_{m d}$ with two digits after the decimal place.
- The ratio of maximum landing mass to maximum takeoff mass, $m_{M L} / m_{M T O}$ has to be determined to fulfill final checks on aircraft mass.
- The operating empty weight ratio is $m_{O E} / m_{M T O}=0.56$
- The by-pass ratio (BPR) of the two CFM LEAP 1-A engines is $\mu=11$; their thrust specific fuel consumption for cruise and loiter is $c=14.0 \mathrm{mg} /(\mathrm{Ns})$.
- Use these values as Mission-Segment Fuel Fractions: Taxi: 0.992; Take-off: 0.992; Climb: 0.992; Descent: 0.992; Landing: 0.992.

Please insert your results here! Do not forget the units!

- wing loading from landing field length: $577,4 \mathrm{~kg} / \mathrm{m}^{2}$
- thrust to weight ratio from take-off field length (at wing loading from landing): 0,296
- glide Ratio in 2. Segment: 15,86
- glide Ratio during missed approach maneuver: 13,02
- thrust to weight ratio from climb requirement in 2 . Segment: 0,174
- thrust to weight ratio from climb requirement during missed approach maneuver: 0,179
- $V_{C R} / V_{m d}: 1,24$
- design point
o. thrust to weight ratio :
- wing loading:
- cruise altitude:
- maximum take-off mass:
- maximum landing mass:
- fuel mass, standard flight:
- wing area:
- thrust of one engine in lb:

- required tank volume in m^{3} :
- wing span: $51,96 \mathrm{~m}$ Comment on the wing span! Just fits in $\begin{aligned} & \text { ICAO CLass D (52 m) }\end{aligned}$

Calculate the change to A320 parameters:

- A320, maximum take-off mass: 73500 kg . Change in $\%=-15,14 \%$
- A320, fuel mass, standard flight: 13100 kg . Change in $\%$: $-37,5 \%$
- A320, wing span, without sharklets: $34,1 \mathrm{~m}$. Change in $\%$: $+52,4 \%$

1.) Peliminary Sizing I

Calculations for flight phases approach, landing, tak-off, 2nd segment and missed approach

Bold blue values represent input data.
Values based on experience are light blue. Usually you should not change these values!
Results are marked red. Don't change these cells!
Interim values, constants, ... are in black!
"<<<<" marks special input or user action.

[^0]" $\lll \lll 1$ marks special input or user action.

Approach			
Factor	$\mathrm{k}_{\text {APP }}$	$1,70\left(\mathrm{~m} / \mathrm{s}^{2}\right)^{0.5}$	
Conversion factor		$1,944 \mathrm{kt} / \mathrm{m} / \mathrm{s}$	
Given: landing field length		yes	<<<< Choose according to task (ja = yes; nein = no)
Landing field length	$\mathrm{S}_{\text {LFL }}$	1448 m	
Approach speed	$V_{\text {APP }}$	$64,7 \mathrm{~m} / \mathrm{s}$	
Approach speed	$V_{\text {APP }}$	125,746 kt	$V_{A P P}=k_{A P P} \cdot \sqrt{s_{L F L}}$
Given: approach speed		no	
Approach speed	$V_{\text {APP }}$	134,5 kt	$V=\left(S_{L F L}\right)^{2}$
Approach speed	$V_{\text {APP }}$	$69,2 \mathrm{~m} / \mathrm{s}$	$V_{A P P}=\left(\frac{s_{L F L}}{k}\right)$
Landing field length	$\mathrm{S}_{\text {LFL }}$	1448 m	$\left(k_{\text {APP }}\right)$
Landing			
Landing field length	$\mathrm{S}_{\text {LFL }}$	1448 m	
Temperature above ISA $(288,15 \mathrm{~K})$	$\Delta \mathrm{T}_{\mathrm{L}}$	0 K	
Relative density	σ	1,000	
Factor	k_{L}	$0,107 \mathrm{~kg} / \mathrm{m}^{3}$	$k_{L}=0,03694 k_{A P P}{ }^{2}$
Max. lift coefficient, landing	$\mathrm{C}_{\mathrm{L}, \text { max, }}$	3,41	
Mass ratio, landing - take-off	$\mathrm{m}_{\text {ML }} / \mathrm{m}_{\text {TO }}$	0,913	$m_{M L} / S_{W}=k_{L} \cdot \sigma \cdot C_{L, \max , L} \cdot S_{L F L}$
Wing loading at max. landing mass	$\mathrm{m}_{\mathrm{mL}} / \mathrm{S}_{\mathrm{w}}$	$527,19486 \mathrm{~kg} / \mathrm{m}^{2}$	
Wing loading at max. take-off mass	$\mathrm{m}_{\text {мто }} / \mathrm{S}_{\mathrm{w}}$	$577,43139 \mathrm{~kg} / \mathrm{m}^{2}$	$\left\|m_{\text {MTO }} / S_{W}=\frac{m_{M L} / S_{W}}{m_{\text {MI. }} / m_{\text {MTO }}}\right\|$

1.) Preliminary Sizing I

Take-off

Take-off field length

$\mathrm{S}_{\text {TOFL }}$
$\Delta \mathrm{T}_{\mathrm{TO}}$
σ
k_{TO}
$0,8{ }^{*} \mathrm{C}_{\mathrm{L}, \text { max }, \mathrm{L}}$
$\mathrm{C}_{\mathrm{L}, \text { max, }}$
a
$\mathrm{T}_{\mathrm{TO}} / \mathrm{m}_{\text {MTO }}{ }^{*} \mathrm{~g}$ at $\mathrm{m}_{\mathrm{MTO}} / \mathrm{S}_{\mathrm{W}}$ calculated
from landing

$$
\begin{array}{ll}
1768 \mathrm{~m} & \\
\mathbf{0} \mathbf{~ K} & \\
1,000 & \\
2,34 \mathrm{~m}^{3} / \mathrm{kg} \\
2,728 & \\
2,58 & a=\frac{T_{T O} /\left(m_{M T O} \cdot g\right)}{m_{M T O} / S_{W}}=\frac{k_{T O}}{s_{T O F L} \cdot \sigma \cdot C_{L, \max , T O}} \\
\mathbf{0 , 0 0 0 5 1 3 0} \mathrm{~kg} / \mathrm{m}^{3} &
\end{array}
$$

0,296

2nd Segment

Calculation of glide ratio

Aspect ratio

Lift coefficient, take-off
Lift-independent drag coefficient, clean
Lift-independent drag coefficient, flaps
Lift-independent drag coefficient, slats
Profile drag coefficient
Oswald efficiency factor; landing configuration
Glide ratio in take-off configuration

A	$\mathbf{2 5}$
$C_{L, \text { TO }}$	1,79
$C_{D, 0}$ (bei Berechnung: 2. Segment)	0,020
$\Delta C_{D, \text { flap }}$	0,035
$\Delta C_{D, \text { slat }}$	0,000
$C_{D, P}$	0,055
e	0,7
$\mathrm{E}_{\text {TO }}$	15,86

Calculation of thrust-to-weight ratio

Number of engines
n_{E}
$\sin (\gamma)$
$\mathrm{T}_{\mathrm{TO}} / \mathrm{m}_{\text {мто }}{ }^{*} \mathrm{~g}$

n_{E}	$\sin (\gamma)$
2	0,024
3	0,027
4	0,030

$$
\frac{T_{T O}}{m_{M T O} \cdot g}=\left(\frac{n_{E}}{n_{E}-1}\right) \cdot\left(\frac{1}{E_{T O}}+\sin \gamma\right)
$$

1.) Preliminary Sizing I

Missed approach

Calculation of the glide ratio

Lift coefficient, landing
Lift-independent drag coefficient, clean
Lift-independent drag coefficient, flaps
Lift-independent drag coefficient, slats
Choose: Certification basis
Lift-independent drag coefficient, landing gear
Profile drag coefficient
Glide ratio in landing configuration
Calculation of thrust-to-weight ratio
Climb gradient
Thrust-to-weight ratio
$\mathrm{C}_{\mathrm{L}, \mathrm{L}}$
2,02
$\mathrm{C}_{\mathrm{D}, 0}$ (bei Berechnung: Durchstarten)
0,020
0,046
$\Delta \mathrm{C}_{\mathrm{D} \text { flap }}$
0,000
JAR-25 bzw. CS-25 no
FAR Part 25
$\Delta \mathrm{C}_{\mathrm{D}, \text { gear }} \quad 0,015$
$\mathrm{C}_{\mathrm{D}, \mathrm{P}}$
0,081
E_{L}
13,02

	JAR-25 bzw. CS-25	FAR Part 25
$\Delta \mathrm{C}_{\mathrm{D}, \text { gear }}$	0,000	0,015

<<<< Choose according to task

n_{E}	$\sin (\gamma)$
2	0,021
3	0,024
4	0,027

$\frac{T_{T O}}{m_{M T O} \cdot g}=\left(\frac{n_{E}}{n_{E}-1}\right) \cdot\left(\frac{1}{E_{L}}+\sin \gamma\right) \cdot \frac{m_{M L}}{m_{M T O}}$

2.) Max. Glide Ratio in Curise

Estimation of k_{E} by means of 1 .), 2.) or 3.)
1.) From theory
 Factor

e

2.) Acc. to RAYMER

Factor
k_{E}
15,8
3.) From own statistics

Factor
k_{E}
???
Estimation of max. glide ratio in cruise, $\mathrm{E}_{\text {max }}$

Factor

Relative wetted area
Aspect ratio
Max. glide ratio
K_{E} chosen
$S_{\text {wet }} / S_{w}$
A
$E_{\text {max }}$
or
$\mathrm{E}_{\text {max chosen }}$
$\mathbf{0 , 7 5}$
$\mathbf{0 , 0 0 3}$

14,0 \quad	$E_{\max }=k_{E} \sqrt{\frac{A}{S_{\text {wet }} / S_{W}}}$
$k_{E}=\frac{1}{2} \sqrt{\frac{\pi \cdot e}{c_{f}}}$	

0,75 0,003
14,0

<<<< Choose according to task

 $S_{\text {wet }} / S_{w}=6,0 \ldots 6,2$1)

25 (from sheet 1)
26,87

26,87

3.) Preliminary Sizing II

alculations for cruise, matching chart, fuel mass, operating empty mass

and aircraft parameters $\mathrm{m}_{\text {MTO }}, \mathrm{m}_{\mathrm{L}}, \mathrm{m}_{\mathrm{OE}}, \mathrm{S}_{\mathrm{W}}, \mathrm{T}_{\mathrm{TO}}, \ldots$

3.) Preliminary Sizing II

Wing loading
Thrust-to-weight ratio
Thrust ratio
Conversion factor
Cruise altitude
Cruise altitude
Temperature, troposphere
Temperature, h_{CR}
Speed of sound, $h_{C R}$
Cruise speed

Conversion factor
Design range
Design range
Distance to alternate
Distance to alternate
Chose: FAR Part121-Reserves?
Extra-fuel for long range

Extra flight distance
Spec.fuel consumption, cruise

Breguet-Factor, cruise
Fuel-Fraction, cruise
Fuel-Fraction, extra fliht distance

Loiter time

Spec.fuel consumption, loiter Breguet-Factor, flight time
Fuel-Fraction, loiter

Fuel-Fraction, taxi
Fuel-Fraction, take-off
Fuel-Fraction, climb
Fuel-Fraction, descent
Fuel-Fraction, landing
$\mathrm{m}_{\text {мто }} / \mathrm{S}_{\mathrm{w}}$
T/ ($\mathrm{m}_{\text {MTO }}{ }^{*} \mathrm{~g}$)
$\left(\mathrm{T}_{\mathrm{CR}} / \mathrm{T}_{\mathrm{TO}}\right)_{\mathrm{CR}}$
$\mathrm{m}->\mathrm{ft}$
$h_{C R}$
$h_{C R}$
$\mathrm{T}_{\text {Troposphäre }}$
$T\left(h_{C R}\right)$
a
$V_{C R}$

NM -> m
R
R
R
$\mathrm{S}_{\text {to_alternate }}$
$\mathrm{S}_{\text {to_alternate }}$
domestic
international
$\mathrm{s}_{\text {res }}$
$S_{F C R}$
B_{s}
$M_{\mathrm{ff}, \mathrm{CR}}$
$\mathrm{M}_{\mathrm{ff}, \mathrm{RES}}$
$t_{\text {Ioiter }}$
SFC ${ }_{\text {loiter }}$
B_{t}
$\mathrm{M}_{\mathrm{ff}, \text { loiter }}$
$\mathrm{M}_{\mathrm{ff}, \mathrm{taxi}}$
$\mathrm{M}_{\mathrm{ff}, \mathrm{TO}}$
$\mathrm{M}_{\mathrm{ff}, \mathrm{CLB}}$
$\mathrm{M}_{\mathrm{ff}, \mathrm{DES}}$
$\mathrm{M}_{\mathrm{ff}, \mathrm{L}}$

577 kg/m ${ }^{2}$
0,296
0,137
0,305 m/ft
11899 m
39040 ft
210,80 K
216,65
295 m/s
224 m/s
1852 m/NM
1510 NM
2796520 m 200 NM 370400 m no yes 5% 5\%

510226 m

	typical value	$1,60 \mathrm{E}-05 \mathrm{~kg} / \mathrm{N} / \mathrm{s}$
$\mathbf{1 , 4 0 E - 0 5 ~ k g} / \mathrm{N} / \mathrm{s}$	Extra time:	
40101557 m	FAR Part 121	$\mathrm{t}_{\text {loiter }}$
0,933	domestic	2700 s
0,987	international	1800 s

1800 s
1,40E-05 kg/N/s
178823 s
0,990

0,997 <<<< Copy values
$0,992 \lll<$ from
$0,992 \lll<$ table
$0,992 \lll<$ on the
$0,992 \lll<$ right!
$\lll<$ Press START button to automatically adjust cruise line

A320:
$39100 \mathrm{ft} \quad-0,15 \%$
$\mathrm{T}_{\text {Stratosphäre }}$
216,65 K

Reserve flight distance:

FAR Part 121	$\mathrm{s}_{\text {res }}$
domestic	370400 m
international	510226 m

Phase	M_{ff} per flight phases		
	transport jet	business jet	transport jet
taxi	0,997	0,995	0,990
take-off	0,992	0,995	0,995
climb	0,992	0,980	0,980
descent	0,992	0,990	0,990
landing	0,992	0,992	0,992

3.) Preliminary Sizing II

Fuel-Fraction, standard flight	$\mathrm{M}_{\mathrm{ff} \text {,std }}$	0,903
Fuel-Fraction, all reserves	$\mathrm{M}_{\mathrm{ff} \text {, , }}$	0,962
Fuel-Fraction, total	$\mathrm{Mff}^{\text {ff }}$	0,868734
Mission fuel fraction	$\mathrm{m}_{\mathrm{F}} / \mathrm{m}_{\text {MTO }}$	0,131266
Realtive operating empty mass	$\mathrm{m}_{\text {OE }} / \mathrm{m}_{\text {MTO }}$	0,538
Realtive operating empty mass	$\mathrm{m}_{\text {OE }} / \mathrm{m}_{\text {MTO }}$	0,561
Realtive operating empty mass	$\mathrm{m}_{\text {OE }} / \mathrm{m}_{\text {MTO }}$	0,560
Choose: type of a/c	short / medium range long range	yes no
Mass: Passengers, including baggage	$\mathrm{m}_{\text {PAX }}$	$93,0 \mathrm{~kg}$
Number of passengers	$\mathrm{n}_{\text {PAX }}$	180
Cargo mass	$\mathrm{m}_{\text {cargo }}$	2516 kg
Payload	m_{PL}	19256 kg
Max. Take-off mass	$\mathrm{m}_{\text {MTO }}$	62371 kg
Max. landing mass	$\mathrm{m}_{\text {ML }}$	56945 kg
Operating empty mass	$\mathrm{m}_{\text {OE }}$	34928 kg
Mission fuel fraction, standard flight	m_{F}	8187 kg
Wing area	S_{w}	108,0 m ${ }^{2}$
Take-off thrust	$\mathrm{T}_{\text {TO }}$	181244 N
T-O thrust of ONE engine	$\mathrm{T}_{\text {TO }} / \mathrm{n}_{\mathrm{E}}$	90622 N
T-O thrust of ONE engine	$\mathrm{T}_{\mathrm{TO}} / \mathrm{n}_{\mathrm{E}}$	20372 lb
Span	b	51,96 m
Fuel mass, needed	$\mathrm{m}_{\mathrm{F} \text {, erf }}$	8350 kg
Fuel density	$\rho_{\text {F }}$	$785 \mathrm{~kg} / \mathrm{m}^{3}$
Fuel volume, needed	$V_{F, \text { erf }}$	10,6 m ${ }^{3}$
Max. Payload	$\mathrm{m}_{\text {MPL }}$	19256 kg
Max. zero-fuel mass	$\mathrm{m}_{\text {MZF }}$	54184 kg
Zero-fuel mass	m_{zF}	54184 kg
Fuel mass, all reserves	$\mathrm{m}_{\text {F,res }}$	2377 kg
Check of assumptions	check:	$\begin{gathered} \mathrm{m}_{\mathrm{ML}} \\ 56945 \mathrm{~kg} \end{gathered}$

acc. to Loftin
from statistics (if given)
<<<< Choose according to task
$\lll<$ Choose according to task

in kg		Short- and Medium Range	Long Range
$\mathrm{m}_{\text {PAX }}$		93,0	97,5
A320:		Change:	
19256 kg		0,00\%	

73500 kg	$-15,14 \%$
64500 kg	$-11,71 \%$
41244 kg	$-15,31 \%$
13102 kg	$-37,51 \%$
$122,4 \mathrm{~m}^{2}$	$-11,75 \%$
all engines together relative:	0,878
111150 N	
one engine	$-18,47 \%$
$34,1 \mathrm{~m}$	

(check with tank geometry later on)
$\begin{array}{rr}> & m_{\mathrm{ZF}}+\mathrm{m}_{\mathrm{F}, \text { res }} \quad ? \\ > & 56561 \mathrm{~kg}\end{array}$
Aircraft sizing finished!

Matching Chart

Task 2.2 (5 points)

We use the Excel-Tool for the Diederich-Method given on http://Diederich.ProfScholz.de

Use the parameters as given in the Excel-Sheet, but set

- quarter chord sweep, $\varphi 25: 0^{\circ}$
- twist, $\varepsilon_{\mathrm{t}}: \quad 0^{\circ}$

1. Look only at the distribution of the lift coefficient, c_{L} (hide all the other lines).
2. Change the taper ratio, λ from 0.1 via $0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9$, to 1.0 and read for each λ the relative span position, η from the chart where c_{L} has a maximum (i.e. where the wing is likely to stall first).
3. Compare η from 2. with the approximation for η from the Lecture Notes (7.38) by calculating the difference in η for each λ resulting from the two methods.
4. Comment on your findings.

Task 2.3 (6 points)
At higher cruise Mach numbers the Oswald factor, e depends mostly on the Mach-sensitive parameter, $k_{e, M}$ as given in the lecture notes (Method 1). Calculate $k_{e, M}$! Your long range passenger jet aircraft has a cruise Mach number of 0.85 . Note: You have to determine also the parameter a_{e} ! Now, produce a quick estimate of the Oswald factor, e for your jet, using the statistical data given in Method 1. Assume the theoretical Oswald factor, $e_{\text {theo }}$ is 1.

Task 2.4 (5 points)

a) An aircraft has 180 seats and 30 rows. Estimate the cabin length!
b) How many aisles are needed for this aircraft?
c) Estimate the volume of the overhead stowage!
d) Estimate the mass of the carry-on baggage this aircraft can accommodate in the cabin, i.e. in the overhead stowage!

Task 2.5 (5 points)
A passenger aircraft has a cruise Mach number of 0.8 . Estimate wing sweep at quarter chord, average thickness ratio of the wing, thickness ratio at wing tip and wing root, and optimum taper ratio. Note: Make use of the simple equation(s) in the "Nutshell" from the Lecture Notes!

Task 2.2

Task 2.3

$$
\begin{aligned}
& M_{0}=M_{C R}+0.08=0.93 \\
& M_{\text {comp }}=0.3 \quad b_{e}=10.8 \\
& a_{e}=\frac{-1}{\left(\frac{M_{0}}{M_{\text {comp }}}-1\right)^{b_{e}}}=-0.000331155 \\
& K_{e, m}=a_{e}\left(\frac{M}{M_{\text {comp }}}-1\right)^{b_{e}}+1=0,766 \\
& e=e_{\text {theol }} \cdot k_{e, F} \cdot k_{e, D_{0}} \cdot k_{e, m} \\
& =1 \cdot 0.973 \cdot 0.873 \cdot 0.766 \\
& e=0.65
\end{aligned}
$$

Task 2.4
a) 180 seats, 30 rows

Cabin length: 30 m
b): $180 / 30=6$ seats abreast
\Rightarrow one aisle
c) Lecture Nobs:
"On modern planes $0,05 \mathrm{~m}^{3}$ to $0.065 \mathrm{~m}^{3}$ " overhead stowage per passenger.
Average: $0.0575 \mathrm{~m}^{3}$

$$
V=180 \cdot 0.0575 \mathrm{~m}^{3}=10,35 \mathrm{~m}^{3}
$$

d) $m=V \cdot \rho=10.35 \mathrm{~m}^{3} \cdot 170 \mathrm{~kg} / \mathrm{m}^{3}=1760 \mathrm{~kg}$

Alternative (better) solution:
c) Nutshell:

$$
\begin{aligned}
& \begin{array}{ll}
V_{O S}=\text { Sos, tot } \cdot L_{O S} & V^{0,723} \\
L_{O S}=k_{O S} \cdot L_{\text {basin }}
\end{array} \\
& \text { Sos, tot }=n_{\text {OS, lat }} \cdot S_{\text {OS,lat }}+n_{\text {OS, ce }} \cdot S_{\text {OS, ce }} \\
& \tau_{2} \hat{L}_{0} \\
& =2 \cdot 0,201 \mathrm{~m}^{2}=0,402 \mathrm{~m}^{2} \\
& V_{0 s}=0,402 \mathrm{~m}^{2} \cdot 0,723 \cdot 30 \mathrm{~m}=8,72 \mathrm{~m}^{3}
\end{aligned}
$$

d)

$$
\begin{aligned}
m_{O S} & =V_{O S} \cdot \rho_{B}=8,72 \mathrm{~m}^{3} \cdot 180,13 \mathrm{~kg} / \mathrm{m}^{3} \\
& =1571 \mathrm{~kg}
\end{aligned}
$$

Task 2.5

$$
\begin{aligned}
& M_{C R}=0.8 \\
& \varphi_{25}=39.3^{\circ} \cdot M_{C R}{ }^{2}=\underline{\underline{25.15}} \\
& t / C=-0.0439 \cdot \tan ^{-1}\left(3.345 M_{C R}-3.0231\right)+0.0986 \\
& =0.113=11.3 \% \text { Note: } \tan ^{-1} \text { Vequives } \\
& \text { input in tad o } \\
& (t / c)_{t}=\underset{\uparrow}{4 /(3+r) \cdot t / c}=10.5 \% \\
& (t / c)_{r}=r \cdot(t / c)_{t}=13.7 \% \\
& \lambda_{\text {opt }}=0.45 \cdot e^{-0.036 \cdot \rho_{25}} \hat{\text { in }} \text { index }^{0.182} \\
& \text { Tin deg } \Rightarrow 0.2 \text { for } \\
& \text { aileron } \\
& \text { integration }
\end{aligned}
$$

Task 2.6 (6 points)

The German Business Aviation Association (GBAA) argues in a press release that business jets drive innovation in aviation. As such, other types of aircraft benefit from the business jets. In particular: business jets have "improved propulsion systems and aerodynamic structures". "General aviation stands for 90% of global aviation". Please comment on the text and check the statements!

```
I had argued these statements in a document (and discussed with you).
The document is called:
```

"Comment on:
Last generation: 'Business jet marked with color at Sylt Airport' "

Mundsinger [GBAA] admits that operators only use SAF "in very small quantities". According to GBAA: "Business aircraft manufacturers [are] driving innovation." "Business aviation is a direct innovation and technology incubator for the broader aviation industry, including commercial aviation." "Technologies [are] being developed that are generally transferred to commercial aviation and often enable drastic performance improvements and fuel and therefore emissions savings." Mundsinger says business jets "were the first to incorporate winglets, glass cockpits, lighter composite materials, improved propulsion systems and more aerodynamic structures into their products." These statements are not proven and are probably false. One thing is certain: The specific fuel consumption (SFC) of the jet engines of business jets is on average around 30% higher than that of passenger jets (own calculation). This is due to the low bypass ratio (BPR) and the smaller size of the engines on business jets. With a low BPR, far from being used is what is currently the technical standard. A glass cockpit provides a different form of display and therefore saves nothing. In some cases, the old profiles from the 1960 s continued to be used as aerodynamic wing profiles for decades, although new, more fuel-efficient profiles had long been standard on passenger jets. This is simply because business aviation is less exposed to commercial pressure than commercial aviation, which must exist with a small percentage profit margin. A business jet is often bought simply based on its appearance and top speed. Mundsinger is quoted as saying: "Today, general aviation represents 90% of global air traffic, which accounts for 2% of $g l o b a l$ CO2 emissions." He explains: General Aviation "...includes not only business traffic but also sport aviation, school and training flights as well as ambulance and government flights". The statistical statement has little to do with "factual discussion": 1.) The activists criticize business jets and not general aviation / general aviation in general. 2.) Presumably the "90\%" refers to the number of starts. This also includes the starts of the gliding clubs. 3.) Why are the CO2 from general aviation compared to global CO2 emissions (including industry, heating, the entire transport sector, ...)?

Source: https://purl.org/aero/M2023-06-07

Your answer in the examination could have been much shorter.

[^0]: Author:
 Prof. Dr.-Ing. Dieter Scholz, MSME
 HAW Hamburg
 http://www.ProfScholz.de
 Example data: See Klausur SS05

