≣

Diploma Thesis Presentation

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Flight test planning and data extraction

Stefan Velikov

- 1. Examiner: Professor Dr.-Ing. D. Scholz, MSME
- 2. Examiner: Professor Dr.-Ing. H. Zingel

in cooperation with

Linköping University Department of Mechanical Engineering

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Contents overview:

- Introduction
- Raven basic information
- Calibration methods
- Flight test methods
 - Lift and drag determination
 - Stall speed tests
 - Longitudinal and lateral static stability
 - Dynamic stability flight tests

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Introduction

Motivation:

Subscale flight testing offers:

- Cost efficiency
- Safety investigations of the aircraft's behaviour in extreme portions of the flight envelope
- Identification of important aircraft flying qualities prior to building a full-scaled model

However:

Concept has to be completely understood!

≣

Flight test planning and data extraction

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Raven – basic information

Raven design:

- Conventional tail aft aircraft
- T-shaped tail section
- Low wing configuration
- Forward sweep

- Small nose boom for pressure and angle of attack and sideslip angle measurements
- Dimensions: 1,74 m x 2,0 m; Aspect ratio 10
- Weight (w/o fuel) 9,75 kg; max. Endurance: 20 min

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Calibration methods

Speed Course Method:

• 2 courses with reciprocal headings over the same measured distance *l*

- Speed and heading are to | |
 be maintained constant with inputs on the controls
- Advantage: simple instrumentation required
- *Disadvantages*: \rightarrow Constant heading
 - \rightarrow Less accurate results

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Lift and drag determination

Steady level flight:

- Lift = Weight ; Drag = Thrust
- Aircraft is trimmed at various angles of attack

- Drag is obtained using a turbine thrust model
- Weight is calculated using fuel flow indications
- Advantages: \rightarrow L and D directly as functions of AOA \rightarrow No data corrections
- Disadvantages: \rightarrow Turbine thrust model not verified
 - \rightarrow At high α : thrust not in flight path

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Lift and drag determination

Steady glide method:

- Nominal altitude and an altitude band ∠H of approx.
 300 m is chosen
- Aircraft is climbed slightly above Point 1
- Engine power set to idle
- Speed is maintained 2 3 100 3
- Manoeuvre repeated for a range of constant speeds

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Lift and drag determination

Data reduction for a single glide:

- *∆H* is corrected for:
 - Non-standard surface temperature
 - Occurring acceleration due to constant indicated airspeed
 - Non-standard weight
- **ROD** is calculated with the corrected ΔH and Δt
- C_L and C_D are obtained using γ , W_{avg} , V_{avg}
- *Disadvantages:* → Thrust forces are not zero
 - \rightarrow Drag polar; no AOA dependency
 - \rightarrow Short flight operational time

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Stall speed flight tests

Power-off gradual deceleration technique:

- Chosen altitude sufficient to gain back control
- Aircraft is trimmed at approx. 1,2 the predicted stall speed; → engines to idle
- α is slowly increased until stall occurs; pilot uses pitch control to maintain small deceleration rate
- Indication of stall a nose pitch down; plunge down
 Data reduction:

Calculated V_S is corrected for non-standard weight

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Longitudinal static stability

- Change of $C_{M, c.g.}$ with C_L is linear; slope depends on the CG position; $dC_{M, c.g.} / dC_L = -K_N$ (static margin)
- Aircraft trimmed for a range of V at 2 CG positions
- x_N calculated using $\Delta \delta_{e,1}$, $\Delta \delta_{e,2}$ and known CG positions x_1 and x_2
- $dC_{M, c.g.}/d\alpha = -K_N \times C_{L\alpha}$
- If non-linear:

 $\rightarrow x_N$ varies with C_L

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Lateral static stability

Steady heading sideslips:

- Trim aircraft at nominal altitude and test airspeed
- Sideslip is entered with a small rudder input
- Aircraft is trimmed using lateral controls and data is recorded; rudder and aileron should be applied simultaneously → cross-coupled controls
- Repeat in steps of 0,25 full δ_r for opposite β Data reduction:
- Control surface deflection plotted versus recorded β
- $C_{Y\beta} = -\partial \phi / \partial \beta \times C_L$; $\partial \phi / \partial \beta$ at zero β

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Dynamic stability flight tests

Types of control inputs for dynamic stability tests:

Short period mode: doublet ; singlet ; 2-g pull-up

Data reduction methods:

- Maximum Slope method
- Time-Ratio method

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Dynamic stability flight tests

- <u>Phugoid mode:</u> singlet of fairly long duration
 - Transient Peak Ratio method
 - Numerical approximation of the phugoid motion
- Spiral mode: trim, roll to 10° bank, trim, release
 - time to double / half the bank angle
- <u>Roll mode:</u> step or singlet aileron input
 - τ_r : time to reach 63,2% of the steady-state roll rate
- <u>Dutch roll mode:</u> rudder doublet ; aileron singlet
- Lateral-directional dynamic stability data reduction:
 - Graphical method applying superposition of all 3 modes

Stefan Velikov

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Questions?

The End

Thank you for your attention!

September 29, 2008

