

Basic Comparison of Three Aircraft Concepts: Classic Jet Propulsion, Turbo-Electric Propulsion and Turbo-Hydraulic Propulsion

Aerospace Engineering - Master thesis

Master Thesis Defense

Supervisors: Prof. Dr. Dieter Scholz Dr. Markus Trenker

Clinton Rodrigo 29/10/19

Austrian Network for Higher Education

- Introduction
- Concepts
- Methodology
- Results
- Summary
- Conclusion

Background

University of Applied Sciences

- Flightpath 2050 reduction of carbon emissions by 70%
- Reducing the operating costs for aircraft operators
- Batteries are too heavy for passenger aircraft
- New technologies must not deviate from the crucial aircraft requirements
- Can the efficiency be increased with the technology available currently?

Fig 1: Various Electric propulsion system architectures (NAS 2016)

Research Question

University of Applied Sciences

In light of today's propulsion options for passenger aircraft: What is the superior propulsion principle with respect to Direct Operating Costs and environmental impact? Turbo-electric propulsion, turbo-hydraulic propulsion or the established reference, the turbofan engine?

Top Level Aircraft Requirements of A320 :

- Number of Passengers : 180
- Range : 1700 NM
- Cruise Mach number : 0.78

All Turbo-Electric/Hydraulic Propulsion

Fig 4: Turbo-Hydraulic Propulsion System

Partial Turbo-Electric/Hydraulic Propulsion

University of Applied Sciences

- Power extracted from the shaft of the Turbofan engine
- Cruise thrust required $\sim 20\%$ Take-off thrust
- Electric/Hydraulic motors operated only during cruise
- New TSFC calculated with two methods
- Different hybridization levels were investigated

Fig 5: Working of Partial Turbo-Hydraulic/Electric System

Fig 6: Partial Turbo-Hydraulic/Electric System

Methodology

All Turbo-Electric/Hydraulic Propulsion

Two Types of Gas Turbine Engine:

- Turboprop
- Turboshaft

Fig 7: Aircraft Design Methodology for All Turbo-Electric/Hydraulic Propulsion

Methodology

Partial Turbo-Electric/Hydraulic Propulsion

FACHHOCHSCHULE WIENER NEUSTADT

University of Applied Sciences

Fig 8: Partial TE/TH Design Methodology

Preliminary Sizing Tool

Calculation Tool

- Getting Started
- Calculation Tool :
 - Aircraft Design Type

Normal

All Turbo-Electric/Hydraulic Partial Turbo-Electric/Hydraulic

- Preliminary Sizing I
- Maximum Glide Ratio
- Mass Estimation
- Preliminary Sizing II
- Direct Operating Costs
- Results

. AIRCRAFT		E SELECTION	
This section	allows the us	er to choose and specify the type of propulsion system of the	aircraft
Choose>>		Propulsion System	All Turbo-Hydraulic
Choose>>		Type of Gas Turbine Engine	Turboshaft
2. PRELIMIN	IARY SIZING I		
This section	allows the us	er to estimate the thrust/power-to weight ratio and wind loa	iding with simple input paramters
	SLFL	Landing field length	1480 m
	K APP	Approach Factor	1.818 (m/s ²) 0.5
	C _{L,max,L}	Max. lift coefficient landing	3.14
	m _{ML} / m _{TO}	Mass ratio, landing-take-off	0.88
	STOFL	Take-off Field Length	1764.84 m
	C _{L,max,TO}	Max. lift coefficient take-off	2.24
	d _D	Propeller diameter	8.5 m
	A	Aspect ratio	9.5
	ΠE	Number of engines	2
. MAXIMU	M GLIDE RATI	O IN CRUISE	
This section	allows the us	er to input or estimate the max. lift to drag ratio	
Choose>>		Given: Maximum glide ratio	Yes
	Emax	Max. Glide Ratio	17.26
. MASS ES	TIMATION		
his section	is responsible	e for the calculation of operating empty mass and mass of the	e propulsion system.
		Operating Founds Mana of the reference since ft	4124
	m _{OE,ref}	Operating Empty Mass of the reference aircraft Mass of an engine of reference aircraft	41244 Kg
	IT'E,ref	Mass of an eighe of reference and art	2000 Kg

Preliminary Sizing Tool

Results

University of Applied Sciences

7. RESULTS

7.1 Aircraft Design

me	Engine mass (one engine)	3599.81 kg
mae	Operating empty mass	40671.62 kg
m _{MTO}	Max. take-off mass	70966.05 kg
VCR	Cruise speed	237.10 m/s
η _{P.CR}	Propeller efficiency, cruise	0.86
P _{S,TO} / n _E	Power required by one engine	9850669.42 W
Emax	Max. glide ratio	17.26
m _{MTO} / S _W	Wing loading	645.17 kg/n
Sw	Wing Area	110.00 m²
Ps.to / mMTO	Power-to-weight ratio	277.62 W/I

7.2 Direct Operating Costs

mpl	Trip payload mass	16740 kg
m _{F,trip}	Trip fuel mass	7436 kg
CDEP	Depreciation costs	5616098.3 \$/year
CINT	Interest costs	4621424.9 \$/year
CINS	Insurance costs	383004.7 \$/year
CF	Fuel costs	3096278.1 \$/year
CM	Maintenance costs	5720981.0 \$/year
Cc	Staff costs	5137386.5 \$/year
CFEE	Fees and charges	10438414.1 \$/year
Cooc	Total direct operating costs	35.01 M\$/yea

- An Excel based Life Cycle Tool
- Developed in the AERO Group at HAW Hamburg.
- Given inputs are :
 - Operating Empty Mass
 - Trip Range
 - Engine Mass
 - Fuel Burn
 - Flight Level
 - Cruise Altitude
 - Number of flights annually

Design & Development	Computer use during design	Wind tunnel testing	Flight test campaign
Production	Material production	Use of production facilities	
Operation	Cruise flight	Energy generation and consumption at airports	Kerosene production
	LTO-cycle	Operation of ground handling vehicles	
End-of-life	Reuse	Landfill	

Fig 11: Results section in the Calculation Tool (Johanning 2017)

aircraft configurations

Turbo-Electric/Hydraulic Propulsion

University of Applied Sciences

0.0197

0.0164

0.0173

Fig 12: Comparison of Direct Operating Costs and different

Fig 13: Comparison of Trip Fuel Mass and different aircraft configurations

Fig 14: Comparison of Life Cycle Assessment and different aircraft configurations

Distributed Propulsion System

Fig 15: Number of engines against direct operating cost (M\$)

FACHHOCHSCHULE WIENER NEUSTADT

University of Applied Sciences

Fig 16: Comparison of aircraft parameters and different aircraft configurations

36.6

Turbo-Electric/Hydraulic Propulsion

University of Applied Sciences

8600

Fig 17: Comparison of Direct Operating Costs and different aircraft configurations

Fig 18: Comparison of Trip Fuel Mass and different aircraft configurations

Fig 19: Comparison of Life Cycle Assessment and different aircraft configurations

Summary

- Turbo-hydraulic propulsion system with 2 engines and turboshaft engine is the best among TE/TH propulsion.
- Turbo-hydraulic propulsion system producing 10% of thrust in cruise is the best configuration among Partial TE/TH propulsion.

Fig 21: Mass breakdown of turbo-hydraulic propulsion system

- Turbo-hydraulic propulsion is superior to Turbo-electric propulsion
- Partial Turbo-Electric/Hydraulic Propulsion is superior to completely Turbo-Electric/Hydraulic concept
- Improvement in TE by using superconductive material can lead to benefits in mass and efficiency
- Distributed Propulsion System (DPS) might increase the direct operating costs
- Placement of engines can be further studied to increase the aerodynamic advantages

Thank you for your attention.

NAS 2016

NATIONAL ACADEMIES OF SCIENCES, ENGINEERING, AND MEDICINE: Commercial Aircraft Propulsion and Energy Systems Research – Reducing Global Carbon Emissions. Washington, DC : The National Academies Press, 2016. – URL: <u>http://doi.org/10.17226/23490</u>

JOHANNING 2017

JOHANNING, Andreas, 2017. Methodik zur Ökobilanzierung im Flugzeugvorentwurf. München : Verlag Dr. Hut, 2017. Available at: https://www.fzt.haw-hamburg.de/pers/Scholz/Airport2030.html, archived as: https://d-nb.info/1133261876/34.