

1

Präsentation Master Thesis

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

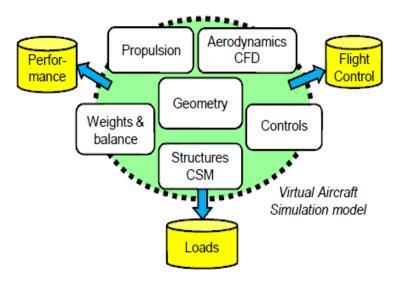
Multi-Disciplinary Conceptual Aircraft Design using CEASIOM

Maria Pester

Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME
Prüfer: Prof. Dr.-Ing. Hartmut Zingel

Maria Pester

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

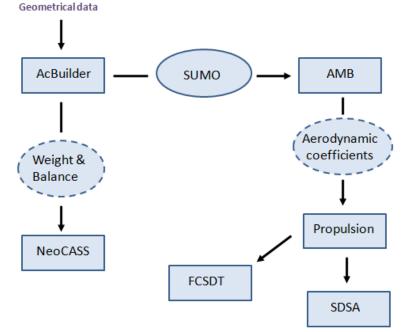


CEASIOM – a Short Description Reference Aircraft A320 Tools of CEASIOM Taking the A320 as an Example Concept of a Shoulder Wing Aircraft Shoulder Wing Aircraft in CAESIOM Conclusion and Outlooks

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

CEASIOM – a Short Description

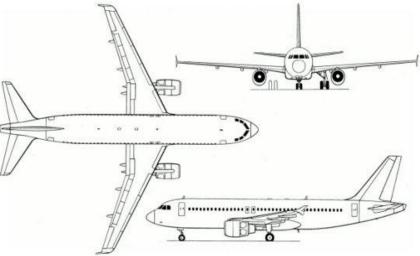
- physics based multidisciplinary program which steps in the conceptual design phase
- aerodynamic and structural requirement can be considered



Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

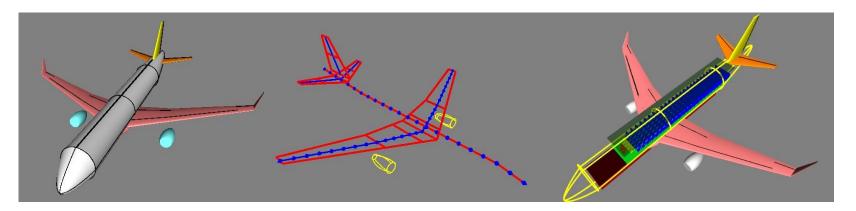
CEASIOM – a Short Description

- virtual aircraft model is build up
- run through different tools including
 - Geometry
 - Aerodynamic
 - Stability and Control
 - Structure
 - Performance



Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Reference Aircraft A320



Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Tools of CEASIOM Taking the A320 as an Example

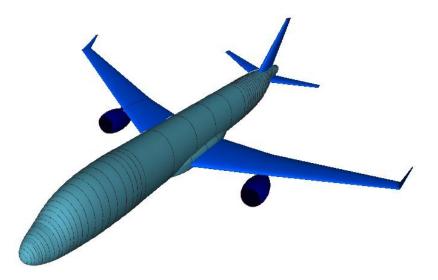
AcBuilder

- parametric aircraft builder
- boundary conditions for structure and aerodynamics can be set

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

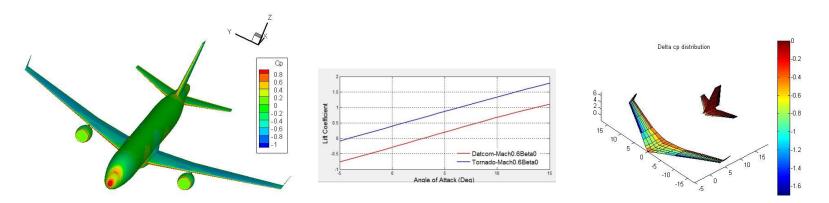
Tools of CEASIOM Taking the A320 as an Example


Weights			Weights in	kg	Comp	arison in %
		Airbus	PrADO	V3	V3 - PrADO	V3 - Airbus
	MTOW	73500	73500	73397	-0,14	-0,14
	OEW	40530	41000	48123	17,37	18,73
	max zero fuel weight	60500	60188	63434	5,39	4,85
	max. payload	20000	19099	15310	-19,84	-23,45
	GMEW		36230	40987	13,13	
	Landing gear	2347	2547	3116	22,34	32,76
	Wing weight	6279	8297	8766	5,65	40,61
	HT weight	670	590	844	43,05	25,97
	VT weight	464	434	490	12,90	5,60
	Fuselage weight	9267	9119	7207	-20,97	-22,23
	Engine group		7822	9235	18,06	
	fuel	12500	13312	9963	-25,16	-20,30
		Strong deviation				

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Tools of CEASIOM Taking the A320 as an Example SUMO

- CAD modelling
- 3D mesh generator

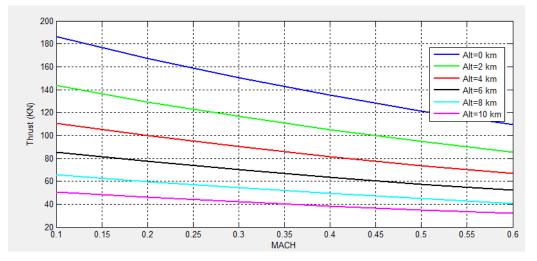


Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Tools of CEASIOM Taking the A320 as an Example

<u>AMB</u>

- aerodynamic model builder
- aerodynamic coefficients can be calculated on different ways – DATCOM, Tornado, EDGE EULER



Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

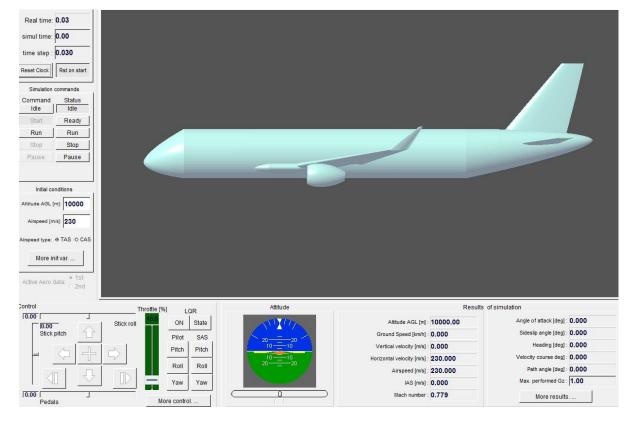
Tools of CEASIOM Taking the A320 as an Example <u>Propulsion</u>

 generates the database of the engines for following calculations

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Tools of CEASIOM Taking the A320 as an Example <u>SDSA</u>

- tool for stability and control, performance and simulation
- stability analyses based on JAR/FAR, ICAO

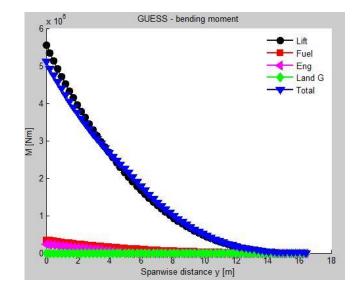

Maria Pester

1

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Tools of CEASIOM Taking the A320 as an Example

Simulation

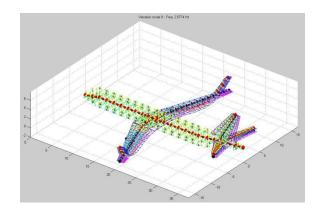


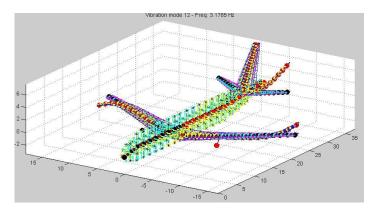
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Tools of CEASIOM Taking the A320 as an Example

<u>NeoCASS – GUESS</u>

- main components are loads and sizing
- represents a compromise between empirical and finite element methods





Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Tools of CEASIOM Taking the A320 as an Example NeoCASS – SMARTCAD

- contains numeric aero-structural analysis based on simplified models
- an example: flutter analysis

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Tools of CEASIOM Taking the A320 as an Example FCSDT

- Flight Control System Designer Toolkit
- flight control system architecture can be defined
- following features are not ready to use

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Concept of a Shoulder Wing Aircraft

<u>ldea</u>

• better ground handling \rightarrow time saving of several minutes

\rightarrow smaller	cruise speed	

 \rightarrow fuel saving

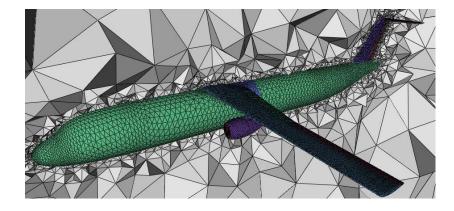
 \rightarrow cost saving

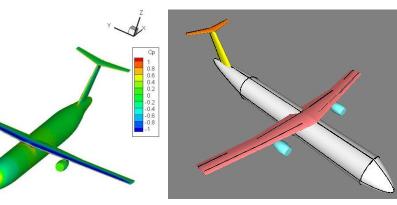
	typical flight missions		
А	8 x 1,5 hours		
В	2 x 4,5 hours, 2 x 1,5 hours		
С	3 x 4,5 hours		
D	1 x 5 hours, 1 x 1,5 hours		
Е	1 x 5 hours, 1 x 1 hours		

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Concept of a Shoulder Wing Aircraft

Comparison with the A320


Components	A320 SW PreSTO	A320 – 210	
propulsion	turboprop	Jet CFM56	
number of engines	2	2	
Wing location	shoulder wing aircraft	Low wing aircraft	
Wing geometry	swept taper wing	Swept tapered wing	
wing geometry	Sw= 98,4 m ²	Sw = 122,4 m ²	
Mach cruise	0,69	0,76	
Cruise altitude	9 881 m	11 800 m	
Landing field length	1 700 m	1 700 m	
Take off field length	2 200 m	2 200 m	
Range at max. Payload	1 500 NM	1 500 NM	
MTOW	69 000 kg	73 500 kg	
Max.Payload	20 000 kg	20 000 kg	
Number of Passanger	150	150	
fuel weight	11 975 kg	12 500 kg	



Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Shoulder Wing Aircraft in CAESIOM

- model of the shoulder wing aircraft could be implemented into
 - AcBuilder
 - AMB
 - SDSA
 - NeoCASS
- weak point of the first implementation can be shown

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Conclusion and Outlooks

- The development of CEASIOM is still in process
- Many problems appear during the work with CEASIOM
- As soon the weak points are repaired CEASIOM will become a readily accessible and also timesaving tool for the conceptual design phase

Maria Pester

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Department Fahrzeugtechnik und Flugzeugbau

Questions

Many thanks for your attention!

Are there any questions?