STRENG VERTRAULICH

hochschule für angewandte wissenschaften FACHBEREICH FAHRZEUGTECHNIKUND FLUGZEUGBAU hamburg university of applied sciences

CHNII FAHK

Bericht zur

Diplomarbeit

Betriebskostenberechnung eines Wassergenerierungssystems mit Brennstoffzelle in Passagierflugzeugen

in Zusammenarbeit mit:

Airbus Deutschland GmbH, Hamburg

Verfasser: Abgabedatum: Holger Plötner 23. Januar 2003

Geheimhaltungsvermerke:

Geheimhaltung bis zum 31.12.2005 Diplomarbeit nur den Prüfern der Hochschule für Angewandte Wissenschaften Hamburg zugänglich

Hochschule für Angewandte Wissenschaften Hamburg Fachbereich Fahrzeugtechnik Berliner Tor 5 20099 Hamburg

in Zusammenarbeit mit:

AIRBUS Deutschland GmbH Entwicklung Wasser-Abwassersysteme Abteilung ECYS Kreetslag 10 21129 Hamburg

Verfasser: Holger Plötner Abgabedatum: 23. Januar 2003

Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME
 Prüfer: Dipl.-Ing. Claus Hoffjann, Airbus

Industrieller Betreuer: Dipl.-Ing. Claus Hoffjann

Danksagung

Mein besonderer Dank bei der Anfertigung dieser Arbeit gilt Herrn Prof. Dr.-Ing. D. Scholz, der die hochschulseitige Betreuung dieser Diplomarbeit übernommen hat und durch sein inhaltliches Engagement und seine konstruktiven Anregungen wesentlich zum Gelingen beigetragen hat.

Ganz besonders danke ich Herrn Dipl.-Ing. C. Hoffjann, der seitens Airbus Deutschland die fachliche Betreuung sowie die Zweitprüfertätigkeit übernommen hat und mit aktuellen Informationen und fachlich hochwertiger Kritik die vorliegende Ausarbeitung konkretisiert hat.

Herrn Dr.-Ing. J. Höhne bin ich für die Durchsicht dieser Arbeit sowie die hilfreichen Anmerkungen und Ratschläge zu Dank verpflichtet.

Ebenso gilt mein Dank Herrn Dipl.-Ing. H. Lorenz für die Überlassung von Studienmaterial und die freundliche Unterstützung durch eine Vielzahl an Gesprächen.

Eine hervorragende Unterstützung in meiner Arbeit erfuhr ich durch die Kollegen in der Abteilung, die nicht nur durch Fachwissen und Sachverstand, sondern auch durch Anteilnahme und Humor zu einer ausgesprochen kreativen Arbeitsatmosphäre beitrugen.

Kurzreferat

Thema dieser Diplomarbeit ist der Einsatz einer Brennstoffzelle für die Bereitstellung von Wasser, elektrischer Energie und Druckluft in Passagierflugzeugen. Die Brennstoffzellentechnologie ist eine Schlüsseltechnologie für die mobile, portable und stationäre Energietechnik der Zukunft. Die Untersuchung der Integrationsmöglichkeiten von Brennstoffzellen in Flugzeuge stellt daher einen zentralen Forschungsschwerpunkt im Flugzeugbau dar. Gründe liegen nicht nur in dem Verkaufsargument eines modernen und sicheren Flugzeuges, sondern auch in dessen Wirtschaftlichkeit. Ziel dieser Arbeit ist es, eine wirtschaftliche Untersuchung eines Wassersystems auf Basis einer Brennstoffzelle im Vergleich zu bestehenden Wassersystemen zu durchzuführen. Hierzu wird im ersten Teil der Arbeit ein für den Flugzeugeinsatz geeignetes Brennstoffzellensystem ausgewählt und eine Berechnung der Stoff- und Energieströme vorgenommen. Mit diesen Ergebnissen ist es möglich, die Betriebskosten des Wassersystems auf Basis einer Brennstoffzelle zu ermitteln. Im zweiten Teil dieser Arbeit werden die Betriebskosten dieser beiden unterschiedlichen Wassersysteme an ausgewählten Flugzeugen der Airbus-Familie mit der Methode DOC_{sys} berechnet und verglichen. Es werden außerdem Szenarien unter Berücksichtigung von ausgewählten Parametern untersucht, um eine qualitative Aussage bezüglich der Betriebskosten zu treffen und die Grenzinvestition für einen wirtschaftlichen Einsatz zu ermitteln.

Betriebskostenberechnung eines Wassergenerierungssystems mit Brennstoffzelle in Passagierflugzeugen

Diplomarbeit nach § 21 der Prüfungsordnung.

Hintergrund

Bei der Einführung einer neuen Systemtechnologie ist nicht nur die technische Realisierbarkeit zu untersuchen, sondern ebenso die Wirtschaftlichkeit dieser Systemtechnologie integriert in ein gewähltes Flugzeug mit dessen typischen Flugmissionen. Es hat sich als zweckmäßig erwiesen, bei der Wirtschaftlichkeitsbetrachtung für Flugzeugsysteme im frühen Entwicklungsstadium Betriebskosten (Direct Operating Costs, DOC) angepasst an Flugzeugsysteme zu berechnen. Untersuchungsgegenstand ist ein Wassergenerierungssystem (On Board Water Generation System, OBOWAGS®), das im Kern eine Brennstoffzelle enthält. Die Brennstoffzelle liefert Wasser und Energie. Durch die Energielieferungen der Brennstoffzelle könnten einzelne Sekundärenergiesysteme (Pneumatische Anlage, Bordstromversorgung), wie sie heute in Flugzeugen üblich sind, möglicherweise eingespart werden.

Aufgabe

Im Rahmen der Diplomarbeit soll ein Betriebskostenvergleich gemacht werden zwischen den heute üblichen Wasser-/ Abwasser- und Sekundärenergiesystemen und einem neuartigen integrierten Wasser-/ Abwasser-/ Sekundärenergiesystem auf Basis der Brennstoffzellentechnologie. Die Untersuchung bezieht sich auf den Einsatz einer Hochtemperatur-Brennstoffzelle, genauer: einer Oxidkeramischen Brennstoffzelle (Solid Oxide Fuel Cell, SOFC) am Beispiel ausgewählter Airbus Flugzeugtypen. Dabei kann es sich anbieten, folgende Einzelbetrachtungen anzustellen:

- Darstellung der Grundlagen von OBOWAGS®
- Einführung in die Grundlagen der Brennstoffzellen, insbesondere der Hochtemperaturbrennstoffzellen mit Schwerpunkt auf den Oxidkeramischen Brennstoffzellen
- Darstellung der Grundlagen der Betriebskostenberechnung für Flugzeugsysteme (DOCsys)
- Ermittlung von Randbedingungen und Eingangsparametern der Betriebskostenberechnung (Wasserverbrauch, Flugzeugparameter, Missionsdaten, Zapfluftbedarf, elektrischer Energiebedarf, ...)
- Erstellung eines Programms zur Berechnung der Stoff- und Energieströme des Brennstoffzellensystems. Dimensionierung der Brennstoffzelle.
- Durchführung der Betriebskostenberechnung einschließlich nachgeschalteter Rechnungen, um eine Vergleichbarkeit zwischen dem OBOWAGS® und dem herkömmlichen System zu ermöglichen
- Abschließende Wertung der Ergebnisse und Vergleich der Systemalternativen.

Die Ergebnisse sollen in einem Bericht dokumentiert werden. Bei der Erstellung des Berichtes sind die entsprechenden DIN-Normen zu beachten.

Erklärung

Ich versichere, dass ich diese Diplomarbeit ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht.

.....

Datum

Unterschrift

Inhalt

		Seite
Verzeic	hnis der Bilder	
Verzeic	hnis der Tabellen	
Liste de	r Symbole	
Liste de	r Abkürzungen	
Verzeic	hnis der Begriffe und Definitionen	
1	Einleitung	
1.1	Motivation	
1.2	Begriffsdefinitionen	
1.3	Ziel der Arbeit	
1.4	Literaturübersicht	
1.5	Aufbau der Arbeit	
2	Einsatz von Wassersystemen in Flugzeugen	
2.1	Produktpalette von Airbus	
2.2	Vorstellung der unterschiedlichen Wassersysteme	
2.2.1	Konventionelles Wassersystem	
2.2.2	OBOWAGS [®]	
3	Grundlagen der Brennstoffzellen	
3.1	Begriff	
3.2	Geschichte	
3.3	Prinzipielle Funktionsweise	
3.4	Brennstoffzellentypen	
3.4.1	Niedrigtemperatur-Brennstoffzellen	
3.4.2	Mitteltemperatur-Brennstoffzellen	
3.4.3	Hochtemperatur-Brennstoffzellen	
3.5	Aufbereitung von Brennstoffen für Brennstoffzellen	
3.5.1	Auswahl der Brennstoffe	
3.5.2	Reformierung	
4	Prinzipielle Darstellung von SOFC-Systemen	
4.1	Auswahl der Brennstoffzelle	
4.2	Allgemeine Funktionsweise eines SOFC-Systems	
4.3	Komponenten der SOFC-Anlage	
4.4	Brennstoffzellenmodul	
4.5	Interne Reformierung	
4.6	Elektrochemische Arbeitsweise der SOFC	

5	Spezifisches SOFC-System im OBOWAGS [®]	44
5.1	Aufbau und Funktionsweise	44
5.2	Stoff- und Energiebilanz des SOFC-Systems	46
5.2.1	Stoffbilanz des SOFC-Systems	46
5.2.2	Energiebilanz des SOFC-Systems	51
6	Betriebskostenrechnungen	64
6.1	Kostenbetrachtung aus Sicht des Flugzeugbetreibers	64
6.2	Methoden zur Ermittlung der direkten Betriebskosten	66
6.3	Methode <i>DOC</i> _{sys} zur Berechnung von Betriebskosten von Flugzeugsysteme	en 67
7	Aufbau des DOC _{sys} -Vergleichs	70
7.1	Grundsätzliches	70
7.2	Flugmechanische Daten	71
7.3	DOC von konventionellen Systemen	72
7.3.1	Systempreis	73
7.3.2	Abschreibung	74
7.3.3	Kraftstoff für den Transport von festen und variablen Massen	75
7.3.4	Wellenleistungsentnahme	76
7.3.5	Zapfluft	76
7.3.6	Luftwiderstand	77
7.3.7	Wartungskosten	77
7.3.8	Ermittelte Betriebskosten konventioneller Systeme	79
7.4	DOC des OBOWAGS [®]	80
7.4.1	Systempreis	
7.4.2	Abschreibung	
7.4.3	Kraftstoff für den Transport von fixen und variablen Massen	
7.4.4	Wartungskosten	
7.4.5	Stauluftentnahme	
7.5	Zusammenfassender Vergleich der Berechnungsergebnisse	89
7.6	DOC des OBOWAGS [®] mit den Optionen Luftbefeuchtung und Duschen	91
8	Szenarien	94
8.1	Parameter Flugmissionszeit	94
8.2	Parameter Kraftstoffpreis	97
8.3	Ermittlung der Grenzinvestitionen des OBOWAGS [®]	100
8.4	Abschließende Betrachtung	100
9	Zusammenfassung und Ausblick	102
Literati	ırverzeichnis	104

Anhang A	Eingangsparameter für Brennstoffzellenauslegung und DOC-Berechnung 110
A.1	Wasservorrat konventioneller Flugzeuge
A.2	Vorratsbehälter in konventionellen Flugzeugen
A.3	Luftbefeuchtung in Flugzeugen
A.4	Wasserbedarf in Flugzeugen mit möglichen Optionen112
A.5	Wasserverteilung
A.6	Elektrische Leistung von Generatoren116
A.7	Daten des Leistungsbedarfs pro ATA-Kapitel117
A.8	Klimaanlage
A.9	Hilfstriebwerk (APU, Auxilary Power Unit)118
A.10	Thermodynamische Eigenschaften von Mikromolekülen
Anhang B	Programmkommentierung des SOFC _{sys} -Programms

Verzeichnis der Bilder

Bild 2.1	Passagier-Reichweiten-Diagramm	. 22
Bild 2.2	Aufbau des konventionellen Wassersystems	. 23
Bild 2.3	Aufbau des OBOWAGS [®]	. 25
Bild 3.1	Darstellung des Röhren- und Flachzellenkonzepts (SOFC)	. 33
Bild 3.2	Wirkungsgrad verschiedener Stromerzeugungstechniken	. 34
Bild 3.3	Darstellung der Brennstoffzellen, Brennstoffe und Aufbereitungsmethoden	. 36
Bild 4.1	Druckaufgeladenes hybrides System	. 37
Bild 4.2	Peripherie einer SOFC-Anlage	. 39
Bild 4.3	Komponenten eines Brennstoffzellensystems	. 39
Bild 4.4	Gasaufbereitung für SOFC (Entschwefelung und Vorreformierung)	. 40
Bild 4.5	SOFC-Reaktor	. 41
Bild 4.6	Interne Reformierung bei der SOFC	. 42
Bild 4.7	Elektrochemische Arbeitsweise der SOFC (I)	. 43
Bild 4.8	Elektrochemische Arbeitsweise der SOFC (II)	. 43
Bild 5.1	Aufbau des SOFC-Systems	. 44
Bild 5.2	Dampfreformer – zugeführte und abgegebene Stoffe	. 47
Bild 5.3	SOFC-Brennstoffzelle – zugeführte und abgegebene Stoffe	. 49
Bild 5.4	Bilanzgrenze im SOFC-System	. 52
Bild 5.5	Zusammengefasste Stoff- und Energiebilanz	. 59
Bild 6.1	Struktur des Rechnungswesens einer Fluggesellschaft	. 64
Bild 7.1	Prinzipskizze für die Ermittlung der Betriebskosten mit dem DOC _{sys} -Programm	n 71
Bild 7.2	Systemgrenzen des konventionellen Wassersystems	.72
Bild 7.3	DOC konventioneller Systeme	. 79
Bild 7.4	Systemgrenzen im OBOWAGS [®]	. 80
Bild 7.5	Spezifische Kosten von SOFC-Systemen bei Markteinführung	. 81
Bild 7.6	DOC des OBOWAGS [®]	. 89
Bild 7.7	Absoluter Vergleich der DOC des OBOWAGS [®] zum konventionellen System.	. 90
Bild 7.8	Relativer Vergleich der DOC des OBOWAGS [®] zum konventionellen System	. 90
Bild 7.9	Absoluter Vergleich der Betriebskosten des A380-800	. 93
Bild 8.1	Absoluter Vergleich der Betriebskosten des OBOWAGS [®] zum konventio-	
	nellen System bei verkürzter Flugzeit	. 96
Bild 8.2	Relativer Vergleich der Betriebskosten des OBOWAGS [®] zum konventio-	
	nellen System bei verkürzter Flugzeit	. 96
Bild 8.3	Absoluter Vergleich der Betriebskosten des OBOWAGS [®] zum konventio-	
	nellen System bei verkürzter Flugzeit und erhöhtem Kraftstoffpreis	. 99
Bild 8.4	Relativer Vergleich der Betriebskosten des OBOWAGS [®] zum konventio-	
	nellen System bei verkürzter Flugzeit und erhöhtem Kraftstoffpreis	. 99
Bild B.1	<i>SOFC</i> _{sys} -Programm	121

Verzeichnis der Tabellen

Tabelle 2.1	Darstellung der untersuchten Flugzeugtypen	22
Tabelle 2.2	Volumen der Frischwassermenge in konventionellen Flugzeugen	24
Tabelle 3.1	Gängige Brennstoffzellen und ihre Bezeichnung	29
Tabelle 3.2	Einteilung der Brennstoffzellen nach Elektrolyt und Temperatur	29
Tabelle 5.1	Chemische Stoffdaten	46
Tabelle 5.2	Spezifische Massen der Dampfreformierung	48
Tabelle 5.3	Zusammensetzung trockener Luft	48
Tabelle 5.4	Spezifischer Massenbedarf der Brennstoffzelle	50
Tabelle 5.5	Spezifische Massenabgabe der Brennstoffzelle	50
Tabelle 5.6	Kenndaten für das Brennstoffzellensystem bezogen auf 1 kWh	
	elektrische Energie	63
Tabelle 6.1	Eingangsparameter für <i>DOC</i> _{sys}	68
Tabelle 7.1	Flugmechanik	72
Tabelle 7.2	Preise von Wassersystemen	73
Tabelle 7.3	Preise von Triebwerksgeneratoren (IDG)	74
Tabelle 7.4	Preise von Hilfstriebwerken (APU)	74
Tabelle 7.5	Preise von Stauluftturbinen (RAT)	74
Tabelle 7.6	Werte zur Berechnung der Abschreibungskosten	75
Tabelle 7.7	Massen des Systems	75
Tabelle 7.8	Wellenleistungsentnahme	76
Tabelle 7.9	Zu berücksichtigender Druckluftvolumenstrom	76
Tabelle 7.10	Wartungs-/Materialkosten des Wasser-/Abwassersystems	77
Tabelle 7.11	Wartungskosten der Generatoren (geschätzt)	78
Tabelle 7.12	Wartungskosten des Hilfstriebwerkes	78
Tabelle 7.13	Wartungskosten der Stauluftturbine	78
Tabelle 7.14	Wartungskosten des konventionellen Systems	78
Tabelle 7.15	DOC konventioneller Systeme	79
Tabelle 7.16	Preise des Brennstoffzellensystems	82
Tabelle 7.17	Vorratsbehälter im OBOWAGS [®]	82
Tabelle 7.18	Massen und Preise von Einzelkomponenten	83
Tabelle 7.19	Systempreis des OBOWAGS [®]	83
Tabelle 7.20	Masse des Kerosins für die Brennstoffzelle	84
Tabelle 7.21	Masse des zusätzlichen Kerosins für die Brennstoffzelle	84
Tabelle 7.22	Massen des OBOWAGS [®]	85
Tabelle 7.23	Erwartete Investitions- und Wartungs-/Instandsetzungskosten von	
	Brennstoffzellensystemen	86
Tabelle 7.24	Wartungskosten Wasser-/Abwassersystem	86
Tabelle 7.25	Wartungskosten Verdichter/Turbine	87

Tabelle 7.26	Wartungs- und Instandhaltungskosten für die DOC _{sys} -Eingabe	87
Tabelle 7.27	Kraftstoffkostenanteil pro Jahr für die Brennstoffzelle	87
Tabelle 7.28	Nettostauluftbedarf	88
Tabelle 7.29	DOC des OBOWAGS [®]	88
Tabelle 7.30	Absoluter Vergleich der DOC des OBOWAGS [®] zum konvent. System	90
Tabelle 7.31	Relativer Vergleich der DOC des OBOWAGS [®] zum konvent. System	90
Tabelle 7.32	Kraftstoffkosten pro Jahr für die Brennstoffzelle (Optionen)	92
Tabelle 7.33	Absoluter Vergleich der Betriebskosten des A380-800	93
Tabelle 8.1	Parameter zur Flugzeugausnutzung	94
Tabelle 8.2	Anzahl der Flüge pro Jahr (NFY)	95
Tabelle 8.3	Betriebskosten konventioneller Systeme bei verkürzter Flugzeit	95
Tabelle 8.4	Betriebskosten des OBOWAGS [®] bei verkürzter Flugzeit	95
Tabelle 8.5	Relativer Vergleich der Betriebskosten des OBOWAGS [®] zum	
	konventionellen System bei verkürzter Flugzeit	96
Tabelle 8.6	Betriebskosten konventioneller Systeme bei verkürzter Flugzeit	
	und erhöhtem Kraftstoffpreis	98
Tabelle 8.7	Betriebskosten des OBOWAGS [®] bei verkürzter Flugzeit und	
	erhöhtem Kraftstoffpreis	98
Tabelle 8.8	Relativer Vergleich der Betriebskosten bei verkürzter Flugzeit und	
	erhöhtem Kraftstoffpreis	98
Tabelle 8.9	Spezifische Grenzinvestitionskosten des Brennstoffzellensystems	. 100
Tabelle A.1	Wasservorrat konventioneller Flugzeuge	.110
Tabelle A.2	Größe der Vorratsbehälter in konventionellen Flugzeugen	.110
Tabelle A.3	Luftbefeuchtung von Compartments	.111
Tabelle A.4	Wasserbedarf in Flugzeugen mit zukünftigen Optionen	.112
Tabelle A.5	Wasserverteilung im A320 in Abhängigkeit von der Flugzeit	. 113
Tabelle A.6	Wasserverteilung im A340-600 in Abhängigkeit von der Flugzeit	.114
Tabelle A.7	Wasserverteilung im A380-800 in Abhängigkeit von der Flugzeit	. 115
Tabelle A.8	Elektrische Leistung der Triebwerksgeneratoren	.116
Tabelle A.9	Daten des Leistungsbedarfs pro ATA (A380-800)	. 117
Tabelle A.10	Leistungsdaten der Klimaanlage	. 118
Tabelle A.11	Daten der APU	. 118
Tabelle A.12	Enthalpieänderungen (Auszug)	. 119

Liste der Symbole

Α	Flügelstreckung (aspect ratio)
c_{DI}	indizierter Widerstandsbeiwert
c_p	spezifische Wärmekapazität
С	Kosten (costs)
D	Widerstand (drag)
Ε	Gleitzahl
Η	Heizwert
h^*	Enthalpieänderung bezogen auf 25 °C
h′*	Enthalpieänderung der Flüssigkeit bezogen auf 25 °C
h´´*	Enthalpieänderung des Dampfes bezogen auf 25 °C
k	(k_{U1}, k_{U2}) Parameter zur Flugzeugnutzung
L	Auftrieb (lift)
т	Masse
• m	Massenstrom
Ν	Anzahl der Nutzjahre
N P	Anzahl der Nutzjahre Leistung
N P p	Anzahl der Nutzjahre Leistung Druck
N P P Q	Anzahl der Nutzjahre Leistung Druck Wärmemenge
N P P Q R	Anzahl der Nutzjahre Leistung Druck Wärmemenge Gaskonstante
N P P Q R S	Anzahl der Nutzjahre Leistung Druck Wärmemenge Gaskonstante Flügelfläche
N P Q R S t	Anzahl der Nutzjahre Leistung Druck Wärmemenge Gaskonstante Flügelfläche Zeit (<i>t</i> _f im Zusammenhang mit Flugzeit (flight time))
N P Q R S t T	 Anzahl der Nutzjahre Leistung Druck Wärmemenge Gaskonstante Flügelfläche Zeit (<i>t</i>_f im Zusammenhang mit Flugzeit (flight time)) Temperatur [K] (<i>t</i> [°C] in Verbindung mit thermodynamischen Berechnungen)
N P Q R S t T Uf	 Anzahl der Nutzjahre Leistung Druck Wärmemenge Gaskonstante Flügelfläche Zeit (t_f im Zusammenhang mit Flugzeit (flight time)) Temperatur [K] (t [°C] in Verbindung mit thermodynamischen Berechnungen) Umsatzgrad ("fuel utilization" im Zusammenhang mit Brennstoff)
N P Q R S t T Uf V	 Anzahl der Nutzjahre Leistung Druck Wärmemenge Gaskonstante Flügelfläche Zeit (t_f im Zusammenhang mit Flugzeit (flight time)) Temperatur [K] (t [°C] in Verbindung mit thermodynamischen Berechnungen) Umsatzgrad ("fuel utilization" im Zusammenhang mit Brennstoff) Fluggeschwindigkeit (velocity)
N P Q R S t T Uf V VV	 Anzahl der Nutzjahre Leistung Druck Wärmemenge Gaskonstante Flügelfläche Zeit (t_f im Zusammenhang mit Flugzeit (flight time)) Temperatur [K] (t [°C] in Verbindung mit thermodynamischen Berechnungen) Umsatzgrad ("fuel utilization" im Zusammenhang mit Brennstoff) Fluggeschwindigkeit (velocity) Vertikalkomponente der Sinkfluggeschwindigkeit

Griechische Symbole

Ã	Gradient des Steig- bzw. Sinkfluges
Çv	Wirkungsgrad des Verdichters
ÇΤ	Wirkungsgrad der Turbine
ê	Isentropenexponent
ë	Luftüberschuss
ì	spezifische Masse
ð	Druckverhältnis

Indizes

А	Anode				
BS	Brennstoff				
BZ	Brennstoffzelle(n)				
CR	Reiseflug (cruise)				
DEPR	Abschreibung (depreciation)				
Desc	Sinkflug (descend)				
DMC	direkte Wartungskosten (direct maintenance costs)				
el	elektrisch (im Zusammenhang mit Leistungsangaben)				
f	Brennstoff (fuel)				
i	Fließzahl				
Κ	Kathode				
LU	Luft				
М	Wartung (maintenance)				
0	oberer (bezogen auf den Heizwert)				
Р	Pumpe				
SHC	spare holding costs				
sys	System				
Т	Turbine				
U	unterer (bezogen auf den Heizwert)				
V	Verdichter				
W	Wasser				

Liste der Abkürzungen

AA	American Airlines				
AEA	Association Of European Airlines				
AfA	Absetzung für Abnutzung				
APU	Hilfstriebwerk				
ASUE	Arbeitsgemeinschaft für Sparsamen und Umweltfreundlichen Energieverbrauch				
ATA	Air Transport Association Of America				
BHKW	Blockheizkraftwerk				
С	Kohlenstoff (carbon)				
CAB	Civil Aeronautics Board				
Depr	Abschreibung (depression)				
DMC	Wartungskosten (direct maintenance costs)				
DOC	Betriebskosten (direct operation costs)				
DOE	Department of Energy				
GuD	Gas- und Dampfturbine(n)				
ICAO	International Civil Aviation Organisation				
IDG	Triebwerksgenerator (integrated drive generator)				
JAA	Joint Aviation Authority				
JAR	Joint Aviation Requirements				
LR	Lohnkosten pro Stunde (labour rate)				
MC	Materialkosten (material costs)				
MH	"Mannstunden" (man hours)				
MCFC	Schmelzkarbonat-Brennstoffzelle (molten carbonate fuel cell)				
MTOW	Maximale Abflugmasse (maximum take off weight)				
MZFW	Maximale Masse ohne Kraftstoff (maximum zero fuel weight)				
NFY	Anzahl der Flüge pro Jahr (number of flights per year)				
OBOWAC	GS [®] On Board Water Generation System				
PAFC	Phosphorsaure Brennstoffzelle (phosphoric acid fuel)				
Pax	Personenanzahl				
PEMFC	Polymerelektrolyt-Membrane-Brennstoffzelle oder Polymembran-Brennstoffzelle				
	(proton exchange membrane fuel cell)				
RED	Redundanz (redundancy)				
RAT	Stauluftturbine (ram air turbine)				
ROC	Steigrate (rate of climb)				
ROD	Sinkrate (rate of descend)				
S	Dampf (steam)				
SOFC	Oxidkeramische Brennstoffzelle (solid oxide fuel cell)				
WT	Wärmetauscher				

Verzeichnis der Begriffe und Definitionen

Autotherme Reformierung

Verfahren zur Herstellung von Wasserstoff. Es stellt eine Kombination aus Dampfreformierung und partieller Oxidation dar, bei der in einer katalytischen exothermen Reaktion bei Betriebstemperaturen von 850 bis 1.000 C und Drücken unter 50 bar ein wasserstoffreiches Synthesegas gewonnen wird (**Oertel 2001**).

Betriebskosten

Die Betriebskosten stehen in unmittelbarem Zusammenhang mit dem eigentlichen Betriebszweck. Sie erfassen den Verzehr an Gütern, Diensten und Abgaben, der im Rahmen der geplanten betrieblichen Leistungserstellung (Produktion) und Leistungsverwertung (Absatz) anfällt (**Schmolke 2000**). Sie werden unterteilt in direkte Betriebskosten (DOC) und indirekte Betriebskosten (IOC).

Dampfreformierung

Verfahren zur großtechnischen Herstellung von Wasserstoff aus Erdgas, bei dem in einer endothermen Reaktion durch Zufuhr von Wasserdampf und Einsatz von Katalysatoren ein wasserstoffreiches Synthesegas entsteht (**Oertel 2001**).

DOC (direct operating costs)

Die DOC enthalten nur die flugzeugabhängigen Kosten, die unmittelbar mit dem Betrieb eines Fluggerätes in Verbindung stehen. Sie sind einem Kostenverursacher direkt zugeordnet (**Mildt 2000**).

Drain Mast

Drainagesystem mit beheiztem Auslass, um das Wasser aus den Handwaschbecken und Küchen (sog. Grauwasser) über Bord abzulassen.

Enthalpie

Wärme, die man einem System zuführen muss, um es von einem Anfangszustand in einen Endzustand zu bringen (**Reich 1993**). Enthalpie (griechisch: enthalpein): erwärmen.

Flugmission

Eine Flugmission ist gekennzeichnet durch eine bestimmte Entfernung oder eine bestimmte Flugzeit bzw. Blockzeit. Nach Joint Aviation Requirements (JAR) ist die Flugzeit die Zeit zwischen Abheben und Landung des Flugzeugs. Als Blockzeit wird die Zeit zwischen dem Ablegen und Andocken an der Gangway am Flughafen bezeichnet (**WATOG 1992**).

Hybrid-System

System, in dem eine Hochtemperatur-Brennstoffzelle kombiniert mit einer Gasturbine zur Verbesserung des Gesamtwirkungsgrades und Verringerung der Emissionen verwendet wird (**Supcon 2002**).

IOC (indirect operating costs)

Kosten, die nicht unmittelbar einem Verbraucher zugeordnet sind und unabhängig vom verwendeten Flugzeugtyp sind (**Mildt 2000**).

TOC (total operating costs)

Summe aus DOC und IOC (Mildt 2000)

OBOWAGS[®]

On Board Water Generation System zur Herstellung von Trinkwasser aus Kerosin und Luftsauerstoff durch Reformierung, Brennstoffzellenreaktion und Wasseraufbereitung an Bord eines Flugzeuges. OBOWAGS[®] ist eine registrierte Marke der Airbus Deutschland GmbH.

Partielle Oxidation

Verfahren, bei dem in einer exothermen Reaktion Kohlenwasserstoffe unter Sauerstoffmangel bei Temperaturen von über 1.300 °C sowie Drücken bis zu 90 bar ohne Mitwirkung eines Katalysators in ein wasserstoffreiches Synthesegas umgesetzt werden (**Oertel 2001**).

Reformer

Technische Anlage, in der die Aufbereitung von Brennstoffen in für Brennstoffzellen geeignete Brenngase erfolgt. Reformer sind wichtige funktionale Bestandteile vieler Brennstoffzellensysteme (**Oertel 2001**).

Reformierung

Die Aufbereitung von Brennstoffen in für Brennstoffzellen geeignete Brenngase wird als Reformierung bezeichnet. Dabei kann die Reformierung in einer separaten technischen Anlage ("externe Reformierung" – die Standardlösung) oder aber in der Zelle selbst ("interne Reformierung" – nur bei den Hochtemperaturbrennstoffzellen MCFC und SOFC möglich) erfolgen (**Oertel 2001**).

Stack

Für technische Brennstoffzellen werden – um höhere Spannungen und Leistungen erzielen zu können – mehrere Einzelzellen in Reihen- oder Parallelschaltungen zusammen. Wegen ihrer Stapelform werden diese Verschaltungen nach ihrem englischen Begriff "Stacks" (Stapel) genannt (**Oertel 2001**).

1 Einleitung

1.1 Motivation

Die Brennstoffzellentechnologie ist eine innovative Technologie zur kombinierten Wärmeund Stromerzeugung, die zum heutigen Zeitpunkt noch nicht den Reifegrad erreicht hat, das Spektrum der vorstellbaren Einsatzmöglichkeiten auch technisch umzusetzen. An die Brennstoffzellentechnologie werden hohe Erwartungen bezüglich ihres Energieeinsparpotentials sowie ihrer Umweltverträglichkeit in Bezug auf Ressourcenschonung und der Reduktion von Treibhausgasen gerichtet. Es ist davon auszugehen, dass für die Energietechnik der Zukunft mittelfristig neue innovative Produkte initiiert werden, welche einen wichtigen Beitrag zur wirtschaftlichen Entwicklung leisten können. Für den Flugzeugbau besteht eine Herausforderung darin, das mögliche Potential beim Einsatz von Brennstoffzellen in Flugzeugen aus technologischer, ökonomischer und ökologischer Sicht abzuschätzen. Aus ökonomischer Sicht ist es für die Flugzeughersteller von größter Bedeutung, schon frühzeitig nicht nur die Herstellungskosten sondern auch die laufenden Kosten (die sog. Betriebskosten) von Systemen abzuschätzen, um eine Markteinführung einer neuen Technologie erfolgreich durchzuführen.

1.2 Begriffsdefinitionen

Betriebskosten

Der Begriff der Betriebskosten wird nach Schmolke 2000 (S. 350) wie folgt definiert:

Die Betriebskosten stehen in unmittelbarem Zusammenhang mit dem eigentlichen Betriebszweck. Sie erfassen den Verzehr an Gütern, Diensten und Abgaben, der im Rahmen der geplanten betrieblichen Leistungserstellung (Produktion) und Leistungsverwertung (Absatz) anfällt.

Die Betriebskosten werden unterschieden nach direkten (DOC) und indirekten (IOC) Betriebskosten.

- Die DOC (direct operating costs) sind die Kosten, die unmittelbar mit dem Betrieb eines Fluggerätes in Verbindung stehen. Sie sind einem Kostenverursacher direkt zugeordnet.
- Die IOC (indirect operating costs) sind die Kosten, die nicht unmittelbar einem Verbraucher zugeordnet sind und unabhängig vom verwendeten Flugzeugtyp sind.
- Die TOC (total operating costs) sind die Summe aus DOC und IOC.

Wassergenerierungssystem

Unter *Wassergenerierung* versteht man die Herstellung von chemisch reinem Wasser aus den Bestandteilen Wasserstoff und Sauerstoff, z.B. unter Einsatz von Kohlenwasserstoffverbindungen und dem Luftsauerstoff. Zu den Komponenten des vorgestellten Wassergenerierungssystems (OBOWAGS[®] - On Board Water Generation System) zählen die Brennstoffreformierung, die Brennstoffzellenreaktion und die Wasseraufbereitung für die Erzeugung von Trinkwasser.

Brennstoffzelle

Der Begriff der Brennstoffzelle wird in Oertel 2001 (S. 33) wie folgt definiert:

Brennstoffzellen sind hocheffiziente elektrochemische Wandler, in denen die chemische Energie eines Energieträgers direkt in Strom und Wärme umgewandelt wird.

Brennstoffzellen sind prinzipiell in der Lage, bei kontinuierlicher Zufuhr der Reaktionskomponenten kontinuierlich elektrische Energie zu erzeugen. Die Bezeichnung *Brennstoffzelle* ist darauf zurückzuführen, dass ein solches System prinzipiell in der Lage ist, durch die Verbrennung traditioneller Brennstoffe unter Zufuhr von Luftsauerstoff unmittelbar elektrische Energie zu erzeugen.

1.3 Ziel der Arbeit

Die vorliegende Arbeit soll einen Beitrag dazu leisten, eine denkbare Einsatzmöglichkeit für den mobilen Einsatz dieser Brennstoffzellentechnologie unter ökonomischen Gesichtspunkten abzuwägen. Dazu wird ein theoretisches Modell eines Wassergenerierungssystems (OBOWAGS[®]) auf Basis einer Brennstoffzelle vorgestellt. Außerdem werden mittels der Methode DOC_{sys} Berechnungen der Betriebskosten dieses Models sowie des herkömmlichen Wassersystems durchgeführt. Den Abschluss bildet ein qualitativer Vergleich der DOC-Ergebnisse des OBOWAGS[®] und des konventionellen Wassersystems.

1.4 Literaturübersicht

Aus patentrechtlichen Gründen sind der Öffentlichkeit von Seiten der Entwickler und Hersteller von Brennstoffzellentechnologien nur wenige Daten zugänglich. Für den Abschnitt der Brennstoffzellenauslegung und -berechnung stellt das von **Oertel 2001** verfasste Buch "Brennstoffzellentechologie: Hoffnungsträger für den Klimaschutz" eine wichtige Quelle dar. Eine weitere zentrale Rolle spielen die Seminarunterlagen "Auslegung von Brennstoffzellen" des Prof. Dr. **Winkler 1998**. Grundlage für die DOC-Berechnung bildet die von Prof. Dr. **Scholz 1999** entwickelte Methode *DOC*_{sys}. Weitere Informationen sind Airbus-Internen Schriften, Vorlesungsskripten und dem Intra- bzw. Internet entnommen worden.

1.5 Aufbau der Arbeit

Diese Arbeit unterteilt sich grundlegend in zwei Teile. In den Abschnitten 2 bis 5 erfolgen eine Vorstellung der Brennstoffzellentechnologie und die Auslegung des Brennstoffzellensystems. Im zweiten Teil beginnend mit Abschnitt 6 wird die eigentliche Betriebskostenberechnung des Wassergenerierungssystems durchgeführt und im Vergleich zu herkömmlichen Wassersystemen bewertet:

Abschnitt 2	beschäftigt sich mit den Wassersystemen in ausgewählten Flugzeugtypen und stellt das herkömmliche Wassersystem sowie das OBOWAGS [®] vor,				
Abschnitt 3	erklärt die Grundlagen der Brennstoffzellentechnologie unter Betrachtung der verschiedenen Brennstoffzellentypen, Brennstoffe und deren Aufbereitung,				
Abschnitt 4	behandelt ausführlich die Funktionsweise des in Frage kommenden druckaufgeladenen SOFC-Systems,				
Abschnitt 5	beschäftigt sich mit der Auslegung und Berechnung des ausgewählten Brenn- stoffzellensystems des OBOWAGS [®] , deren Ergebnisse Grundlage für die DOC-Berechnungen sind,				
Abschnitt 6	erklärt die Grundlagen der Betriebskostenrechnungen und beschäftigt sich mit der Methode DOC_{sys} , die für diese Arbeit gewählt wurde,				
Abschnitt 7	legt die Eingangsparameter fest, führt die DOC-Berechnungen durch und ver- gleicht die Betriebskosten des OBOWAGS [®] mit denen des herkömmlichen Wasser-/Abwassersystems,				

- Abschnitt 8 stellt verschiedene Szenarien unter Betrachtung ausgewählter Parameter dar und vergleicht diese abschließend,
- Abschnitt 9 fasst die Vorgehensweise, Methoden und Ergebnisse dieser Diplomarbeit zusammen und gibt einen Ausblick auf mögliche Einsatzmöglichkeiten der Brennstoffzellentechnologie,
- Anhang A enthält flugzeugspezifische Daten, die für die Auslegung des Brennstoffzellen-Systems und für die DOC-Rechnung benötigt werden,
- Anhang B stellt das entwickelte Programm zur Ermittlung der Stoff- und Energieströme des Brennstoffzellensystems vor.

Einsatz von Wassersystemen in Flugzeugen 2

Produktpalette von Airbus 2.1

Für den Erfolg des Unternehmens Airbus ist es wichtig, in allen Marktsegmenten ein entsprechendes Produkt anbieten zu können. So deckt die Airbus Single Aisle Familie den Bereich der Kurz- und Mittelstrecke ab und die Wide Body, Long Range Familie das Segment der Langstrecke. Die neue Generation der Großraumflugzeuge vom Typ A380 soll das Monopol von Boeing im Langstreckenbereich mit mehr als 400 Passagieren brechen.

Das Bild 2.1, in welchem die Passagierzahl über die Reichweite aufgetragen ist, verdeutlicht den Einsatz der Airbusflotte in den unterschiedlichen Marktsegmenten.

Bild 2.1 Passagier-Reichweiten-Diagramm

Für die Untersuchung der Wirtschaftlichkeit des OBOWAGS® werden die nachfolgenden Flugzeugtypen (Tabelle 2.1) ausgewählt.

Tabelle 2.1	Darstellung der untersuchten Flugzeugtypen				
Flugzeugtyp	A320	A330-200	A340-600	A380-800	
Passagierzahl	150	310	380	550	
Reichweite [km]	3250	9000	15800	14200	
Flugzeit [h]	7	12	17	17	
Bild	Cum C	- ADDO 2000	Came O O		

2.2 Vorstellung der unterschiedlichen Wassersysteme

2.2.1 Konventionelles Wassersystem

Bild 2.2 Aufbau des konventionellen Wassersystems

Der Aufbau des konventionellen Wassersystems ist im **Bild 2.2** dargestellt. Für die Versorgung der Handwaschbecken, Toiletten und der Küchen mit Wasser ist ein Druckwassersystem installiert. Das Wasser aus den Handwaschbecken und Küchen (sog. Grauwasser) wird über ein Drainagesystem mit beheiztem Auslass (Drain Mast) über Bord abgelassen. Die Toiletten sind über ein Vakuumsystem mit einem Abwassertank verbunden, in welchem das sog. Schwarzwasser bis zur Entleerung am Boden gesammelt wird. Erfahrungsgemäß liegt die bedarfsbedingte Aufteilung der Frischwassermenge bei 1/3 für die Toilettenspülung und 2/3 für die Handwaschbecken und Küchen.

Zur Frischwasserversorgung im Flugzeug muss basierend auf Erfahrungswerten eine Menge von 0,2 Liter pro Person und Stunde berechnet werden. Die Gesamtmenge des mitzuführenden Wassers lässt sich aus diesen Werten für jeden Flugzeugtyp und die entsprechende Flugmission berechnen. Die maximal mitzuführende Frischwassermenge ist in **Tabelle 2.2** dargestellt.

Tabelle 2.2	Volumen d	ler Frischwassermenge	in konventioneller	n Flugzeugen
	v orunnen e	ier ritsenwassermenge	III KOHVEIHUOHEHEI	Thugzeugen

	A320	A330-200	A340-600	A380-800
maximales Volumen [I]	200	700	1070	1800

Des Weiteren ist im **Bild 2.2** der Einsatz des Brennstoffes zur Bereitstellung verschiedener Energiearten dargestellt. Die Druckluftversorgung im Flugzeug wird durch Entnahme von Zapfluft im Hochdruckverdichter des Triebwerkes und durch das Hilfstriebwerk (APU) gewährleistet. Nach **TN-EV52-348/92** beträgt der Brennstoffverbrauch für Druckluft ca. 2,4 % des Gesamtkraftstoffverbrauchs. Über ein Getriebe wird dem Triebwerk Wellenleistung entnommen, welche zur Versorgung des Flugzeuges mit elektrischer Energie und Hydraulikdruck benötigt wird. Für diese zusätzliche Wellenleistung wird ca. 1,4 % des Gesamtkraftstoffverbrauchs benötigt (**TN-EV52-348/92**). Hier ist festzustellen, dass diese Methode der Energieumwandlung von chemischer Energie in mechanische und anschließend in elektrische Energie mit hohen Energieverlusten verbunden ist. Laut **Oertel 2001** (S. 235) liegt der elektrische Wirkungsgrad von zukünftigen Gasturbinen zwischen 30 % und 40 %.

Ein wesentlicher Unterschied des konventionellen Systems zum OBOWAGS[®] ist die Nutzung eines Hilfstriebwerkes (APU). Es dient zur Versorgung des Flugzeuges am Boden und unter bestimmten Bedingungen auch während des Fluges mit Druckluft und Strom. Zu den mit Druckluft zu versorgenden Flugzeugsystemen zählen unter anderem die Klimaanlage und die Haupttriebwerks-Anlassanlage. Die APU wird dann als betriebsrelevantes Gerät für die Energieversorgung genutzt, wenn mindestens eines (A320 Single Aisle Familie) der Haupttriebwerke außer Betrieb ist.

Die Stauluftturbine (RAT) ist ein Notaggregat, welches bei Ausfall der Triebwerke oder der APU, z.B. durch Kraftstoffmangel, ausgefahren wird und das Flugzeug direkt mit Hydraulikdruck und indirekt mit elektrischer Energie versorgt. Beim OBOWAGS[®] werden die Aufgaben der Stauluftturbine – ebenso wie die des Hilfstriebwerkes - in das System integriert.

Bild 2.3 Aufbau des OBOWAGS[®]

Im **Bild 2.3** ist der Aufbau des OBOWAGS[®] dargestellt. Zusätzliche Optionen in zukünftigen Flugzeugen sind die Luftbefeuchtung von ausgewählten Bereichen und die Möglichkeit des Duschens an Bord. Unverändert bleibt der Wasserbedarf durch die Handwaschbecken, Küchen und Toiletten. Das von der Brennstoffzelle abgegebene chemisch reine Wasser wird in einem Vorratsbehälter gesammelt. Dieser hat die Aufgabe, Spitzenverbräuche an Wasser auszugleichen. Die Wasseraufsalzung dient der Herstellung von Trinkwasser. Chemisch reines Wasser ist aufgrund des mangelnden Salzgehaltes als Trinkwasser für den Menschen nicht geeignet, da es zur Entsalzung des Körpers führen würde. Zur Gewährleistung der Funktion der Brennstoffzelle muss wieder Wasser zugeführt werden. Ein Teil davon wird durch Dehydrierung des Abwassers gewonnen. Der Rest wird dem Grauwasser entnommen. Das überschüssige Grauwasser wird über ein Drainagesystem über Bord gegeben. Das restliche Abwasser verbleibt im Tank bis zur Entleerung am Boden.

Das Brennstoffzellensystem deckt den gesamten Bedarf an elektrischer Energie und zusätzlich einen Teil des Druckluftbedarfs. Ausgehend davon, dass das Brennstoffzellensystem die komplette Versorgung mit elektrischer Energie übernehmen wird, muss es aus Sicherheitsgründen mehrfach ausgelegt werden, um bei Ausfall einer Brennstoffzelleneinheit die Energie- und Wasserversorgung an Bord eines Flugzeuges sicherzustellen.

Durch die Rolle des Brennstoffzellensystems als alleiniger Versorger mit elektrischer Energie, entfallen die Triebwerksgeneratoren, die im konventionellen System die elektrische Energie zur Verfügung stellen. Dadurch wird vom Triebwerk keine zusätzliche Wellenleistung für diese Generatoren mehr benötigt und der Kraftstoffverbrauch wird verringert. Im Unterschied zum herkömmlichen System ist die direkte Umwandlung der chemischen Energie des Brennstoffes durch die Brennstoffzelle in elektrische Energie effektiver und sichert dem System höhere Wirkungsgrade. Durch die Mehrfachauslegung (Redundanz) des Brennstoffzellensystems und der damit verbundenen hohen Sicherheit werden auch die herkömmlichen Notstromaggregate (APU, RAT) überflüssig.

Die vom Brennstoffzellensystem abgegebene Druckluft wird der Klimaanlage zur Verfügung gestellt. Dies bringt den Vorteil, dass weniger Zapfluft vom Triebwerk abgenommen werden muss und somit der Kraftstoffverbrauch verringert wird.

3 Grundlagen der Brennstoffzellen

3.1 Begriff

Der Begriff der Brennstoffzelle wird in Oertel 2001 (S. 33) wie folgt definiert:

Brennstoffzellen sind hocheffiziente elektrochemische Wandler, in denen die chemische Energie eines Energieträgers direkt in Strom und Wärme umgewandelt wird.

Die Vorteile der Brennstoffzellentechnologie gegenüber der herkömmlichen Stromerzeugung liegen vor allem in der unmittelbaren und damit verlustarmen Umwandlung der chemischen in elektrische Energie, der sog. "kalten Verbrennung". Dadurch können theoretisch elektrische Wirkungsgrade von bis zu 70 % erreicht werden. Mit dem derzeitigen Entwicklungsstand werden derartige Werte praktisch noch nicht erreicht. (**Oertel 2001**, S.33)

3.2 Geschichte

Obwohl bereits im Jahre 1839 die erste Wasserstoff-Sauerstoff-Brennstoffzelle durch W.R. Grove vorgestellt wurde, war es trotz der früh erkannten potenziellen Vorteile über einen relativ langen Zeitraum nicht möglich, ein technisch ausgereiftes Verfahren zu entwickeln. Unzureichende Kenntnisse der elektrochemischen Vorgänge, Materialprobleme sowie vorübergehende Verdrängung durch andere Stromerzeugungstechnologien, wie Verbrennungsmotor, elektrodynamischer Generator, Gasturbine, etc. waren nur einige der Gründe.

Erst in den fünfziger Jahren des 20. Jahrhunderts gewann die Thematik der Wasserstoff-Sauerstoff-Brennstoffzelle wieder an Bedeutung, zunächst mit einer intensiven Forschung im Bereich der alkalischen Systeme, die vor allem in den Raumfahrtprogrammen ihren Einsatz fanden. In den sechziger Jahren wurde dann die Membran-Brennstoffzelle entwickelt. Sie erreichte jedoch noch keine ausreichende Zuverlässigkeit um technische Bedeutung zu erreichen.

Mitte der siebziger Jahre wurde vor allem eine Weiterentwicklung der phosphorsauren Systeme betrieben - da diese eine bessere Eignung für stationäre Anwendungen aufwiesen - sowie die Entwicklung von Reformern zum Einsatz von Kohlenwasserstoffen.

In den achtziger und neunziger Jahren lagen die Schwerpunkte der Forschungen im Bereich der Hochtemperatur-Brennstoffzellen, da hier höhere Wirkungsgrade erreicht werden und au-

ßerdem die Möglichkeit der Abwärmenutzung gegeben ist. Die Schmelzkarbonat-Brennstoffzelle und die oxidkeramische Brennstoffzelle wurden in den folgenden Jahren entwickelt. Auch die Membran-Brennstoffzelle war aufgrund neu entwickelter Membrantypen sowie durch Impulse aus der Katalysatorforschung wieder interessant geworden.

3.3 Prinzipielle Funktionsweise

In Brennstoffzellen wird durch eine kontrollierte chemische Reaktion aus Wasserstoff und Sauerstoff elektrischer Strom und Wasser erzeugt. Entscheidend dabei ist, dass die Reaktionspartner durch einen Elektrolyten räumlich getrennt voneinander umgesetzt werden, um den erzeugten Strom und die freiwerdende Wärme nutzen zu können und eine normale Verbrennung oder eine Knallgasreaktion zu verhindern. (**Oertel 2001**, S. 35)

Prinzipiell bestehen alle Brennstoffzellen aus zwei Elektroden, die durch einen Elektrolyten getrennt werden. Durch eine kontrollierte Heranführung der Gase an die Elektroden kann die chemische Reaktion in zwei katalysierte Einzelreaktionen getrennt werden. An der Anode bilden sich aus Wasserstoff oder einem wasserstoffreichen Gas positiv geladene Wasserstoff-Ionen. An der Kathode bilden sich aus Sauerstoff oder einem sauerstoffreichen Gas negativ geladene Sauerstoff-Ionen. Die dabei zwischen den Elektroden entstehende elektrische Spannung kann praktisch genutzt werden, wenn die beiden Elektroden über einen Stromkreis miteinander verbunden werden. Nach **Oertel 2001** (S. 36) errechnet sich für die Bruttoreaktion zu Wasser unter Standardbedingungen eine theoretische Zellspannung von 1,23 V, praktisch werden aufgrund von Verlusten Zellspannungen von 0,6 V bis 0,9 V erreicht (**Ledjeff-Hey 2001**, S. 14).

Brennstoffzellen erzeugen Gleichstrom. Da die Spannung absinkt, wenn der Zelle Elektrizität entnommen wird, hat sich ein Betrieb der Zelle bei einer Spannung um 0,7 V als guter Kompromiss zwischen steigender Strömstärke und sinkender Spannung erwiesen (**Oertel 2001**, S. 36). Für technische Brennstoffzellen werden – um höhere Spannungen und Leistungen erzielen zu können – mehrere Einzelzellen in Reihen- oder Parallelschaltungen (sog. "Stacks") zusammen geschaltet. Gasleitschichten über der Oberfläche von bipolaren Platten, mit denen die einzelnen Brennstoffzellen verbunden sind, versorgen die Zellen mit Brennstoff und führen das entstehende Wasser ab.

Brennstoffzellen sind elektrochemische Energiewandler, bei denen die chemische Energie nicht in der Zelle gespeichert wird, was eine begrenzte Kapazität zur Folge hätte, sondern von außen zugeführt wird. Daher kann eine Brennstoffzelle bei kontinuierlicher Zufuhr der Reaktionskomponenten fortlaufend elektrische Energie erzeugen. (**Rohrbach 1997**)

3.4 Brennstoffzellentypen

Theoretisch wäre eine Vielzahl von Brennstoffzellen-Typen auf der Grundlage verschiedenster elektrochemischer Reaktionen sowie deren Randbedingungen, wie Arten der eingesetzten Brennstoffe, verwendete Elektrolyte, Betriebstemperatur, Betriebsdruck, etc. möglich. Aus kommerzieller Sicht wurden jedoch nur fünf verschiedene Brennstoffzellen weiterentwickelt.

Nach Ledjeff-Hey 2001 (S. 18) ist das Material des Elektrolyten und der dadurch definierte Bereich der Betriebstemperatur als Auswahlkriterium für den Einsatz einer Brennstoffzelle entscheidend. Daher hat sich eine Bezeichnung der Brennstoffzellen-Typen nach der Art des eingesetzten Elektrolyten international durchgesetzt und wird in der nachfolgenden Tabelle 3.1 veranschaulicht.

Deutsche Bezeichnung	Englische Bezeichnung	Abkürzung		
Alkalische Brennstoffzelle	Alkaline Fuel Cell	AFC		
(Polymerelektrolyt)-Membran-	Proton Exchange Membrane Fuel	PEMFC		
Brennstoffzelle	Cell			
Phosphorsaure Brennstoffzelle	Phosphoric Acid Fuel Cell	PAFC		
Schmelzkarbonat Brennstoffzelle	Molten Carbonate Fuel Cell	MCFC		
Oxidkeramische Brennstoffzelle	Solid Oxide Fuel Cell	SOFC		

Tabelle 3.1 Gängige Brennstoffzellen und ihre Bezeichnung (nach Oertel 2001)

Nachfolgend werden die oben angeführten Brennstoffzellen-Typen hinsichtlich des verwendeten Elektrolyten, der Betriebstemperatur, der nutzbaren Brennstoffe, der erreichten Wirkungsgrade sowie der potenziellen Anwendungsbereiche kurz vorgestellt.

Eine Unterscheidung der Brennstoffzellen-Typen nach verwendetem Elektrolyt und damit bestimmter Betriebstemperatur wird in der **Tabelle 3.2** getroffen.

Tabelle 3.2 Einte	teilung der Brennstoffzellen nach Elektrolyt und Temperatur (nach Oertel 2001)			
	Brennstoff- Zellen-Typ	Elektrolyt	Temperatur °C	
Niedrigtemperatur-BZ	PEMFC AFC	Polymere Membran Kalilauge	50-120 60-120	
Mitteltemperatur-BZ Hochtemperatur-BZ	PAFC MCFC SOFC	Phosphorsäure Karbonatschmelze Oxidkeramischer Elektrolyt	160-220 620-660 650-1.000	

3.4.1 Niedrigtemperatur-Brennstoffzellen

Zu den Niedrigtemperatur-Brennstoffzellen gehören die (Polymerelektrolyt)-Membran-Brennstoffzelle (PEMFC) und die Alkalische Brennstoffzelle (AFC). Da sie bei Betriebstemperaturen unter 100 °C arbeiten, sind nach **Oertel 2001** (S. 40) Katalysatoren notwendig, um eine ausreichende Reaktionsgeschwindigkeit sicherzustellen. Außerdem verlangen diese Brennstoffzellen eine hohe Brenngasreinheit. Bereits geringe Anteile an Kohlenmonoxid sowie an Kohlendioxid (nur bei AFC) führen zu einer Katalysatorvergiftung.

Alkalische Brennstoffzelle (AFC)

Die AFC ist aufgrund der vielseitigen Nutzung im Raumfahrt- und Militärbereich der technisch am weitesten entwickelte Brennstoffzellen-Typ. Als Elektrolyt wird wässrige Kalilauge genutzt, die den Einsatz hochreiner Brennstoffe verlangt, da bereits geringe Spuren von Kohlendioxid (> 10 ppm) bzw. Kohlenmonoxid (> 1 ppm) zur Karbonatbildung im Elektrolyten führen und einen ununterbrochenen Betrieb über längere Zeiträume verhindern (**Oertel 2001**, S. 40). Als Katalysatoren werden vorrangig die Edelmetalle Platin, Palladium, Ruthenium und ihre Legierungen sowie Nickel verwendet. Die realisierten Leistungen der AFC liegen im Bereich zwischen 1-120 kW. Aufgrund einer hohen Kostenintensität sowie der Unverträglichkeit von Luft infolge des hohen Kohlendioxidgehaltes ist die weitere kommerzielle Nutzung der AFC in Frage gestellt. (**Oertel 2001**, S. 40)

(Polymerelektrolyt)-Membran-Brennstoffzelle (PEMFC oder PEFC)

Die PEMFC hat die technologische Reife der AFC mittlerweile erreicht. Als Elektrolyt wird eine dünne gasdichte, protonenleitende Kunststoffmembran eingesetzt, die die mögliche Betriebstemperatur auf max. 100 °C begrenzt. Bei der PEMFC ist die Verwendung von Luft möglich, jedoch wird eine hohe Wasserstoff-Reinheit verlangt, da Kohlenmonoxid in Mengen von > 10 ppm als Katalysatorgift wirkt (Oertel 2001, S. 41). Für die Reformierung der Brennstoffe ist daher ein hoher technischer Aufwand nötig. Als Katalysatoren werden vor allem das Edelmetall Platin sowie Platin-Ruthenium-Legierungen verwendet. Der Wirkungsgrad der PEMFC ist vergleichbar mit dem der AFC, jedoch erreicht die PEMFC höhere Stromdichten (Oertel 2001, S. 42). Die realisierten Leistungen liegen im Bereich bis 250 kW. Mögliche Einsatzgebiete finden sich im Bereich mobiler Anwendungen sowie für die dezentrale Energieversorgung (z.B. Hausenergie). Eine Weiterentwicklung im Bereich der PEMFC ist die Direktmethanol-Brennstoffzelle (DMFC). Als Brennstoff wird flüssiges Methanol oder Methanoldampf an der Anode beaufschlagt, auf der Kathodenseite kann Luft verwendet werden. (Ledjeff-Hey 2001, S. 21) Die DMFC befindet sich noch im Stadium der Grundlagenforschung, stellt aber vor allem für den Bereich der mobilen Antriebe (z.B. Fahrzeuge) eine Alternative dar.

3.4.2 Mitteltemperatur-Brennstoffzellen

In den Bereich der Mitteltemperatur-Brennstoffzellen gehört die Phosphorsaure Brennstoffzelle (PAFC), die bei einer Betriebstemperatur von ca. 200 °C arbeitet (**Oertel 2001**, S. 44).

Phosphorsaure Brennstoffzelle (PAFC)

Als Elektrolyt dient konzentrierte gelförmige Phosphorsäure. Da diese Säure nicht mit Kohlendioxid reagiert sowie aufgrund der größeren Toleranz gegenüber Kohlenmonoxid infolge der höheren Betriebstemperatur ist ein Einsatz von Kohlenwasserstoffen zur Stromerzeugung möglich (**Oertel 2001**, S. 44). Als Brennstoff wird meist Wasserstoff aus reformiertem Erdgas und als Oxidationsmittel Luftsauerstoff verwendet. Aufgrund der starken Säure müssen Edelmetallkatalysatoren wie Platin oder Gold verwendet werden. Der Wirkungsgrad ist im Vergleich mit den Hochtemperatur-Brennstoffzellen eher niedrig (**Bild 3.2**). Ein druckaufgeladener Betrieb zur Verbesserung des Wirkungsgrades ist möglich. PAFC-Anlagen werden mit Leistungsspektren im kW-Bereich bis zu 200 kW sowie im MW-Bereich bis zu 11 MW bereits kommerziell vertrieben. Aus technischer und kommerzieller Sicht ist die PAFC für stationäre Anwendungen der am weitesten entwickelte Brennstoffzellen-Typ, dennoch muss an ihrer Wirtschaftlichkeit weiter gearbeitet werden.

3.4.3 Hochtemperatur-Brennstoffzellen

Zu den Hochtemperatur-Brennstoffzellen gehören die Schmelzkarbonat Brennstoffzelle (MCFC) sowie die Oxidkeramische Brennstoffzelle (SOFC). Aufgrund der deutlich höheren Betriebstemperaturen zwischen 650 °C (MCFC) und 1000 °C (SOFC) ist die Brennstoffbandbreite gegenüber den anderen Brennstoffzellen-Typen deutlich erweitert (**Oertel 2001**, S. 45).

Schmelzkarbonat Brennstoffzelle (MCFC)

Als Elektrolyt werden geschmolzene Karbonate verwendet, meist Alkalikarbonate, die in einer hochporösen, keramischen Matrix fixiert sind. Die MCFC ist sehr gut zur Verstromung kohlenwasserstoffhaltiger Brenngase geeignet (**Ledjeff-Hey 2001**, S.22). Da die Wanderung der Karbonat-Ionen im Elektrolyten von der Kathode zur Anode den Sauerstofftransport bewirkt, ist die Zufuhr eines Luft-Kohlendioxid-Gemischs an der Kathode erforderlich, um eine ausreichende Anzahl an Karbonat-Ionen sicher zu stellen (**Oertel 2001**, S. 46). Dies wird durch eine Zufuhr des Anodenabgases zum Luftstrom gewährleistet. Ein Vorteil der Hochtemperatur-Brennstoffzellen besteht darin, dass die Abwärme des Brennstoffzellen-Stacks genutzt werden kann, um kohlenstoffhaltige Brenngase zu Wasserstoff und Kohlendioxid zu reformieren, zur sog. "internen Reformierung". Infolge der hohen Betriebstemperaturen werden keine Edelmetallkatalysatoren benötigt, stattdessen kommen Elektroden aus Nickel oder Ni-

ckeloxid zum Einsatz. Aufgrund der höheren Betriebstemperatur kann die MCFC im Vergleich zu den vorgenannten Brennstoffzellen-Typen einen relativ hohen Wirkungsgrad erreichen (**Bild 3.2**). Die realisierten Leistungen liegen im kW- und im MW-Bereich bis 2 MW. Infolge der hohen Korrosivität der verwendeten Karbonatschmelzen, liegt das Hauptproblem der MCFC in der Materialauswahl und der damit verbundenen Lebensdauer (**Ledjeff-Hey 2001**, S. 23). Der Aufheizvorgang der MCFC dauert mehrere Stunden und ihre Zyklenbeständigkeit ist gering (ein Zyklus definiert sich durch Aufheizen – Betrieb – Abkühlen) (**Oertel 2001**, S. 47). Die MCFC ist daher möglichst durchgehend auf Betriebstemperatur zu halten. Mögliche Anwendungsgebiete liegen im stationären Bereich, wie z.B. Erd- oder Kohlegasbetriebene Heizkraftwerke.

Oxidkeramische Brennstoffzelle (SOFC)

Die SOFC ist der derzeit am wenigsten weit entwickelte Brennstoffzellen-Typ. Als Elektrolyt wird in der SOFC ein gasdichter, keramischer Festelektrolyt, z.B. Yttrium-stabilisiertes Zirkondioxid verwendet (Oertel 2001, S. 47). Yttrium ist ein Leichtmetall, dessen Schmelzpunkt bei 1522 °C liegt. Es wird als Legierungsbestandteil von Heizleitern und Chrom-Nickel-Stählen genutzt. Ein Einsatz erfolgt z.B. in Zündkerzen. Um eine ausreichend hohe Leitfähigkeit des Elektrolyten zu gewährleisten, sind Betriebstemperaturen bis zu 1.000 °C notwendig. Unterschieden wird zwischen einem Röhrenkonzept und einem Flachzellenkonzept (planares Konzept) (Ledjeff-Hey 2001, S. 24). Die SOFC besitzt ebenso wie die MCFC den Vorteil der Möglichkeit zur internen Reformierung. Das heißt, verschiedene kohlenwasserstoffhaltige Brenngase, wie Erd-, Kohle- oder Biogas können direkt verarbeitet werden. Aufgrund der hohen Betriebstemperaturen ist ebenso eine unmittelbare Umsetzung von kohlenmonoxidhaltigen Gasgemischen aus der internen Reformierung möglich. Die Nachteile der SOFC sind in der hohen Betriebstemperatur begründet. Es treten Material- und Korrosionsprobleme auf; große Elektrodenflächen sind kaum realisierbar; der Aufheizvorgang dauert mehrere Stunden und die Zyklenbeständigkeit ist nicht gut (Oertel 2001, S. 48). Um diese Probleme zu verringern, wird daran gearbeitet, die Betriebstemperaturen zu reduzieren, ohne die Leitfähigkeit des Elektrolyten zu beeinträchtigen. Prinzipiell hat die SOFC ein hohes Wirkungsgradpotential (Bild 3.2), vor allem wenn sie mit Gas- oder Dampfturbinen kombiniert wird. Um den Wirkungsgrad weiter zu erhöhen, ist eine Druckbeaufschlagung möglich.

(**ASUE 2001**, S. 131)

Wie in **Bild 3.1** dargestellt, wird bei der SOFC zwischen einem Röhrenkonzept und einem planaren Konzept unterschieden. Das planare Konzept, welches sich an den Aufbau der anderen Brennstoffzellen-Typen in Form von Stacks anlehnt, weist gravierende Nachteile in der Schwierigkeit der gasdichten und elektrisch isolierenden Abdichtung auf. Das Röhrenkonzept konnte dahingehend weiterentwickelt werden, dass sowohl das offene Röhrenende als auch die Luftzufuhrröhre sich den Gasräumen gegenüber abdichten. Dieser spezielle Verschluss und die gesamte Luftführung sind ein besonderes Konstruktionsmerkmal und ermöglichen eine SOFC-Aggregatbauweise, bei der keine integrierte oder hochfeste Abdichtung zwischen Brennstoff und Luft erforderlich ist (**ASUE 2001**, S. 134). Solche Generatoren können mit Reaktanten von Normaldruck oder höherem Druck betrieben werden. Bei erhöhtem Druck sind höhere Leistungsdichten der Zelle erreichbar. Bei den bei Drücken von 4 bar betriebenen Systemen können die heißen SOFC-Abgase eine Mikroturbine antreiben und damit höhere Gesamtwirkungsgrade erreichen.

Im **Bild 3.2** werden die elektrischen Wirkungsgrade der verschiedenen Brennstoffzellen und Brennstoffzellensysteme vergleichend dargestellt.

(Oertel 2001, S. 235)

3.5 Aufbereitung von Brennstoffen für Brennstoffzellen

3.5.1 Auswahl der Brennstoffe

Da Wasserstoff als der eigentliche Brennstoff für die elektrochemische Umsetzung in Brennstoffzellen angesehen werden kann, kommen grundsätzlich alle wasserstoffhaltigen Energieträger als Brennstoff in Frage. Dennoch wird die Auswahl des Brennstoffes für ein Brennstoffzellensystem von zahlreichen Kriterien beeinflusst, unter anderem von:

- dem Brennstoffzellentyp,
- der verlangten Brennstoffreinheit,
- der vorgesehenen Anwendung (stationär, mobil),
- der Speicherbarkeit,
- der Sicherheit,
- der Wirtschaftlichkeit,
- der Energieeffizienz und
- den Umweltwirkungen.

Nach Oertel 2001 lassen sich prinzipiell folgende Zusammenhänge definieren:

- Mit steigender Betriebstemperatur erweitert sich die einsetzbare Brennstoffbandbreite, denn Niedertemperatur-Brennstoffzellen stellen höhere Anforderungen an die Brennstoffreinheit als Hochtemperaturbrennstoffzellen.

- Beim Einsatz von reinem Wasserstoff und reinem Sauerstoff können die höchsten Wirkungsgrade erzielt werden.
- Aus ökonomischer Sicht ist chemisch gebundener Wasserstoff in Form von Erd-, Bio-, Kohlegas oder Methanol einfacher verfügbar und preiswerter als reiner Wasserstoff. Eine Reformierung der Primärenergieträger ist mit einem entsprechenden energetischen und verfahrenstechnischen Aufwand sowie mit Schadstoffemissionen verbunden.
- Aus Sicherheitsgründen kommen derzeit für mobile Anwendungen vor allem Niedertemperaturbrennstoffzellen in Frage.
- Die Speicherbarkeit des Energieträgers ist vor allem bei mobilen Anwendungen entscheidend.

3.5.2 Reformierung

Chemisch gebundener Wasserstoff ist durch Reformierungsreaktionen in molekularen Wasserstoff überführbar. Da neben molekularem Wasserstoff auch erhebliche Mengen an Kohlenmonoxid entstehen, wird bei einer Verwendung des Produktgases in Niedertemperatur-Brennstoffzellen nach dem Reformierungsprozess eine Kohlenmonoxid-Konvertierung (Shiftreaktion) durchgeführt. Dabei wird in einem Shiftreaktor Kohlenmonoxid mit Wasser in Wasserstoff und Kohlendioxid umgewandelt.

Die Reformierung kann brennstoffzellenintern oder –extern erfolgen. Nach (**Oertel 2001**, S. 54) werden folgende Reformierungsarten unterschieden:

- Dampfreformierung
- partielle Oxidation
- autotherme Reformierung.

Dampfreformierung

Laut (**Oertel 2001**, S. 54) ist die Dampfreformierung das am weitesten verbreitete Verfahren zur großtechnischen Herstellung von Wasserstoff aus Erdgas. Die Reaktion ist eine endotherme Reaktion, bei der durch Zufuhr von Wasserdampf und Einsatz von Katalysatoren ein wasserstoffreiches Synthesegas entsteht. Energie muss zugeführt werden, um die Reaktion aufrecht zu erhalten. Die Vorteile liegen:

- im hohen Wirkungsgrad (praktisch bereits realisiert: 70-85 %),
- in der relativ niedrigen Betriebstemperatur (zwischen 700 und 800 °C) und
- in der besseren Steuerbarkeit aufgrund der endothermen Prozessführung (Vermeidung von Rußbildung und Durchbrennen des Katalysators)

Die Nachteile sind in einem ungünstigen Kaltstartverhalten begründet. Durch konstruktive Maßnahmen - wie gute thermische Isolierung des Reformergehäuses - sowie durch verfahrenstechnische Maßnahmen - wie ein möglichst kontinuierlicher Anlagenbetrieb – kann dieses jedoch ausgeglichen werden.

Partielle Oxidation

Bei diesem Verfahren werden in einer exothermen Reaktion Kohlenwasserstoffe unter Sauerstoffmangel bei Temperaturen von über 1.300 °C sowie Drücken bis zu 90 bar ohne Mitwirkung eines Katalysators in Wasserstoff und Kohlenmonoxid umgesetzt (**Oertel 2001**, S. 54). Die Vorteile liegen in kürzeren Start- und Lastwechselzeiten. Nachteilig sind hier die geringere Wasserstoffausbeute und der damit niedrigere Gesamtwirkungsgrad sowie die erschwerte Steuerung der Prozessrandbedingungen (Gefahr der Verkokung).

Autotherme Reformierung

Dieses Verfahren stellt eine Kombination aus Dampfreformierung und partieller Oxidation dar, bei der in einer katalytischen exothermen Reaktion bei Betriebstemperaturen von 850 °C bis 1.000 C und Drücken unter 50 bar das entsprechende Produktgas gewonnen wird (**Oer-tel 2001**, S. 55). Der Vorteil liegt in einem günstigen Start- und Lastwechselverhalten. Der Wasserstoffgehalt und damit der Wirkungsgrad ist hier höher als bei der partiellen Oxidation, aber niedriger als bei der Dampfreformierung.

Zusammenfassend sind im **Bild 3.3** die vorgestellten Brennstoffzellen, die möglichen Brennstoffe und deren Aufbereitung für die verschiedenen Brennstoffzellen dargestellt.

4 Prinzipielle Darstellung von SOFC-Systemen

4.1 Auswahl der Brennstoffzelle

Für das hier bearbeitete Modell des OBOWAGS[®] wurde ein System auf Basis einer druckaufgeladenen Festoxidkeramischen Brennstoffzelle (SOFC) gewählt. Folgende Kriterien haben diese Entscheidung beeinflusst:

- hoher elektrischer Wirkungsgrad (der durch Druckbeaufschlagung erhöht werden kann),
- interne Reformierung des Brennstoffes aufgrund der hohen Betriebstemperatur,
- Einsatz von Kerosin als Brennstoff aufgrund der Kohlenmonoxidverträglichkeit sowie
- Rückgewinnung der Druckenergie des Abgases in einer Mikroturbine, die gleichzeitig den Antriebsbedarf des Luftverdichters aufbringt und den Leistungsüberschuss zur zusätzlichen Drucklufterzeugung nutzt.

Dieses Brennstoffzellensystem wird daher im folgenden Abschnitt ausführlich vorgestellt und erläutert.

4.2 Allgemeine Funktionsweise eines SOFC-Systems

Nachfolgend werden im **Bild 4.1** der grundlegende Aufbau und die prinzipielle Funktionsweise eines druckaufgeladenen Festoxidkeramischen Brennstoffzellensystems für den Brennstoff Erdgas verdeutlicht.

Bild 4.1 Druckaufgeladenes hybrides System – Technische Arbeitsweise mit Abwärmenutzung (**Supcon 2002**)

Das hier in seiner Funktion dargestellte Brennstoffzellenkraftwerk wird als druckaufgeladenes hybrides System bezeichnet.

- Hybrid, weil es aus zwei unterschiedlichen Stromerzeugern besteht: der Festoxid-Brennstoffzelle und einer nachgeschalteten Mikroturbine.
- Druckaufgeladen, weil der ganze Prozess auf einem erhöhten Druckniveau, nämlich bei etwa 3 bar abläuft.

Auf diese Art wird eine bessere Umsetzung der Gase in der Zelle erreicht und durch die damit verbundene Möglichkeit der Nutzung einer Mikroturbine eine höhere Leistung erzielt. Nach Ledjeff-Hey 2001 kann durch den Druckbetrieb bei 3 bar eine ca. 20 % höhere Leistungsdichte erzielt werden. Die von der Brennstoffzelle benötigte Luft wird vom Verdichter angesaugt und komprimiert. Sie durchströmt einen ersten Wärmetauscher, wo sie durch die Abwärme des austretenden Abgases erwärmt wird. In diesem Zustand wird sie der Festoxid-Brennstoffzelle zugeführt. Durch Reaktion mit dem ebenfalls zugeführten, aufbereiteten Erdgas entsteht in der Zelle Gleichstrom, der über einen Wechselrichter umgeformt und ins Stromnetz eingespeist wird. Das aus der Brennstoffzelle austretende heiße Abgas wird in der Mikroturbine entspannt. Der Abgasstrom der Mikroturbine wird über den ersten Wärmetauscher geführt, in dem er die zugeführte Luft erwärmt. Von dort gelangt er in einen zweiten Wärmetauscher, wobei Nutzwärme für weitere Prozesse ausgekoppelt wird. Die Mikroturbine treibt zum einen den Verdichter an, der die Luft für den Prozess auf Betriebsdruck bringt. Zum anderen wird ein Generator zur Stromerzeugung angetrieben, der zusätzlich Strom ins Netz einspeist. Der Generator der Mikroturbine liefert etwa 25 %, die Brennstoffzelle 75 % der Leistung des Gesamtsystems. Der Vorteil dieses kombinierten Systems ist eine Steigerung des elektrischen Netto-Wirkungsgrades auf etwa 60 % und des Brennstoff-Ausnutzungsgrades auf über 80 %, wodurch wertvolle fossile Energien effektiver genutzt werden (Supcon 2002).

4.3 Komponenten der SOFC-Anlage

Die Peripheriekomponenten auf der Eingangsseite der Oxidkeramischen Brennstoffzellenanlage bilden die Grundlage eines höheren Wirkungsgrades durch eine Druckerhöhung. Eine Funktion der Brennstoffzellenanlage ist auch ohne diese Komponenten möglich. Für die Nutzung der abgegebenen Energien und der Einspeisung in bestehende Netze dienen die Peripheriekomponenten auf der Ausgangsseite. **Bild 4.2** zeigt die Peripherie einer SOFC-Anlage.

Die in **Bild 4.3** dargestellten Komponenten sind notwendiger Bestandteil eines Brennstoffzellensystems.

(Supcon 2002)

Für den Betrieb der Festoxid-Brennstoffzelle müssen die Eingangsstoffe vorbehandelt werden. Die Luft wird dazu in einem Wärmetauscher erwärmt und aus dem Erdgas wird in einer Entschwefelungs-Anlage der Schwefel entfernt, der die Funktionsfähigkeit der Katalysatoren beeinträchtigen würde. In einem Vorreformer werden unter Zufuhr von Wasserdampf und Wärme die höheren Kohlenwasserstoffe durch Hydrierung gespalten. Außerdem wird ein Teil des Erdgases bereits in Wasserstoff und Kohlenmonoxid - die Brenngase der Festoxid-Brennstoffzelle – umgewandelt. Durch diese Vorreformierung wird die Effizienz des gesamten Reformierungsprozesses erhöht, auch wenn die Festoxid-Brennstoffzelle Erdgas intern direkt reformieren könnte. Die Brennstoffzelle erzeugt Gleichstrom, der erst mit Hilfe eines Wechselrichters in Wechselstrom umgeformt wird und so ins Netz eingespeist werden kann. Das Abgas, das in der Zelle unter Druck stand, wird in einer Mikroturbine entspannt. Diese Turbine ist mit einem Generator verbunden, der wie in einem herkömmlichen Kraftwerk Strom erzeugt (**Bild 4.3**).

Das folgende **Bild 4.4** zeigt die Brenngasaufbereitung für das SOFC-System inklusive der Entschwefelung und Vorreformierung.

Schwefel ist im Rohöl in sehr verschiedenen Formen enthalten, vom Schwefelwasserstoff bis hin zu sehr komplexen Molekülstrukturen. Besonders die aus Rohöl mit hohem Schwefelgehalt gewonnenen Produkte müssen entschwefelt werden. Dies geschieht in der Gaswäsche. Das Rohöl wird mit Wasserstoff vermischt und bei Temperaturen von etwa 350 °C (**Brune 2002**) und erhöhtem Druck über einen Katalysator geleitet. Dabei verbindet sich der Wasserstoff mit dem Schwefel aus dem schwefelhaltigen Produkt. Der hierbei entstehende Schwefelwasserstoff wird einer sog. Claus-Anlage zugeführt, wo unter teilweiser Verbrennung eine Umsetzung in Elementarschwefel und Wasser erfolgt.

In der Strahlpumpe wird das entschwefelte Erdgas mit dem nicht in der Brennstoffzelle umgesetzten Brennstoff versetzt und dem Vorreformer zugeführt.

Bild 4.4 Gasaufbereitung für SOFC (Entschwefelung und Vorreformierung) (**Supcon 2002**)

4.4 Brennstoffzellenmodul

Kernstück des Brennstoffzellenkraftwerks ist das Festoxid-Brennstoffzellen-Modul (**Bild 4.5**).

Bild 4.5 SOFC-Reaktor (Supcon 2002)

Eine spezifische Bauform besteht aus vielen einzelnen Röhren, die in einem Druckbehälter untergebracht sind. Im Bild 4.5 ist schematisch eine Röhre eingezeichnet. Der Druckbehälter ist in verschiedene Räume unterteilt, in denen unterschiedliche Reaktionen ablaufen. In den Druckbehälter werden die Betriebsstoffe zugeführt. Erdgas strömt von der Gasaufbereitung in den internen Reformierungsraum und wird dort in ein wasserstoffreiches Gasgemisch umgewandelt. Dieses strömt außen an den Brennstoffzellenröhren vorbei und wird dort zur Stromerzeugung genutzt. Das nicht umgesetzte Erdgas wird zusammen mit dem bei der Reaktion entstehenden Wasserdampf in den Rezirkulationsraum geleitet. Gas und Dampf werden zur Vorreformierung zurückgeführt und so größtenteils wieder in den Prozess eingespeist. Ein Teil des Gases wird im Verbrennungsraum verbrannt und verlässt die Zelle als Abgas. Die Luft wird durch ein Luftzufuhrsystem in den Druckbehälter geleitet und strömt von dort in das Innere der Brennstoffzellenröhren. Ein Teil des in der Luft enthaltenen Sauerstoffs wird für die Reaktion verbraucht, der Rest strömt in den Verbrennungsraum und verbrennt dort mit dem verbliebenen Brenngas. Durch die elektrochemischen Reaktionen an den Brennstoffzellenröhren entstehen Strom und Wärme. Der Strom wird aus der Zelle abgeleitet. Die Wärme wird zum Teil für die interne Reformierung genutzt, zum Teil aber auch als Nutzwärme für andere Prozesse verwendet.

4.5 Interne Reformierung

Die für den Betrieb von Festoxid-Brennstoffzellen erforderlichen Brenngase Wasserstoff und Kohlenmonoxid können aus dem zugeführten Erdgas in diesen Brennstoffzellen erzeugt werden. Dieser als interne Reformierung bezeichnete Vorgang kann aufgrund der hohen Betriebstemperaturen mit dem vorhandenen Wasserdampf ohne zusätzliche externe Reformeranlagen innerhalb der Festoxid-Brennstoffzelle ablaufen. Bei diesem Reformierungsprozess reagiert Methan, das den Hauptbestandteil des Erdgases darstellt, bei Temperaturen oberhalb von 650 °C mit Wasserdampf zu Wasserstoff und Kohlenmonoxid. Auf diese Weise wird das Erdgas in die Bestandteile zerlegt, die für die Reaktion in der Brennstoffzelle erforderlich sind. Das **Bild 4.6** verdeutlicht die Zerlegung von Erdgas.

Bild 4.6 Interne Reformierung bei der SOFC (Supcon 2002)

4.6 Elektrochemische Arbeitsweise der SOFC

Die eigentliche Brennstoffzelle besteht aus zwei Elektroden, der Kathode und der Anode, durch die die Betriebsstoffe Luftsauerstoff und Brenngas ständig zugeführt werden. Diese Elektroden sind durch einen Elektrolyten gasdicht voneinander getrennt. Die beiden Gase können nicht direkt miteinander reagieren. Im Fall der Festoxid-Brennstoffzelle besteht der Elektrolyt aus einer dünnen Keramikschicht. An der Kathode wird Sauerstoff zugeführt. Jedes Sauerstoff-Atom nimmt an der Elektrole zwei Elektronen auf und wird so zu einem Sauerstoff-Ion. Die Keramikschicht (Elektrolyt) ist für Sauerstoff-Ionen durchlässig, so dass diese durch sie hindurchwandern können. Der durch die Vorreformierung und die interne Reformierung gewonnene Wasserstoff umströmt die Anode und lagert sich an die durch den Elektrolyten hindurch getretenen Sauerstoff-Ionen an. Dabei geben diese ihre beiden Elektronen an die Anode ab. Bei dieser Reaktion, die bei etwa 950 °C abläuft, entsteht Wasserdampf. Der durch Elektronenfreisetzung von der Anode zur Elektronenbindung an der Kathode entstehende Strom fließt über einen äußeren Stromkreis, wo er Arbeit verrichten kann. Diese Zusammenhänge werden im **Bild 4.7** verdeutlicht.

(Supcon 2002)

Eine Besonderheit der Festoxid-Brennstoffzelle ist, dass sie auch das bei der Reformierung entstehende Kohlenmonoxid verarbeiten kann. Bei dieser Reaktion umströmt das Kohlenmonoxid die Anode und verbindet sich mit den ankommenden Sauerstoff-Ionen zu Kohlendioxid (**Bild 4.8**), wobei wieder die Elektronen freigesetzt werden. Das Kohlendioxid verlässt die Zelle als Abgas. In der Realität laufen die beiden dargestellten Prozesse (**Bild 4.7, 4.8**) mit Wasserstoff bzw. Kohlenmonoxid gleichzeitig ab.

(Supcon 2002)

5 Spezifisches SOFC-System im OBOWAGS[®]

5.1 Aufbau und Funktionsweise

Bild 5.1 Aufbau des SOFC-Systems

Für diese Arbeit wurde als Brennstoffzellensystem ein SOFC-System gewählt, dass sowohl auf der Kathodenseite als auch auf der Anodenseite mit Druck beaufschlagt wird.

Das System besteht zunächst aus dem Modul der Brennstoffzelle, welche durch den Kathoden- und Anodenraum gekennzeichnet ist und eine Betriebstemperatur von 900 °C (Mittelwert des Temperaturbereiches von SOFC-Brennstoffzellen) aufweist. Eine Kühlung des Brennstoffzellenmoduls muss durch die permanente Wärmeabgabe gewährleistet sein. Diese wird im Wärmetauscher WT_{BZ} an den Kathodenabgasstrom abgegeben.

Des Weiteren kann im System die Entschwefelung des Brennstoffes durchgeführt werden. Diese findet bei einer Temperatur von ca. 350 °C statt. Der Prozess der Brennstoff-Entschwefelung ist im Aufbau des SOFC-Systems mit dargestellt, um den Verfahrensablauf der Brennstoffaufbereitung zu verdeutlichen. In nachfolgenden Berechnungen wird die Entschwefelung nicht mit berücksichtigt, da in dieser Modellrechnung von einer Kerosinstruktur ausgegangen wird, die keinen Schwefelanteil enthält. Aus Gründen

Als Reformer wurde eine Dampfreformierung ausgewählt, da hier eine höhere Wasserstoffausbeute und eine niedrigere Betriebstemperatur im Vergleich zur partiellen Oxidation vorliegt (**Oertel 2001**, S. 55). Die Reaktion findet bei nahezu 700 °C statt (**Supcon 2002**). Die notwendige Energie wird im Normalbetrieb von der Brennstoffzelle direkt bereitgestellt.

Für den benötigten Sauerstoff auf der Kathodenseite wird Umgebungsluft zugeführt. Diese wird im Verdichter auf Betriebsdruck gebracht. Im nachgeschalteten Wärmetauscher WT_{LU} erfolgt eine Temperaturerhöhung der zugeführten Luft mit Hilfe des Kathodenabgasstroms. Die Notwendigkeit für diese Erwärmung der Luft ist in der Zellkeramik der SOFC begründet. Bei zu großen Differenzen zwischen der Temperatur der zugeführten Luft und der Betriebstemperatur der SOFC treten Wärmespannungen auf, welchen die Zellkeramik nicht mehr Stand halten kann (**Winkler 1998, S**. 55).

Der benötigte Brennstoff auf der Anodenseite wird mit der Pumpe P_{BS} auf Betriebsdruck angehoben. Im Wärmetauscher WT_{BS} erfolgt ein Verdampfen des zunächst noch flüssigen Brennstoffes. Dieser muss gasförmig für den nachfolgenden Prozess der Entschwefelung vorliegen. Die benötigte Energie wird dem Kathodenabgas entzogen. Das bei der Dampfreformierung zugeführte Wasser wird mit der Pumpe P_W ebenfalls auf den gewählten Betriebsdruck gebracht und im Wärmetauscher WT_W verdampft. Hierzu wird die Energie des Anodenabgases genutzt. Eine Untersuchung der Wärmebilanz ergab, dass keiner der beiden Abgasströme Brennstoff und Wasser gleichzeitig verdampfen kann.

Die Turbine im Kathodenabgasstrom T_K und die Turbine im Anodenabgasstrom T_A liefern die benötigte Leistung, um den Verdichter und die beiden Pumpen zu betreiben. Die Nettoleistung aus den Turbinen wird zur Erzeugung von Druckluft genutzt, welche in das Klimasystem eingespeist wird.

5.2 Stoff- und Energiebilanz des SOFC-Systems

Für eine Analyse der Bilanzen des Systems ist es notwendig, zunächst die Stoffbilanz des Systems aufzustellen. Mit den Ergebnissen der Stoffbilanz ist es möglich, eine Energiebilanz durchzuführen. Mit den Molaren Massen der an den Reaktionen im Reformer und in der Brennstoffzelle beteiligten Stoffe (**Tabelle 5.1**) kann eine Stoffbilanz des SOFC-Systems aufgestellt werden.

Tabelle 5.1 Chemische Stoffdaten (nach Steinmüller 1992, S.83)			
Stoff		Chemische Formel	Molare Masse kg/kmol
Kerosin		[C ₁₂ H ₂₄]	168,319
Stickstoff		N ₂	28,0134
Wasserstoff		H_2	2,0158
Sauerstoff		O_2	31,9988
Kohlendioxid		CO_2	44,0098
Kohlenmonoxid		CO	28,01
Wasser		H ₂ O	18,0152

WasserH2O18,0152Die Stoffdaten von Kerosin basieren auf der Auswertung von Inchcape 1994 und einer Ver-

Die Stoffdaten von Kerosin basieren auf der Auswertung von **Inchcape 1994** und einer Vergleichsstudie von **Goodger 1994**. Zu beachten ist, dass $C_{12}H_{24}$ ein Referenzstoff mit weitestgehend vergleichbaren Eigenschaften zum Stoffgemisch Kerosin ist.

5.2.1 Stoffbilanz des SOFC-Systems

Mit den Basisdaten der Molaren Masse werden die Reaktionsgleichungen der Einzelkomponenten aufgestellt.

Reformer

Die dem Dampfreformer zugeführten und von ihm abgegebenen Stoffe sind im **Bild 5.2** ersichtlich. Der Brennstoff und das Wasser werden dem Reformer in ihrer gasförmigen Phase zugeführt. In der Praxis wird der Dampfreformer mit einem Wasserüberschuss betrieben, um die Bildung von elementarem Kohlenstoff zu vermeiden (**Forschungsverbund 1999**). Dieser Überschuss an Wasser wird durch das Verhältnis von Wasserdampf zu Kohlenstoff $\frac{S}{C}(\frac{Steam}{Carbon})$ definiert.

Bild 5.2 Dampfreformer - zugeführte und abgegebene Stoffe

Unter Berücksichtigung des chemischen Gleichgewichts lässt sich die Stöchiometrie der Dampfreformierung allgemein aufstellen.

$$C_{12}H_{24} + 12 H_2O$$
 12 CO + 24 H₂ (5.1)

Unter Berücksichtigung des Verhältnisses von Wasserdampf zu Kohlenstoff $\frac{S}{C}$, das nach Überschlagsrechnungen in diesem Modell mit 1,05 angenommen wird, ergibt sich die folgende Gleichung.

$$C_{12}H_{24} + \frac{S}{C} 12 H_2O \qquad 12 CO + 24 H_2 + (\frac{S}{C} - 1) 12 H_2O$$

168,319 kg + 226,992 kg
$$336,12 kg + 48,379 kg + 10,809 kg \qquad (5.2)$$

Eine Kontrolle erfolgt über

Um für die Gesamtbilanz die Ergebnisse handlicher zu machen, werden alle Stoffe, wie in **Tabelle 5.2** dargestellt, auf ein Kilogramm Brennstoff bezogen. Die Berechnung erfolgt mit der **Formel 5.1**. So ergibt sich eine massenbezogene Größenbeziehung, welche einen schnelleren Überblick bei einer Variation der Eingangsgrößen erlaubt.

spezifische Masse:
$$\mathbf{m}_{x} = \frac{m_{x}}{m_{C_{12}H_{24}}}$$
 (5.3)

	opezilische Massen dei	Damphelonnierung	
	Stoff	Berechnung	spezifische Masse ì _i kg / kg
Zufuhr	Kerosin	$\frac{168,319kg}{168,319kg}$	1
	Wasser	$\frac{226,992kg}{168,319kg}$	1,349
Abgabe	Kohlenmonoxid	$\frac{336,12kg}{168,319kg}$	1,997
	Wasserstoff	$\frac{48,379kg}{168,319kg}$	0,287
	Wasser	$\frac{10,809kg}{168,319kg}$	0,064

Tabelle 5.2 Spezifische Massen der Dampfreformierung

Brennstoffzelle

Die Eingangsstoffe für die Brennstoffzelle ergeben sich aus den Ausgangsmassen der Dampfreformierung und den zugeführten Luftmassen in die Brennstoffzelle. Die zugeführte Luft ist Umgebungsluft und setzt sich wie in **Tabelle 5.3** dargestellt zusammen.

Tabelle 5.3Zusammensetzung trockener Luft (nach Steinmüller 1992, S. 82)

Stoff	Chemische Formel	Anteil in der Luft %
Stickstoff	N ₂	78,111
Sauerstoff	O ₂	20,938
Kohlendioxid	CO ₂	0,033
Argon	Ar	0,918

Der Anteil von Kohlendioxid und Argon ist im Verhältnis zu den anderen Bestandteilen der Luft sehr gering. Um eine Betrachtung der chemischen Reaktionen übersichtlicher darstellen zu können, wird hier eine Vereinfachung vorgenommen und eine Zusammensetzung trockener Luft mit einem Teil Sauerstoff und 3,76 Teilen Stickstoff angenommen.

Die Massenumsetzung in der Brennstoffzelle ist somit allgemein definiert:

$$H_2 + CO + (O_2 + 3,76 N_2)$$
 $H_2O + CO_2 + 3,76 N_2$ (5.4)

In heute existierenden Brennstoffzellen werden nur etwa 80 % bis 90 % des zugeführten Brennstoffes umgesetzt (**Winkler 1998**). Um die typische Neigung des Wasserstoffs zu einer unkontrollierten Mischbildung zu vermeiden (**Oertel 2001**), ist diese Restmenge noch zu verbrennen oder durch Mikrofilter aus dem Abgasstrom der Anode herauszufiltern und dem Brennstoffzellenprozess erneut zuzuführen. Das Verhältnis von umgesetztem Brenngas zu zu-

geführtem Brenngas wird als "fuel utilization" $U_{\rm f}$ definiert. Eine schematische Darstellung der zugeführten und abgegebenen Stoffe der SOFC-Brennstoffzelle ist in **Bild 5.3** dargestellt.

Bild 5.3 SOFC Brennstoffzelle - zugeführte und abgegebene Stoffe

Um ein Überhitzen der Brennstoffzelle durch die entstehende Wärme auszuschließen, wird diese mit einem Luftüberschuss \ddot{e} betrieben. Somit wird ein Teil der entstehenden Wärme über die Massenströme abtransportiert. Im nachfolgenden Abschnitt 5.2.2 (Energiebilanz des SOFC-Systems) ist eine Kontrolle und eventuelle Anpassung des Luftüberschusses vorzunehmen. Nach Überschlagsrechnungen wird ein Luftüberschuss von $\ddot{e} = 1,44$ angenommen. Ausgehend von einem Umsatzgrad von $U_{\rm f} = 0,9$ ist die Massenumsetzung in der Brennstoffzelle wie folgt:

$$H_{2} + \frac{1}{CO} + \ddot{e} \frac{3}{4}(O_{2} + 3,76 N_{2}) + (\frac{S}{C} - 1) H_{2}O$$

$$U_{f} H_{2}O + U_{f} \frac{1}{CO_{2}} + \ddot{e} \frac{3}{4}(3,76 N_{2}) + (\ddot{e} - 1) O_{2} + \frac{1}{2}(1 - U_{f}) O_{2} + (1 - U_{f}) H_{2}$$

$$+ \frac{1}{4}(1 - U_{f}) O_{2} + (1 - U_{f}) CO + (\frac{S}{C} - 1) H_{2}O$$
(5.5)

$$24 \text{ H}_2 + 12 \text{ CO} + 25,59 (O_2 + 3,76 \text{ N}_2) + 0,6 \text{ H}_2\text{O}$$

$$21,6 \text{ H}_2\text{O} + 10,8 \text{ CO}_2 + 97,46 \text{ N}_2 + 7,92 \text{ O}_2 + 1,2 \text{ O}_2 + 2,4 \text{ H}_2$$

$$+ 0,6 \text{ O}_2 + 1,2 \text{ CO} + 0,6 \text{ H}_2\text{O}$$

mit den Molaren Massen der einzelnen Stoffe

Zur Kontrolle muss die Differenz aus der Summe der Endprodukte abzüglich der Summe der Eingangsprodukte Null ergeben. (Ó Eingangsprodukte = 4597,6 kg = Ó Endprodukte)

In **Tabelle 5.4** wird der sich mit der **Formel 5.2** ergebende spezifische Massenbedarf der Brennstoffzelle auf ein Kilogramm Brennstoff dargestellt.

	Stoff	Berechnung	spezifische Masse ì _i kg / kg
Anada	Wassarstoff	48,379 <i>kg</i>	0.207
Anoue	Wassersion	168,319kg	0,207
	Kahlanmanavid	336,12 <i>kg</i>	1 007
Konlenmonoxid		168,319 <i>kg</i>	1,997
	Magaar	10,809 <i>kg</i>	0.064
wasser	Wassel	168,319 <i>kg</i>	0,004
Kathada	Squaratoff	829,41kg	4 029
Kathode	Sauersion	168,319kg	4,920
C+1	Stickstoff	2730,164 <i>kg</i>	16.00
	SUCKSION	168,319kg	10,22

 Tabelle 5.4
 Spezifischer Massenbedarf der Brennstoffzelle

Die spezifische Massenabgabe der Brennstoffzelle auf ein Kilogramm Brennstoff ergibt sich somit wie in **Tabelle 5.5** dargestellt

	Stoff	Berechnung	spezifische Masse ì _i kg / kg
Anode	Wasser	399,937kg	2 376
Anoue	Wa3361	168,319 <i>kg</i>	2,570
	Kohlendiovid	475,306kg	2 824
Konienaloxia	168,319 <i>kg</i>	2,024	
Kohlenmonoxid	33,612 <i>kg</i>	0.2	
	168,319 <i>kg</i>	0,2	
Wassarstoff	4,838kg	0 020	
	Wasserston	168,319 <i>kg</i>	0,020
Kathada	Kathode Stickstoff	2730,164 <i>kg</i>	16.22
Natitoue		168,319 <i>kg</i>	10,22
	Coursetatt	311,028 <i>kg</i>	1 9/9
Sauerstoll		168,319kg	1,040

 Tabelle 5.5
 Spezifische Massenabgabe der Brennstoffzelle

Zusammenfassung der Stoffströme für das Brennstoffzellensystem (Brennstoffzelle und Reformer)

Bei einem Kilogramm Brennstoffumsatz ergibt sich folgende Stoffmengenbilanz mit den Randbedingungen:

1.	Wasserüberschuss	$\frac{S}{C} = 1,05$
2.	Luftüberschuss	<i>ë</i> = 1,44
3.	Umsatzgrad	$U_{\rm f}{=}0,9$

zugeführte Mengen:

Wasser	= 1,349 kg
Luft	= 21,148 kg

abgegebene Mengen auf der Anodenseite:

Wasser	= 2,376 kg
Kohlendioxid	= 2,824 kg
Kohlenmonoxid	= 0,2 kg
Wasserstoff	= 0,029 kg

abgegebene Mengen auf der Kathodenseite:

Stickstoff	= 16,22 kg
Sauerstoff	= 1,848 kg

Mit diesen Parametern der Stoffbilanz des Brennstoffzellensystems ist es nun möglich, eine Energiebilanz des Systems zu erstellen.

5.2.2 Energiebilanz

Zur Aufstellung einer Energiebilanz des gesamten Brennstoffzellensystems ist es notwendig, zunächst eine Bilanzgrenze zu bestimmen. Diese beinhaltet den SOFC-Stack, den Entschwefelungsprozess und den Reformer. Wie im **Abschnitt 5.1** bereits ausgeführt, wird in den folgenden Berechnungen der Entschwefelungsprozess vernachlässigt. Das folgende **Bild 5.4** verdeutlicht die Systemgrenzen der Energiebilanz.

Bild 5.4 Bilanzgrenze im SOFC-System

Für eine Aufstellung der Energiebilanz muss zunächst eine Berechnung der Eingangstemperaturen in das gewählte System erfolgen und die austretenden Temperaturen sind festzulegen. Die Betriebstemperatur der Brennstoffzelle beträgt 900 °C. Damit wird festgelegt, dass die Kathodenabgastemperatur t_4 und die Anodenabgastemperatur t_{12} ebenfalls eine Temperatur von 900 °C besitzen. Die Berechnung der Temperatur t_3 des zugeführten Luftstromes auf der Kathodenseite der Brennstoffzelle erfolgt über den Verdichter V_{Lu} und den Wärmetauscher WT_{Lu}. Die Temperatur t_2 nach dem Verdichter ist abhängig vom Verdichterverhältnis $\delta = p_2/p_1$, dem Isentropenwirkungsgrad c_V und dem Isentropenexponenten ê des Verdichters. Der Isentropenwirkungsgrad des Verdichters c_V wird hier mit 84 % und der Isentropenewirkungsgrad der Turbine c_T mit 86 % angenommen (**Hakenesch 2002**). Der Isentropenexponent ê setzt sich zusammen aus der spezifischen Wärmekapazität c_p und der Gaskonstante R.

$$\boldsymbol{k} = \frac{c_p}{c_p - R} \tag{5.6}$$

Da die spezifische Wärmekapazität wiederum von der Temperatur abhängig ist, ist es hier notwenig, eine Iterationsschleife in einem Kalkulationsprogramm anzusetzen. Dieses wird am Beispiel des Verdichters ausführlich verdeutlicht. Nach diesem Prinzip werden auch die Turbinenaustrittstemperaturen t_7 und t_{13} berechnet.

Exkurs: Erläuternde Darstellung der Temperaturberechnungen

Ausgehend von $t_1 = 25$ °C lässt sich die Wärme des Luftstromes nach dem Verdichter wie folgt berechnen:

$$t_2 = (t_1 + 273, 15K)(1 + \frac{1}{\mathbf{h}_V} \cdot ((\frac{p_2}{p_1})^{\frac{x-1}{x}} - 1)) - 273, 15K$$
(5.7)

$$\mathbf{k} = \frac{c_{p}(t_{2})}{c_{p}(t_{2}) - 0,278 \frac{kJ}{kg \cdot K}}$$
(5.8)

Luft ist ein Stoffgemisch, daher muss der partielle Anteil der Einzelstoffe berücksichtigt werden. Luft wird mit Anteilen von 22 % Sauerstoff und 78 % Stickstoff angenommen.

$$c_p(t_2) = 0,22 \cdot c_{pO_2}(t_2) + 0,78 \cdot c_{pN_2}(t_2)$$
(5.9)

Ausgehend von einem Druckverhältnis

$$\boldsymbol{p} = \frac{p_2}{p_1} = \frac{4bar}{1bar} = 4 \tag{5.10}$$

und einer ersten Abschätzung der Temperatur $t_2 = 200$ °C ergibt sich eine Wärmekapazität nach **Formel 5.9** von

$$c_{p}(200^{\circ}C) = 0,22 \cdot 0,93545 \frac{kJ}{kg \cdot K} + 0,78 \cdot 1,04344 \frac{kJ}{kg \cdot K}$$
$$c_{p}(200^{\circ}C) = 1,01968 \frac{kJ}{kg \cdot K}$$

nach Formel 5.8 errechnet sich

$$\boldsymbol{k} = \frac{1,01968 \frac{kJ}{kg \cdot K}}{1,01968 \frac{kJ}{kg \cdot K} - 0,278 \frac{kJ}{kg \cdot K}}$$
$$\boldsymbol{k} = 1,39171$$

Mit der Formel 5.7 ergibt sich eine Temperatur

$$t_{2} = (25^{\circ}C + 273, 15K)(1 + \frac{1}{0,84} \cdot ((\frac{4bar}{1bar})^{\frac{1,39171-1}{1,39171}} - 1)) - 273, 15K$$

$$t_{2} = 194,398^{\circ}C$$

Daraus ergibt sich eine neue Temperaturdifferenz

nach 5.9

$$c_{p}(194,398^{\circ}C) = 0,22 \cdot 0,93468 \frac{kJ}{kg \cdot K} + 0,78 \cdot 1,04321 \frac{kJ}{kg \cdot K}$$
$$c_{p}(194,398^{\circ}C) = 1,01933 \frac{kJ}{kg \cdot K}$$

nach 5.8

$$\boldsymbol{k} = \frac{1,01933 \frac{kJ}{kg \cdot K}}{1,01933 \frac{kJ}{kg \cdot K} - 0,278 \frac{kJ}{kg \cdot K}}$$
$$\boldsymbol{k} = 1,3919$$

Die neue Temperatur am Austritt des Verdichters errechnet sich mit der Gleichung 5.7 zu

$$t_{2} = (25^{\circ}C + 273, 15K)(1 + \frac{1}{0,84} \cdot ((\frac{4bar}{1bar})^{\frac{1,3919-1}{1,3919}} - 1)) - 273, 15K$$

$$t_{2} = 194, 46^{\circ}C$$

Da die berechnete Temperaturdifferenz schon sehr gering ist, wird hier auf weitere Iterationsschritte verzichtet.

Im Wärmetauscher WT_{Lu} wird die Temperatur des zugeführten Luftstromes durch den heißen Kathodenabgasstrom erhitzt. Das bringt die Vorteile, dass erstens die Temperatur des zugeführten Luftstroms t_3 weiter an die Arbeitstemperatur der Brennstoffzelle angepasst (Problem: Zellkeramik Wärmespannung) und zweitens der Kathodenabgasstrom abgekühlt wird. Dieser wird dann für die Kühlung des Brennstoffzellenstacks genutzt.

Die Temperaturerhöhung der zugeführten Luft im Wärmetauscher WT_{Lu} ist abhängig vom Wärmestrom des Abgases von der Kathode. Da die Temperaturendifferenz zwischen t_3 und t_5 vom Wirkungsgrad des Wärmetauschers bestimmt wird, wird in einer ersten Näherung angenommen, dass die Temperatur t_3 um 30 K geringer ist als die Temperatur t_5 . Dieser Wert wird von der Airbus-Abteilung **Water/Waste (ECYS3)** übernommen und basiert auf einer Abschätzung mit Gegenstromwärmetauschern.

$$t_3 = t_5 - (30K) \tag{5.11}$$

Die Wärme, die benötigt wird, um den zugeführten Luftstrom auf die Temperatur t_3 zu bringen, errechnet sich aus:

$$Q_{23} = \mathbf{m}_{N_2} \cdot (h^{*t_5 - 30K} - h^{*t_2})_{N_2} + \mathbf{m}_{D_2} \cdot (h^{*t_3 - 30K} - h^{*t_2})_{D_2}$$

$$Q_{23} = 15,544 \frac{kg}{kg} \cdot (h^{*t_3 - 30K} - 176 \frac{kJ}{kg}) + 4,722 \frac{kg}{kg} \cdot (h^{*t_3 - 30K} - 158 \frac{kJ}{kg})$$
(5.12)

Die abgegebene Wärme des Kathodenstroms aus:

$$Q_{45} = \mathbf{m}_{N_2} \cdot (h^{*t_5} - h^{*t_4})_{N_2} + \mathbf{m}_{O_2} \cdot (h^{*t_5} - h^{*t_4})_{O_2}$$

$$Q_{23} = 15,544 \frac{kg}{kg} \cdot (h^{*t_5} - 971 \frac{kJ}{kg}) + 1,643 \frac{kg}{kg} \cdot (h^{*t_5} - 900 \frac{kJ}{kg})$$
(5.13)

 h^* ist die Enthalpieänderung bezogen auf 25 °C, um die Enthalpien verschiedener Stoffe und den unteren Heizwert H_U (welcher immer auf 25°C bezogen ist) auf einen gleichen Bezugspunkt zu bringen.

In Reich 1993 (S. 73) wird dazu formuliert:

In der Thermodynamik ist es zweckmäßiger, den Nullpunkt der Enthalpieskala auf diejenige Temperatur festzulegen, bei der man am bequemsten experimentieren kann, nämlich 25 °C, entsprechend 298,15 K (Normaltemperatur). Daher schreibt man der Materie im Zustand der reinen, stabilen Elemente bei Standarddruck und Normaltemperatur die Enthalpie null zu.

Die gesuchten Ausgangstemperaturen aus dem Wärmetauscher WT_{LU} stehen im direkten Zusammenhang mit den Enthalpieänderungen. Hier ist es wieder von Vorteil, eine Iterationsschleife in einem Kalkulationsprogramm anzusetzen. Aus den beiden **Gleichungen 5.12** und **5.13** lässt sich somit die Temperatur $t_3 = 520$ °C für die Energiebilanz ermitteln. Die Temperatur t_5 beträgt 550°C. Die Berechnung der Temperatur t_{11} des zugeführten Wassers und Brennstoffes auf der Anodenseite der Brennstoffzelle erfolgt über die Pumpen P_W und P_{BS} und die Wärmetauscher WT_W und WT_{BS}. Die Brennstoffpumpe und die Wasserpumpe liefern den geforderten Massenstrom und den vorgegebenen Betriebsdruck. Bei diesem Modell wird eine beidseitige Druckbeaufschlagung untersucht, so dass ein Druck von 4 bar nach den Pumpen P_W und P_{BS} vorliegt. Die Temperaturerhöhung in den Pumpen durch die Druckänderung wird vernachlässigt, da diese nur sehr gering ist im Verhältnis zu den Temperaturänderungen im Wärmetauscher und im Reformer. Damit wird definiert, dass die Temperatur t_9 ungefähr der Temperatur t_{10} entspricht.

Ausgehend von einer Temperatur $t_{10} = 25$ °C lässt sich die benötigte Wärmemenge bestimmen, um den Brennstoff im Wärmetauscher WT_{BS} und das Wasser im Wärmetauscher WT_w zu erwärmen und zu verdampfen. Kerosin ist ein Stoffgemisch, das einen Siedebereich zwischen 160 °C und 210 °C besitzt (**Inchcape 1994**). Um sicherzustellen, dass der zugeführte Brennstoff zu 100 % verdampft ist, werden die Temperaturen t_{11} des Brennstoffes und des Wassers mit mindestens 220 °C veranschlagt.

Ausgehend von diesen Parametern kann die Enthalpieänderung beider Stoffe kalkuliert werden. Mit der **Tabelle A.12** "*Thermodynamische Eigenschaften von Mikromolekülen*" lässt sich die Enthalpieänderung von Kerosin ermitteln.

$$h_{BS,Gas}^{*220^{\circ}C} = h^{220^{\circ}C} - h^{25^{\circ}C} = 171785 \frac{J}{mol} - 90236 \frac{J}{mol} = 91549 \frac{J}{mol}$$
(5.14)

$$h_{BS,Gas}^{*220^{\circ}C} = 485 \frac{kJ}{kg}$$
(5.14)

$$h_{Verdampfung} = H_o - H_U = 45550 \frac{MJ}{kg} - 43400 \frac{MJ}{kg}$$
(5.15)

$$h_{Verdampfung} = 2150 \frac{kJ}{kg}$$
(5.15)

Mit der Wasser und Dampftafel aus **Steinmüller 1992** (S.21) wird die Enthalpie bestimmt. Die Verdampfungswärme $h_{\text{Verdampfung}}$ von Wasser beträgt $2260 \frac{kJ}{kg}$.

$$h_{H_2O}^{*220^{\circ}C} = h_{Verdampfung} + h^{*} + h^{**}$$

$$h_{H_2O}^{*220^{\circ}C} = 2915 \frac{kJ}{kg}$$
(5.16)

Hier ist zu berücksichtigen, dass die Enthalpieänderung auch eine Funktion des Druckes ist. In diesem Modell wird dieser Einfluss nicht mit berücksichtigt, da diese Stoffdaten des Kerosins nicht verfügbar sind. Prinzipiell ist zu sagen, dass dieser Einfluss im Verhältnis zum Temperatureinfluss minimal ist, jedoch nimmt der relative Fehler mit steigendem Druck zu.

Um zu kontrollieren, ob die Wärmemenge des Anodenabgases nach der Turbine T_A ausreicht, die Temperaturen t_{11} des Brennstoffs und des Wassers auf 220 °C zu erhitzen, wird die Temperatur t_{13} ermittelt. Diese Temperatur lässt sich mit der folgenden **Formel 5.17** für Turbinen errechnen.

$$t_{13} = (t_{12} + 273, 15K)(1 - \boldsymbol{h}_T \cdot (1 - (\frac{p_1}{p_2})^{\frac{x-1}{x}})) - 273, 15K$$
(5.17)

Der Isentropenexponent \hat{e} ist von der spezifischen Wärmekapazität c_p abhängig, welche ihrerseits von der Temperatur bestimmt wird (**Formel 5.8**).

$$\mathbf{k} = \frac{c_p(t_4)}{c_p(t_4) - 0,278 \frac{kJ}{kg \cdot K}}$$

Mit einem Druckverhältnis (Formel 5.10)

$$\boldsymbol{p} = \frac{p_1}{p_2} = \frac{1bar}{4bar} = \frac{1}{4}$$

und der Annahme der Temperatur t_{13} erfolgt hier ebenso, wie bei der Verdichtung ausführlich erklärt, eine Iteration. Hierbei ist zu beachten, dass die partiellen Anteile der Stoffe berücksichtigt werden: $\mathbf{m}_{H_2O} = 2,376 \frac{kg}{kg}, \mathbf{m}_{CO_2} = 2,824 \frac{kg}{kg}, \mathbf{m}_{CO} = 0,2 \frac{kg}{kg}, \mathbf{m}_{H_2} = 0,029 \frac{kg}{kg}$

$$c_{p}(t) = \sum \frac{\mathbf{m}}{\mathbf{m}_{ges}} \cdot c_{pi}(t)$$
(5.18)

Mit einer Iterationsschleife ergibt sich eine Temperatur von $t_{13} = 672$ °C.

Im Wärmetauscher WT_W wird dem Anodenabgasstrom die entsprechende Energie entzogen, um das zugeführte Wasser zu verdampfen und auf 220 °C zu erwärmen. Wie zuvor errechnet, wird eine Enthalpieänderung von $h_{wasser}^{*220^{\circ}C} = 2915$ kJ/kg benötigt.

Mit der spezifischen Masse von Wasser $\mathbf{m}_{H_2O} = 1,349 \frac{kg}{kg}$ ergibt sich eine Wärmemenge von

$$Q_{Wasser10,11} = 3931 \frac{kJ}{kg}$$

Diese wird dem Anodenabgasstrom entzogen.

$$Q_{13,14} = \mathbf{m}_{H_2O} \cdot (h^{*t_{13}} - h^{*t_{12}})_{H_2O} + \mathbf{m}_{CO_2} \cdot (h^{*t_{13}} - h^{*t_{12}})_{CO_2} + \mathbf{m}_{H_2} \cdot (h^{*t_{13}} - h^{*t_{12}})_{H_2} + \mathbf{m}_{CO} \cdot (h^{*t_{13}} - h^{*t_{12}})_{CO} = 2,376 \frac{kg}{kg} \cdot (h^{*t_{13}} - 1850 \frac{kJ}{kg}) + 2,824 \frac{kg}{kg} \cdot (h^{*t_{13}} - 976 \frac{kJ}{kg}) + (5.19) = 0,029 \frac{kg}{kg} \cdot (h^{*t_{13}} - 12875 \frac{kJ}{kg}) + 0,2 \frac{kg}{kg} \cdot (h^{*t_{13}} - 982 \frac{kJ}{kg})$$

Mit einer Iterationsschleife im Kalkulationsprogramm *Kaskade 01* (**Lorenz 2002**) ergibt sich eine Temperatur von $t_{14} = 227$ °C. Ein Vergleich mit der gewählten Temperatur $t_{11} = 220$ °C zeigt, dass die Wärmeenergie im Anodenabgasstrom ausreicht, um diese Bedingung zu erfüllen.

Für eine Kontrolle, ob die Wärmemenge des Kathodenabgases nach der Turbine T_K ausreicht, um den Brennstoff im Wärmetauscher WT_{BS} zu verdampfen und auf $t_{11} = 220$ °C zu bringen, ist die abgegebene Wärme Q_{BZ} der Brennstoffzelle zu bestimmen.

Mit den ermittelten Temperaturen kann jetzt eine Energiebilanz um die Brennstoffzelle ohne Turbine gezogen werden. Bilanzen um ein System müssen immer im Gleichgewicht stehen, d.h. die Summe der Energie der Eingangsstoffe muss gleich der Summe der Energie der Ausgangsstoffe sein.

Für die gewählte Bilanzgrenze, wie sie im **Bild 5.4** des Gesamtsystems dargestellt wurde, zeigt das **Bild 5.5** eine zusammengefasste und vereinfachte Stoff- und Energiebilanz des SOFC-Systems.

Bild 5.5 Zusammengefasste Stoff- und Energiebilanz

Eingangsparameter:	- Brennstoff mit einer Temperatur $t_{11} = 220 \text{ °C}$
	- Luft mit einer Temperatur $t_3 = 520 \ ^{\circ}\text{C}$
	- Wasser mit einer Temperatur $t_{11} = 220$ °C

Ausgangsparameter: Die Ausgangsprodukte Wasser, Kohlendioxid, Kohlenmonoxid, Stickstoff und Sauerstoff verlassen das System mit einer Temperatur $t_{4,12} = 900$ °C.

Mit diesen bekannten Größen ergibt sich die Energiebilanz des Systems wie folgt:

 \sum zugeführteEnergien = \sum abgegebeneEnergien

$$\boldsymbol{m}_{BS} \cdot (\boldsymbol{H}_{U_{BS}} + \boldsymbol{h}_{BS}^{*220^{\circ}C}) + (\boldsymbol{m}_{O_2} \cdot \boldsymbol{h}_{O_2}^{*520^{\circ}C} + \boldsymbol{m}_{N_2} \cdot \boldsymbol{h}_{N_2}^{*520^{\circ}C})_{Luft} + \boldsymbol{m}_{H_2O} \cdot \boldsymbol{h}_{H_2O}^{*220^{\circ}C} = \boldsymbol{m}_{H_2O} \cdot \boldsymbol{h}_{H_2O}^{*900^{\circ}C} + \boldsymbol{m}_{CO_2} \cdot \boldsymbol{h}_{CO_2}^{*900^{\circ}C} + \boldsymbol{m}_{CO} \cdot \boldsymbol{h}_{CO}^{*900^{\circ}C} + \boldsymbol{m}_{H_2} \cdot \boldsymbol{h}_{H_2}^{*900^{\circ}C} + \boldsymbol{m}_{N_2} \cdot \boldsymbol{h}_{N_2}^{*900^{\circ}C} + \boldsymbol{m}_{O_2} \cdot \boldsymbol{h}_{O_2}^{*900^{\circ}C} + \boldsymbol{P} + \boldsymbol{Q}$$

$$(5.20)$$

Daraus folgt

$$\begin{split} P_{el} + Q_{BZ} &= 1\frac{kg}{kg}(43400\frac{kJ}{kg} + 2635\frac{kJ}{kg}) + 4,928\frac{kg}{kg} \cdot 487\frac{kJ}{kg} + 16,22\frac{kg}{kg} \cdot 529\frac{kJ}{kg} + 1,349\frac{kg}{kg} \cdot 2915\frac{kJ}{kg} \\ &- (2,376\frac{kg}{kg} \cdot 4110\frac{kJ}{kg} + 2,824\frac{kg}{kg} \cdot 976\frac{kJ}{kg} + 0,2\frac{kg}{kg} \cdot 982\frac{kJ}{kg} + 0,029\frac{kg}{kg} \cdot 12875\frac{kJ}{kg} \\ &+ 16,22\frac{kg}{kg} \cdot 971,1\frac{kJ}{kg} + 1,848\frac{kg}{kg} \cdot 900\frac{kJ}{kg}) \end{split}$$

Die elektrische Leistung der Systeme ist abhängig vom Wirkungsgrad der Brennstoffzelle c_{BZ} , dem spezifischen Massendurchsatz i_{BS} und dem Heizwert des Brennstoffes H_U . Beim Einsatz von Kerosin wird ein Wirkungsgrad $c_{BZ} = 55$ % der Brennstoffzelle angenommen. Bei einem Betrieb mit reinem Wasserstoff könnte dieser auch höher liegen (**Winkler 1998**).

Es ergibt sich eine elektrische Leistung P_{el} von

$$P_{el} = \mathbf{h}_{BZ} \cdot \mathbf{m}_{BS} \cdot H_{U}$$
(5.21)

$$P_{el} = 0,55 \cdot 1 \frac{kg}{kg} \cdot 43400 \frac{kJ}{kg}$$

$$P_{el} = 23870 \frac{kJ}{kg}$$

$$= 23,87 \frac{MJ}{kg}$$
[1MJ = 0,278 kWh]

$$P_{el} = 6,6359 \frac{kWh}{kg}$$

Mit der zuvor ausgerechneten Systembilanz kann die abgegebene Wärme der Brennstoffzelle wie folgt ermittelt werden:

$$Q_{BZ} = 31145 \frac{kJ}{kg} - P$$
$$= 31145 \frac{kJ}{kg} - 23870 \frac{kJ}{kg}$$
$$Q_{BZ} = 7275 \frac{kJ}{kg}$$
$$= 7,275 \frac{MJ}{kg}$$
$$Q_{BZ} = 2,02 \frac{kWh}{kg}$$

Das bedeutet, dass bei einem eingestelltem Wasserüberschuss von $\frac{S}{C} = 1,05$ und einem Luftüberschuss $\ddot{e} = 1,44$ eine Wärmemenge von 2,02 kW von der Brennstoffzelle abgeführt werden muss. Aus diesem Wert ergibt sich eine Aufteilung der Gesamtenergie zu 55 % elektrischer Energie, 17 % thermischer Energie in Form von Wärmeabgabe an die Umgebung und 28 % sind in Form von Wärme im Gasstrom enthalten.

Eine Kontrolle erfolgt über die Bestimmung der Wärmeenergie im Abgasstrom Q_{Abgas} , welche 28 % von der Gesamtenergie $H_U = 43400 \frac{kJ}{kg}$ betragen muss.

$$Q_{Abgas} = H_{U} - (\mathbf{m}_{H_{2}O} \cdot h_{H_{2}O}^{*900^{\circ}C} + \mathbf{m}_{CO_{2}} \cdot h_{CO_{2}}^{*900^{\circ}C} + \mathbf{m}_{CO} \cdot h_{CO}^{*900^{\circ}C} + \mathbf{m}_{H_{2}} \cdot h_{H_{2}}^{*900^{\circ}C} + \mathbf{m}_{N_{2}} \cdot h_{N_{2}}^{*900^{\circ}C} + \mathbf{m}_{O_{2}} \cdot h_{O_{2}}^{*900^{\circ}C})$$
(5.22)

$$\begin{aligned} Q_{Abgas} &= 43400 \frac{kJ}{kg} - (2,376 \frac{kg}{kg} \cdot 4110 \frac{kJ}{kg} + 2,824 \frac{kg}{kg} \cdot 976 \frac{kJ}{kg} + 0,2 \frac{kg}{kg} \cdot 982 \frac{kJ}{kg} \\ &+ 0,029 \frac{kg}{kg} \cdot 12875 \frac{kJ}{kg} + 16,22 \frac{kg}{kg} \cdot 971,1 \frac{kJ}{kg} + 1,848 \frac{kg}{kg} \cdot 900 \frac{kJ}{kg}) \\ \underline{Q_{Abgas}} &= 12154 \frac{kJ}{kg} \end{aligned}$$

Dieses Ergebnis bestätigt die Definition von 28 % Wärmeenergie im Abgasstrom.

Die Wärmemenge, welche von der Brennstoffzelle über den Wärmetauscher WT_{BZ} an den Kathodenabgasstrom abgegeben wird, beträgt $Q_{BZ} = 7275 \frac{kJ}{kg}$. Mit diesem Ergebnis ist es jetzt möglich zu überprüfen, ob die zur Verdampfung des Brennstoffes benötigte Wärme im Wärmetauscher WT_{BS} zur Verfügung steht.

Die Temperatur t_6 ergibt sich aus der Wärmeabgabe der Brennstoffzelle Q_{BZ} und der Temperatur des Kathodenabgasstroms $t_5 = 550$ °C, welche sich aus den Berechnungen des Wärmetauschers WT_{LU} der zugeführten Luft ergab.

$$Q_{BZ} = 7275 \frac{kJ}{kg} = \mathbf{m}_{N_2} \cdot (h^{*t_6} - h^{*t_5}) + \mathbf{m}_{D_2} \cdot (h^{*t_6} - h^{*t_5})$$

$$= 16,22 \frac{kg}{kg} \cdot (h^{*t_6} - 562 \frac{kJ}{kg}) + 1,848 \frac{kg}{kg} \cdot (h^{*t_6} - 518 \frac{kJ}{kg})$$
(5.23)

Durch eine Iteration mit dem Programm *Kaskade 01* (**Lorenz 2002**) ergibt sich eine Temperatur nach dem Wärmetauscher WT_{BZ} von

$$t_6 = 897 \ ^{\circ}\text{C}.$$

Diese Temperatur t_6 bestätigt eine korrekte Annahme des Luftüberschuss von $\ddot{e} = 1,44$. Bei einem geringeren Luftüberschuss \ddot{e} würde sich eine höhere Temperatur t_6 einstellen. Dies ist technisch nicht möglich (t_6 Betriebste mperatur der Brennstoffzelle) und hätte zur Folge, dass die Brennstoffzelle nicht mehr ausreichend gekühlt wird.

Ausgehend von der Temperatur $t_6 = 897$ °C als Eingangstemperatur in die Turbine T_K lässt sich mit der **Formel (5.17)** die Turbinenaustrittstemperatur t_7 bestimmen. Zu berücksichtigen sind hier die spezifischen Massen $\boldsymbol{m}_{N_2} = 16,22\frac{kg}{kg}$ und $\boldsymbol{m}_{D_2} = 1,848\frac{kg}{kg}$ bei der Berechnung der spezifischen Wärmekapazität mit der **Formel (5.18)**.

Nach einer Iteration beträgt die Turbinenaustrittstemperatur $t_7 = 584$ °C.

Im Wärmetauscher WT₂ wird dem Kathodenabgasstrom die entsprechende Energie entzogen, um den zugeführten Brennstoff zu verdampfen und auf 220 °C zu erwärmen. Wie zuvor ausgerechnet, wird eine Wärmemenge von $h_{Bs}^{*20^{\circ}C}$ von 2635 kJ/kg benötigt.

$$Q_{BS,220^{\circ}C} = 2635 \frac{kJ}{kg} = \mathbf{m}_{N_{2}} \cdot (h^{*t_{8}} - h^{*t_{7}})_{N_{2}} + \mathbf{m}_{O_{2}} \cdot (h^{*t_{8}} - h^{*t_{7}})_{O_{2}}$$

$$= 16,22 \frac{kg}{kg} \cdot (h^{*t_{6}} - 601 \frac{kJ}{kg}) + 1,848 \frac{kg}{kg} \cdot (h^{*t_{6}} - 555 \frac{kJ}{kg})$$
(5.24)

Mit einer Iteration ergibt sich eine Temperatur nach dem Wärmetauscher WT_{BS} von

$$t_8 = 453 \ ^{\circ}\text{C}.$$

Dieses Temperaturniveau von $t_8 = 453$ °C zeigt, dass auch der Kathodenabgasstrom genügend Energie besitzt, um den Brennstoff im Wärmetauscher WT_{BS} auf die Temperatur $t_{11} = 220$ °C zu erhitzen.

Die Nettoleistung der Turbinen nimmt Einfluss auf eine Gesamtbilanz, daher muss diese zusätzlich ermittelt werden.

$$P_{Netto} = P_{T1} + P_{T2} - P_V - P_{P,BS} - P_{P,H_2O}$$
(5.25)

Daraus ergibt sich eine überschüssige Leistung, die bei diesem Systemaufbau für die Bereitstellung von Druckluft zur Unterstützung der Klimaanlage genutzt wird. Üblicherweise kann diese Leistung zur Gewinnung von elektrischer Energie genutzt werden.

Mit der abgegebenen elektrischen Leistung von P = 23870 kJ/kg wird die Kontrolle der Energiebilanz des Gesamtsystems aufgestellt.

zugeführte Energie = abgeführte Energie. Hier muss gelten:

$$\boldsymbol{m}_{BS} \cdot (\boldsymbol{H}_{U_{BS}} + \boldsymbol{h}_{BS}^{*25^{\circ}C}) + \boldsymbol{m}_{N_{2}} \cdot \boldsymbol{h}_{N_{2}}^{*25^{\circ}C} + \boldsymbol{m}_{O_{2}} \cdot \boldsymbol{h}_{O_{2}}^{*25^{\circ}C} + \boldsymbol{m}_{H_{2}O} \cdot \boldsymbol{h}_{H_{2}O}^{*25^{\circ}C} =$$

$$\boldsymbol{m}_{N_{2}} \cdot \boldsymbol{h}_{N_{2}}^{*891^{\circ}C} + \boldsymbol{m}_{O_{2}} \cdot \boldsymbol{h}_{O_{2}}^{*891^{\circ}C} + \boldsymbol{m}_{H_{2}O} \cdot \boldsymbol{h}_{H_{2}O}^{*291^{\circ}C} + \boldsymbol{m}_{CO_{2}} \cdot \boldsymbol{h}_{CO_{2}}^{*291^{\circ}C} + \boldsymbol{m}_{H_{2}} \cdot \boldsymbol{h}_{H_{2}}^{*291^{\circ}C} + \boldsymbol{P}_{el} + \boldsymbol{P}_{Netto}$$
(5.26)

Da alle Formeln direkt voneinander abhängig sind, wurde eine Verknüpfung dieser Formeln im SOFC_{sys}-Programm vorgenommen. Damit ist es möglich, den Parameter Luftüberschuss *ë* so zu variieren, dass die Temperatur t₆ nach dem Wärmetauscher WT_{BZ} an die Arbeitstemperatur der Brennstoffzelle angepasst werden kann. Eine Erklärung des SOFC_{sys}-Programms ist im Anhang B zu finden.

Ergebnisdarstellung des SOFC-Systems

Bei vorgegebenem elektrischen Wirkungsgrad der Brennstoffzelle von $c_{el} = 55$ % und einem Umsatzgrad von 90 % (Winkler 1998) ergibt sich ein minimaler Luftüberschuss von $\ddot{e} = 1,44$. Durch eine Änderung des zugeführten Luftstroms würden sich neue Temperaturen am Systemausgang einstellen.

Die in Tabelle 5.6 dargestellten spezifischen Kenndaten ergeben sich für das Brennstoffzellensystem bezogen auf ein Kilowatt elektrische Energie pro Stunde

1 abelle 5.6	Kenndaten für das Brennstoffze	ellensystem bezogen auf 1 kwn elektrische Energie
	Stoff	Masse kg/h
Bedarf an	Brennstoff Luft Wasser	0,151 3,187 0,203
Abgabe von	Wasser Kohlendioxid Kohlenmonoxid Wasserstoff Stickstoff Sauerstoff	0,358 0,426 0,2 0,004 2,444 0,278

- · · · - ~ 1.7 *...*

6 Betriebskostenrechnungen

Zur Kostenabschätzung gibt es verschiedene Berechnungsmodelle, die sich zunächst einmal darin unterscheiden, ob sie aus Herstellersicht oder aus Betreibersicht erstellt werden. Für den Hersteller sind hauptsächlich die Kosten aus Entwicklung und Produktion von Interesse. Da in diesem Projekt die Wirtschaftlichkeit des Brennstoffzellengetriebenen Wassergenerierungssystems im Vergleich zu herkömmlichen Wassersystemen untersucht wird, ist an dieser Stelle die Betrachtung aus Sicht des Flugzeugbetreibers entscheidend.

6.1 Kostenbetrachtung aus Sicht des Flugzeugbetreibers

Mit der Leistungserstellung eines Unternehmens sind Kosten (sog. Betriebskosten) verbunden, die nach bestimmten Kriterien unterteilt werden. Nach **Mildt 2000** wurden durch die International Civil Aviation Organisation (ICAO) und das Civil Aeronautics Board (CAB) verschiedene empfehlende Vorgaben für die Strukturierung der Betriebskosten im Rechnungswesen einer Fluggesellschaft aufgestellt.

Struktur des Rechnungswesens einer Fluggesellschaft (nach Mildt 2000)

Wie im **Bild 6.1** ersichtlich ist, unterteilt sich das Rechnungswesen einer Fluggesellschaft in verschiedene Bereiche. In dieser Ausarbeitung ist ausschließlich der betriebliche Zweig des Rechnungswesens von Bedeutung, also der Teil der Kosten, der durch die Erfüllung der eigentlichen betrieblichen Tätigkeit verursacht wird. Der Begriff der *Betriebskosten* wird nach **Schmolke 2000** (S. 350) wie folgt definiert:

Die Betriebskosten stehen in unmittelbarem Zusammenhang mit dem eigentlichen Betriebszweck. Sie erfassen den Verzehr an Gütern, Diensten und Abgaben, der im Rahmen der geplanten betrieblichen Leistungserstellung (Produktion) und Leistungsverwertung (Absatz) anfällt.

In einem wirtschaftlichen Unternehmen müssen die Betriebskosten durch die Betriebsumsätze gedeckt werden. Da das Betriebsergebnis aus der Differenz von Umsätzen und Kosten ermittelt wird, ist es ökonomisch zwingend, die Betriebskosten so gering wie möglich zu halten.

Grundsätzlich werden die Betriebskosten in direkte und in indirekte unterteilt. Folgende Definitionen können dafür gegeben werden:

DOC (direct operating costs):	Kosten, die unmittelbar mit dem Betrieb eines Fluggerätes in Verbindung stehen. Sie sind einem Kostenverursacher direkt zugeordnet.
IOC (indirect operating costs):	Kosten, die nicht unmittelbar einem Verbraucher zugeord- net sind und unabhängig vom verwendeten Flugzeugtyp sind.
TOC (total operating costs):	Summe aus DOC und IOC

Zudem erfolgt eine Unterteilung der direkten Betriebskosten in variable und fixe Anteile. Während die variablen Kosten direkt von der Anzahl und Dauer der jährlich absolvierten Flüge abhängen, entstehen die Fixkosten unabhängig von diesen Betriebsdaten permanent.

Für die in **Abschnitt 7** ausführlich dargestellte Betriebskostenberechnung werden nur die Kostenelemente der DOC berücksichtigt, die im direkten Zusammenhang mit dem Betrieb der Wassersysteme stehen.

6.2 Methoden zur Ermittlung der direkten Betriebskosten

Für eine Abschätzung der Betriebskosten wurden unterschiedliche Betriebskostenmodelle (sog. DOC-Methoden) entwickelt. Sie geben je nach Genauigkeit und Detaillierungsgrad Auskunft über entstehende Kosten durch den Betrieb von Flugzeugen und helfen damit, den Betrieb eines bestimmten Flugzeugmusters oder –systems nach finanziellen Aspekten zu beurteilen. Die Darstellung dieser Ergebnisse kann in unterschiedlicher Weise erfasst werden. Sie erfolgt z.B. in Bezug auf Sitzplätze, Nutzlast, Flugstrecke, Flugzeit, Blockstunde, etc.. Die verschiedenen DOC-Methoden wurden durch Flugzeughersteller, Flugzeugbetreiber und Vereinigungen entwickelt. Die bekanntesten werden nachfolgend kurz aufgeführt:

Air Transport Association of America (ATA 1967):

- Erste komplexe DOC-Rechnung.
- Zinsen, Kosten Besatzung Kabine und Gebühren werden nicht berücksichtigt.
- Die Methode ist heute veraltet, da sie die aktuellen Verhältnisse der einzelnen Kostenelemente zueinander nicht mehr richtig wiedergibt.

American Airlines (AA 1980):

- Die Methode basiert auf Studien im Auftrag der NASA.
- Sie beinhaltet die umfangreichsten Recherchen und Gleichungen zur Ermittlung der Wartungskosten einzelner ATA-Chapter.
- Abschreibung auf Ersatzteile und Zinsen werden nicht berücksichtigt.

Lufthansa (DLH 1982):

- Berücksichtigt erstmalig das Einnahmepotential durch den Transport von Fracht.
- Die Methode wurde kontinuierlich weiterentwickelt, ist sehr komplex, jedoch nur im Rahmen des Unternehmens anwendbar.

Association of European Airlines (AEA 1989a, b):

- Es wird unterteilt zwischen Kurz- und Mittelstreckenflugzeugen (a) sowie Langstreckenflugzeugen (b).

Fokker (Fokker 1993):

- Die Methode wurde erstellt, um neue Flugzeugentwürfe zu bewerten.

Airbus Industrie (AI 1989):

- Die Methode beinhaltet Inflationsfaktoren. Die Grundgleichungen werden unter Berücksichtigung verschiedener Inflationsraten für Ersatzteile, Löhne und Gebühren auf Folgejahre angepasst.
- Die Abfertigungsgebühren werden nicht berücksichtigt.

Prinzipiell werden folgende Kosten durch die verschiedenen DOC-Methoden berechnet (unter Berücksichtigung der o. g. Ausnahmen):

Abschreibung (depreciation) C_{DEP} Zinsen (interest) C_{INT} Versicherung (insurance) C_{INS} Kraftstoff (fuel) C_{FUEL} Wartung (maintenance) C_{M} Besatzung (crew) C_{C} Gebühren (fees and charges) $C_{\text{FEE, NAV}}$

Die Summe dieser Kosten ergibt die DOC.

6.3 Methode *DOC*_{sys} zur Berechnung von Betriebskosten von Flugzeugsystemen

Für die vorliegende Arbeit wurde die Methode " DOC_{sys} zur Berechnung von Betriebskosten von Flugzeugsystemen" (Scholz 1999) mit dem Berechnungsprogramm " DOC_{sys} " (Scholz 1999) verwendet, da man mit dieser Methode die direkten Betriebskosten von einzelnen Systemen des Flugzeugs berechnen kann. Dieses Programm berücksichtigt alle Kostenelemente, die für den Vergleich der beiden Wassersysteme von Bedeutung sind, also die Kosten für Abschreibung, Kraftstoff und Wartung. Die Kosten für Personal, Versicherung, Zinsen und Gebühren werden nicht mit berücksichtigt, da sie durch die zu untersuchenden Systeme nicht beeinflusst werden. Zusätzlich zu den Kostenelementen der konventionellen DOC-Methoden bietet DOC_{sys} die Möglichkeit, die Zinsen für das durch Ersatzteile gebundene Kapital, Kosten für Abflugverspätungen und Flugabsagen mit zu betrachten. Diese Kosten werden direkt vom Flugzeug verursacht, in dieser Arbeit jedoch nicht mit berücksichtigt. Es werden in dieser Arbeit die direkten Betriebskosten ermittelt, die für ein Flugzeug einer Flotte innerhalb eines Jahres anfallen (aircraft annual costs).

Die direkten Betriebskosten von Flugzeugsystemen werden durch diverse Eingangsparameter unterschiedlich beeinflusst. Die Eingangsparameter für DOC_{sys} werden unterteilt in:

- Flugzeugspezifische Parameter
- Systemspezifische Parameter
- Flugmissionsdaten
- Ökonomische Daten

Flugzeugspezifische Eingangsparameter		
Maximale Abflugmasse (MTOW)	ka	
Maximale Masse ohne Kraftstoff (MZFW)	kg	FUEL
Gleitzahl des Flugzeuges im:	5	- 393
- Steiaflug	-	
- Reiseflug	-	FUEL
- Sinkflug	-	FUEL
Anzahl der Passagiersitze	-	
Triebwerkstvp:		sys
- Anzahl der Triebwerke	-	FUEL
- Turbineneintrittstemperatur	К	FUEL _{svs Zapfluft}
Systemspezifische Eingangsparameter		- Sys, Zapliuit
Systempreis	US\$	
Abschreibung des Systems:	+	· · · 3y3
- Abschreibungszeitraum	N	
- relativer Restwert	%	DEPR
- Anteil der Lebensdauerabschreibung an der Gesamtnutzung	%	DEPR
- jährliche Nutzungsdauer	h	
- maximale Nutzungsdauer	h	DEPR
Kraftstoff für feste Massen		DETTYSYS
- Systemmasse	ka	FUEL COM
Kraftstoff für variable Massen:	Ng	Sys, feste Masse
- Massenahnahme im Steinflug	ka/s	FUEL
- Massenabhahme im Reiseflug	ka/s	
- Massenabhahme im Sinkflug	ka/s	
Kraftstoff für Wellenleistung:	Ng/3	I OLLsys, variable Masse
- elektrischer Energieverbrauch im Steigflug	۱۸/	FILEI
- elektrischer Energieverbrauch im Reiseflug		
- elektrischer Energieverbrauch im Sinkflug		
Kraftetoff für Zanfluft:	vv	TOLLSYS
- Druckluftverbrauch im Steiaflug	ka/s	
- Druckluftverbrauch im Beiseflug	kg/s	
- Druckluftverbrauch im Sinkflug	kg/s	
Kraftetoff für Stauluft:	Ky/S	TOLLsys, Zapfluft
- benötigter Volumenstrom aus Stauluft im Steigflug	m3/c	FIIFI
benötigter Volumenstrom aus Stauluft im Beiseflug	m3/c	FULLsys, Stauluft
benötigter Volumenstrom aus Stauluft im Keisenug	m3/c	FUEL _{sys} , Stauluft
- behöligter volumenstrom aus Statium im Sinknug Kraftetoff für zusätzlichen Widerstand:	11175	FUEL _{sys} , Stauluft
zusätzlicher e. Wort im Steiaflug		
- zusätzlicher c_D -wert im Steigilug	-	FUELsys, zus. Widerstand
- zusätzlicher c. Wert im Siekflug	-	FUEL _{sys} , zus. Widerstand
- $2uSatzlicher C_D-Wert IIII SirikitugDeferenztläche (A) des Teils$	- m2	FUEL _{sys} , zus. Widerstand
- Relefenzildelle (A _{Ref}) des Tells	111~	FUEL _{sys} , zus. Widerstand
Wartungskusten.	h/h	DMC
- Waltungsstunden pro Flugstunde ON Aliciali	/ /	
- Waltungsstunden pro Flugstunde OFF Allorati Meterialkesten pro Elugetunde für des System	11/11 11@¢/b	
- Materialkosteri pro Flugstunue fui das Systerii Erectzteilbeverretung:	039/11	DIVIC _{Sys}
Elsalziendevollatung.		<u>енс</u>
- Redundanzgrad des Systems	-	SHC
- Verhaltnis von Ersatzteilpreis zu Systempreis	% 0/	SICsys
- Anten der Ersätzteinnenge am Gesamtsystem	が ト	SHUSSS
- uuronsonniulione Zeit bis reparientes Teil wieder verlugbar Ist Zoitraum zwischen ungenlantem Austeursch	 	SHO _{sys}
- Zenraum zwischen ungeplantem Austausch Webracheinlichkeit der Erectzteilverfücherkeit	() 0/	SHU _{Sys}
- wanischeinlichkeit der Ersatzteilverfugbarkeit	70	SHUSAN SHC
- Flottengroße mit dem betrachteten Flugzeugsystem	-	SITUSYS

Diese Daten werden in der folgenden Tabelle 6.1 dargestellt.

Eingangsparameter für DOC_{sys}

Tabelle 6.1 Parameter

Einheit Eingang in Kostenelement

Flugmissionsdaten		
Flugzeit	S	FUEL _{sys} , SHC _{sys}
Reiseflughöhe	m	FUEL _{svs}
Fluggeschwindigkeit im:		
- Steigflug	m/s	FUEL _{svs}
- Reiseflug	m/s	FUEL _{svs}
- Sinkflug	m/s	FUEL _{sys}
Steigrate	m/s	FUEL _{svs}
Sinkrate	m/s	FUEL _{sys}
Anzahl der Flüge pro Jahr	-	FUEL _{sys} , SHC _{sys}
Ökonomische Eingangsparameter		
Stundensatz (Lohn/Gehalt)	US\$	DMC _{sys}
Kraftstoffpreis	US\$/kg	FUELsys
Zinssatz für Kapitalverzinsung	%	SHC _{sys}

7 Aufbau des DOC_{sys}-Vergleichs

7.1 Grundsätzliches

Für einen Vergleich des Wassersystems von konventionellen Flugzeugen mit dem OBOWAGS[®] ist der Einfluss des OBOWAGS[®] auf andere Systeme im Flugzeug in der DOC_{sys} -Rechnung von entscheidender Bedeutung. Zunächst wird die Option der Luftbefeuchtung und des Duschens in zukünftigen Flugzeugen nicht mit berücksichtigt, um den Vergleich nicht zu verzerren.

Ausgehend davon, dass die Brennstoffzelle die gesamte benötigte elektrische Energie im Flugzeug bereitstellt, wird die herkömmliche Energieumformung durch die Triebwerksgeneratoren (IDG – Integrated Drive Generator) überflüssig. Dadurch entfällt die benötigte Wellenleistung zum Antrieb der Generatoren.

Die Brennstoffzelle wird für den durchschnittlichen Leistungsbedarf der verschiedenen Flugzeuge ausgelegt. Ein kurzzeitiger Mehrbedarf (Leistungsspitzen) wird über ein Powermanagement ausgeglichen. Wird ein höherer durchschnittlicher Leistungsbedarf, als in diesem Modell angenommen, benötigt, dann soll diese Leistungsdifferenz nicht durch die Brennstoffzellen des OBOWAGS[®] bereitgestellt werden. Für diesen Fall kann die Versorgung mit zusätzlicher elektrischer Energie entweder durch Wellenleistung der Turbinen des OBOWAGS[®] oder durch Integration zusätzlicher Brennstoffzellen, deren Hauptaufgabe in der Bereitstellung von elektrischer Energie besteht, gewährleistet werden.

Durch die Mehrfachauslegung (Redundanz) des Brennstoffzellensystems und der damit verbundenen hohen Sicherheit werden die herkömmlichen Notstromaggregate (APU, RAT) überflüssig. Die "überschüssige" Leistung der Mikroturbinen wird zur Erzeugung von Druckluft genutzt, die dem Klimasystem zugeführt wird. Durch diese Einspeisung wird weniger Zapfluft von den Triebwerken abgenommen.

Das Programm " DOC_{sys} " (Scholz 1999) ist in der Lage, die Kosten die durch den Betrieb des Systems entstehen, zu berechnen. Die Bereitstellung von Energieströmen des OBOWAGS[®] muss separat ermittelt werden. Dafür wurde im Rahmen dieser Diplomarbeit ein $SOFC_{sys}$ -Programm erstellt, mit dem bei gegebenen elektrischen Leistungen Kosten des Brennstoffzellensystems, Massenströme (wie z.B. Luft und Wasser) und Druckluftmengen generiert werden können. Dieses Programm befindet sich im Anhang B und ist dort näher erläutert und dargestellt.

Das OBOWAGS[®] erfüllt nicht nur die Aufgaben der Wasserversorgung, sondern stellt auch durch die Abgabe von Energieströmen die gesamte elektrische Energie sowie einen Teil der

Druckluft zur Verfügung. Um einen direkten Vergleich der Systeme herstellen zu können, werden beim konventionellen Wassersystem die entsprechenden Energieströme mit den Komponenten Triebwerksgenerator, Hilfstriebwerk und Stauluftturbine in die Systemgrenzen integriert. Bei der Betriebskostenberechnung des aufgestellten Systems in konventionellen Flugzeugen ist zu beachten, dass nur der Anteil an Druckluft berücksichtigt wird, welcher der vom OBOWAGS[®] zur Verfügung gestellten Druckluftmenge entspricht. Im **Bild 7.2** sind die für das konventionelle System festgelegten Systemgrenzen dargestellt und im **Bild 7.4** für das OBOWAGS[®]. In den folgenden DOC-Berechnungen der Systeme werden demzufolge stets die Gesamtkosten der Wasserversorgung, der Bereitstellung von elektrischer Energie und der anteiligen Druckluftversorgung ermittelt und verglichen (**Bild 7.1**).

Bild 7.1 Prinzipskizze für die Ermittlung der Betriebskosten mit dem DOC_{sys}-Programm

7.2 Flugmechanische Daten

Die Gleitzahl E=L/D, die Steigrate, die Sinkrate und die Anzahl der Flüge pro Jahr können mit allgemeingültigen Formeln errechnet werden. Um sicherzustellen, dass die Ergebnisse auf praxisnahen Daten basieren, werden diese Daten von der Airbus-Abteilung **Configuration** (**ETXGI**) übernommen und sind in der **Tabelle 7.1** aufgelistet. Die Triebwerksparameter wurden von **Lemke 2000** übernommen.

	Einheit	A320	A330	A340-600	A380-800
Maximale Abflugmasse	kg	77000	233000	368000	560000
Maximale Masse ohne Kraftstoff	kg	62500	168000	240000	361000
Triebwerkstyp	-	IAE V2500	CF680E1A4	Trent556	Trent 970
Anzahl Triebwerke	n	2	2	4	4
L/D Steigflug		16,21	16,75	15,35	16
L/D Reiseflug		19,56	21	19,6	20,25
L/D Sinkflug		12,34	12,75	11,35	12
Fluggeschwindigkeit Steigflug	m/s	215	212	204	207
Fluggeschwindigkeit Reiseflug	m/s	246	242	245	250
Fluggeschwindigkeit Sinkflug	m/s	191	189,8	193	181
Reiseflughöhe	m	11886	11887	11887	11887
Flugzeit	S	21600	39600	57600	57600
Steigrate	m/s	5,21	4,86	6,28	4,46
Sinkrate	m/s	9,2	9,45	9,98	7,9
Flugmissionszeit	h	7	12	17	17
Anzahl Flüge pro Jahr	N	596	429	323	323

Tabelle 7.1 Flugmechanik

7.3 DOC von konventionellen Systemen

Im **Bild 7.2** sind die Systemgrenzen aufgezeigt, für welche die Betriebskosten ermittelt werden und welche die Basis des Kostenvergleiches bilden.

Für die direkten Betriebskosten sind zu berücksichtigen:

- 1. Systempreis/Abschreibung
- 2. Kraftstoffkosten für den Transport von fixen Massen
- 3. Kraftstoffkosten für den Transport von variablen Massen
- 4. Kraftstoffkosten durch Wellenleistungsentnahme
- 5. Kraftstoffkosten durch Zapfluftentnahme
- 6. Kraftstoffkosten durch Luftwiderstand
- 7. Wartungskosten
- (8). Frischwasser (da nur geringe Herstellkosten nicht berücksichtigt)

7.3.1. Systempreis

Die Ermittlung des Systempreises wird zunächst von den Kosten der einzelnen Komponenten des Wasser-/Abwassersystems bestimmt. Da einige dieser Bauteile übergreifend in anderen Systemen im Flugzeug, wie z.B. elektrisches System, Druckluftsystem, etc. wirken, ist eine direkte Zuordnung der Einzelkosten nicht immer möglich. Mit Hilfe einer statistischen **Tabel-**le 7.2, in welcher der Preis von Wassersystemen in Bezug auf die Systemmasse ausgewertet wurde, werden die folgenden Preise für die Wassersysteme der verschiedenen Flugzeuge angenommen.

	Masse (<i>m</i>)	Preis/Masse (<i>P/m</i>)	Preis _{svs} (<i>P</i>)
	kg	US\$/kg	US\$
A300	120	890	110000
A310	90	1050	98000
A320	150	310	47000
A330	210	510	108000
A340	370	500	188000
A380	560	550	309000

 Tabelle 7.2
 Preise von Wassersystemen (nach Scholz 2002)

Der Preis des aufgestellten Systems wird auch durch die folgenden Komponenten maßgeblich beeinflusst:

Triebwerksgenerator Hilfstriebwerk Stauluftturbine Die Preise der Triebwerksgeneratoren inklusive Installationskosten werden nach Abschätzungen der Airbus-Abteilung Water/Waste (**ECYS2**) mit 1000 US\$/kg angenommen und in **Tabelle 7.3** dargestellt.

Tabelle 7.3 Preise von Trieb	von Triebwerksgeneratoren (IDG)							
	Einheit	A320	A330-200	A340-600	A380-800			
Maximale elektrische Leistung	kW	180	230	360	600			
Gewicht	kg	180	230	360	600			
Preis	US\$	180000	230000	360000	600000			

Die Preise für die Hilfstriebwerke (APU) der verschiedenen Flugzeugtypen werden nach Aussage der Airbus-Abteilung Auxiliary Power (**EEV**) festgelegt und in der **Tabelle 7.4** dargestellt.

Tabelle 7 4	Preise von Hilfstriebwerken (APU)

	Einheit	A320	A330-200	A340-600	A380-800
Gewicht	kg	350	500	500	750
Preis	US\$	180000	280000	420000	600000

Durch die Airbus-Abteilung Purchase (**PCD2**) werden die Einkaufspreise für die verschiedenen Stauluftturbinen (RAT), wie in **Tabelle 7.5** dargestellt, festgelegt.

Tabelle 7.5Preise von Stauluftturbinen (RAT)

	Einheit	A320	A330-200	A340-600	A380-800
Gewicht	kg	50	79	79	146
Preis	US\$	47500	80000	105000	178000

7.3.2 Abschreibung

Die Abschreibungskosten setzen sich aus den Anschaffungskosten, dem Wiederverkaufswert und der Anzahl der genutzten Jahre zusammen. Ausgehend von einer linearen Abschreibung gilt:

$$Depr_{sys} = \frac{price - residual}{N} = \frac{1 - (\frac{residual}{price})}{\frac{N}{price}}$$
(7.1)

Mögliche Werte zur Berechnung der Abschreibung (zum Teil aus **Scholz 2000**) sind in der **Tabelle 7.6** zusammengetragen.

Tabelle 7.0 Welle Zui Dei	connung der Absonne	ibungskosten	
Organisation	Abschreibungs- zeitraum N (Jahre)	Wiederverkaufswert bezogen auf Anschaffungspreis %	Quelle
Airbus Industrie	15	10	Airbus 1988
Deutsche Lufthansa	14	0	Lufthansa 1982
NASA/American Airline	14-16	10-15	NASA 1977 / AA 1978
Fokker	15	10	Fokker 1993
Association of European Airlines (Kurz-/Mittelstrecke) Association of European Airlines	15	10	AEA 1989 a
(Langstrecke)	16	10	AEA 1989 b
Raymer (Literatur)	12	10	Raymer 1989

Tabelle 7.6Werte zur Berechnung der Abschreibungskosten

Mit diesen Daten wird für die Wirtschaftlichkeitsrechnung ein Restwert von 10 % des Anschaffungspreises nach 15 Jahren ausgewählt.

7.3.3 Kraftstoff für den Transport von festen und variablen Massen

Ausgehend von den Systemgrenzen, die in **Abschnitt 7.3** festgelegt wurden, ergeben sich die in **Tabelle 7.7** dargestellten Massenbilanzen. Die Werte für die maximale Wassermasse werden von der Airbus-Abteilung Water/Waste (**ECYS2**) übernommen und basieren auf technischen Spezifikationen der einzelnen Flugzeugtypen. Die Masse der Komponenten errechnet sich mit der **Formel 7.2**.

$$m_{Komponenten} = m_{Wassersystem} + m_{Generatoren} + m_{Hilfstriebwerk} + m_{Stauluftturbine}$$
(7.2)

Tabelle 7.7 Massen	des Systems	i			
	Einheit	A320	A330-200	A340-600	A380-800
Masse der Komponenten	kg	730	1019	1309	2056
maximale Wassermasse	kg	210	700	1050	1800
Gesamtmasse	kg	940	1719	2359	3856
variable Masse	kg	140	467	700	1200
Massenstrom	kg/s	0,00556	0,01080	0,01144	0,01961
Fixe Masse	kg	800	1252	1659	2656

7.3.4 Wellenleistungsentnahme

Für die erforderliche Wellenleistung wird nach Aussage der Airbus-Abteilung Water/Waste (ECYS3) ein Generatorwirkungsgrad von 85 % veranschlagt. Das Gewicht der Generatoren wird mit ca. einem Kilogramm pro Kilowatt laut Airbus-Abteilung Electric Installation (ECYE2) angenommen. Für die DOC-Rechnung wird eine durchschnittliche elektrische Leistung von 60 % der maximalen Generatorleistung während des Reisefluges angenommen. Diese Annahme beruht auf folgenden Beispielwerten: Die DC10, welche eine maximale Generatorleistung von 270 kW besitzt, benötigt nur 140 kW elektrische Leistung im Reiseflug; beim A380 mit einer maximalen Leistung von 600 kW wird die Durchschnittsleistung auf 410 kW geschätzt. In Tabelle 7.8 ist die benötigte Triebwerkswellenleistung für die Bereitstellung der elektrischen Energie dargestellt.

Tabelle 7.8	Wellenleistungsentnahme

	Einheit	A320	A330-200	A340-600	A380-800
Maximale elektrische Leistung	kW	180	230	360	600
Durchschnittliche elektr. Leistung	kW	108	138	216	410
Wellenleistung	kW	127	162	254	482

7.3.5 Zapfluft

Das Wassersystem wird sowohl durch Zapfluft als auch durch einen Kompressor während des Fluges mit Druck beaufschlagt. Am Boden oder beim Start, wenn keine Zapfluft von den Triebwerken zur Verfügung steht, wird dieser Druck ausschließlich über den Kompressor bereitgestellt. In zukünftigen Flugzeugen wird die Druckbeaufschlagung des Wassersystems vollständig von Kompressoren übernommen.

Der in diesem System zu berücksichtigende Druckluftanteil (**Tabelle 7.9**) ist der abgegebenen Druckluftmenge des OBOWAGS[®] gleichzusetzen, da vom OBOWAGS[®] nur ein geringer Teil der benötigten Druckluftmenge bereitgestellt werden kann. Der Druckluftvolumenstrom, welcher vom Brennstoffzellensystem zur Verfügung gestellt wird, ist von der elektrischen Leistung abhängig und ergibt sich aus dem $SOFC_{sys}$ -Simulationsprogramm.

Tabelle 7.9 Zu b	erucksichtige	nder Druckluttv	olumenstrom			
	Einheit	A320	A330-200	A340-600	A380-800	
Druckluftvolumenstrom	kg/s	0,124	0,159	0,249	0,472	

 Tabelle 7.9
 Zu berücksichtigender Druckluftvolumenstrom

Wartungskosten für die Einspeisung der von der Brennstoffzelle zur Verfügung gestellten zusätzlichen Druckluft werden hier nicht mit berücksichtigt, da keine Komponenten aus dem herkömmlichen Druckluftsystem ersetzt werden. Eine zusätzliche Steuerung und Regelung bei der Zusammenführung beider Druckluftströme ist notwendig, so dass diese Wartungskosten und Komponentengewichte bei der im **Abschnitt 7.4** aufgestellten DOC-Rechnung des OBOWAGS[®] mit berücksichtigt werden.

7.3.6 Luftwiderstand

Da bei den unterschiedlichen Wassersystemen der Wassermassenstrom über Bord ungefähr identisch ist, wird in dieser Arbeit davon ausgegangen, dass der gleiche Drain Mast verwendet wird. Somit können diese Kosten aufgerechnet und in der DOC-Rechnung vernachlässigt werden.

7.3.7 Wartungskosten

Die Wartungskosten des aufgestellten Systems pro Flugstunde (DMC_{sys}) beinhalten die Wartungskosten des Wassersystems, des Generators, des Hilfstriebwerkes und der Stauluftturbine. Sie setzen sich in dieser Untersuchung aus den Kosten für Wartungsarbeiten am eingebauten Teil im Flugzeug, Kosten für Wartungsarbeiten an ausgebauten Teilen sowie den entstehenden Materialkosten zusammen. Diese Werte sind ein entscheidendes Kaufkriterium für Flugzeugbetreiber im Hinblick auf die laufenden Kosten während des Betriebes des Systems, so dass diese Daten der Geheimhaltung unterliegen.

Aufgrund dieser Tatsache wird in der folgenden **Tabelle 7.10** eine Abschätzung der Wartungskosten des Wasser- und Abwassersystems vorgenommen.

Kostentyp	Einheit	A320	A330-200	A340-600	A380-800		
Wartungskosten am Flugzeug	MMH/FH	0,01	0,02	0,02	0,07		
Wartungskosten außerhalb des Flugzeugs	MMH/FH	0,03	0,05	0,05	0,08		
Materialkosten am Flugzeug	\$/FH	0,09	0,12	0,16	0,83		
Materialkosten außerhalb des Flugzeugs	\$/FH	0,60	0,72	0,88	1,43		
Wartungskosten Gesamt	MMH/FH	0,04	0,07	0,07	0,15		
Materialkosten Gesamt	\$/FH	0,69	0,84	1,04	2,26		

Tabelle 7.10Wartungs-/Materialkosten des Wasser-/Abwassersystems (nach Scholz 2002)

Die Wartungskosten der Generatoren sind in der **Tabelle7.11** dargestellt. Diese Werte werden über eine Abschätzung der gesamten Wartungskosten des elektrischen Systems (**Scholz 2002**) ermittelt. Dabei wird angenommen, dass der Anteil der Wartungskosten der Generatoren ca. 5 % an den gesamten Wartungskosten beträgt.

	Einheit	A320	A330-200	A340-600	A380-800		
Wartungskosten am Flugzeug	MMH/FH	0,0005	0,0009	0,0009	0,003		
Wartungskosten außerhalb des Flugzeugs	MMH/FH	0,001	0,002	0,002	0,003		
Materialkosten am Flugzeug	\$/FH	0,02	0,02	0,03	0,13		
Materialkosten außerhalb des Flugzeugs	\$/FH	0,08	0,1	0,15	0,2		
Wartungskosten Gesamt	MMH/FH	0,0015	0,0029	0,0029	0,006		
Materialkosten Gesamt	\$/FH	0,1	0,12	0,18	0,33		

Tabelle 7.11Wartungskosten der Generatoren (geschätzt) (nach Scholz 2002)

Eine Abschätzung der Wartungskosten des Hilfstriebwerkes erfolgt nach **Scholz 2002** in der **Tabelle 7.12**.

Tabolio 7:12 Waltungeleoten aco Fille					
	Einheit	A320	A330-200	A340-600	A380-800
Wartungskosten am Flugzeug	MMH/FH	0,002	0,002	0,003	0,02
Wartungskosten außerhalb des Flugzeugs	MMH/FH	0,02	0,02	0,02	0,03
Materialkosten am Flugzeug	\$/FH	0,07	0,08	0,09	0,50
Materialkosten außerhalb des Flugzeugs	\$/FH	1,13	1,25	1,43	4,28

Tabelle 7.12Wartungskosten des Hilfstriebwerkes (nach Scholz 2002)

Daten zu den Wartungskosten einer Stauluftturbine sind nicht explizit verfügbar, daher werden sie über eine Abschätzung der gesamten Wartungskosten des hydraulischen Systems (**Scholz 2002**) ermittelt. Es wird dabei angenommen, dass der Anteil der Wartungskosten der Stauluftturbine ca. 5 % an den gesamten Wartungskosten beträgt. Somit wird mit den in **Tabelle 7.13** dargestellten Annahmen weitergerechnet.

Tabelle 7 13	Wartungskosten der St	tauluftturbine (na	ach Scholz 2002)
	wartungskosten der ot		

			/		
	Einheit	A320	A330-200	A340-600	A380-800
Wartungskosten am Flugzeug	MMH/FH	0,002	0,002	0,003	0,01
Wartungskosten außerhalb des Flugzeugs	MMH/FH	0,01	0,001	0,001	0,01
Materialkosten am Flugzeug	\$/FH	0,07	0,07	0,08	0,21
Materialkosten außerhalb des Flugzeugs	\$/FH	0,06	0,07	0,07	0,13

In der **Tabelle 7.14** werden die Einzelkosten der Komponenten zusammengefasst und als gesamte Wartungskosten des konventionellen Systems dargestellt.

				-
Taballa 7 11	Wartungekoeten	doc	konventionellen	Systome
	valuigstusien	ues	KOUNEUROUEREU	UVSIGIUS
				1

	Einheit	A320	A330-200	A340-600	A380-800
Wartungskosten am Flugzeug	MMH/FH	0,02	0,02	0,03	0,09
Wartungskosten außerhalb des Flugzeugs	MMH/FH	0,06	0,07	0,07	0,12
Materialkosten am Flugzeug	\$/FH	0,25	0,29	0,35	1,68
Materialkosten außerhalb des Flugzeugs	\$/FH	1,87	2,14	2,50	6,04

7.3.8 Ermittelte Betriebskosten konventioneller Systeme

Mit dem DOC_{sys} -Programm (Scholz 1999) ergeben sich die DOC der konventionellen Systeme aus den zuvor aufgeschlüsselten Parametern wie in der folgenden Tabelle 7.15 dargestellt.

	A320	A330-200	A340-600	A380-800
Finhait	US\$	US\$	US\$	US\$
Einneit	Flugzeug · Jahr	Flugzeug · Jahr	Flugzeug · Jahr	Flugzeug · Jahr
Abschreibungskosten	27270	41880	64380	101220
Kosten durch Wartung und Instandhaltung Kraftstoffkosten durch:	29880	44741	54935	120735
- Transport von fixen Massen	25608	43558	73826	124204
- Transport von variablen Massen	2050	7298	13833	24581
- Wellenleistungsentnahme	9606	17257	31855	72449
- Zapfluftentnahme	15703	36094	67310	131882
- Stauluftentnahme	0	0	0	0
- Luftwiderstand	0	0	0	0
DOC _{sys}	110117	190828	306139	575071

Tabelle 7.15 DOC konventioneller Systeme

DOC konventioneller Systeme

7.4 DOC des OBOWAGS[®]

Im **Bild 7.4** sind die Systemgrenzen für die DOC des OBOWAGS[®] dargestellt. Die gesamte im Flugzeug benötigte elektrische Energie wird von der Brennstoffzelle bereitgestellt. Somit werden die Generatoren in diesem System nicht mehr benötigt. Die zum Antrieb der Generatoren benötigte Wellenleistung entfällt. Die herkömmlichen Notstromaggregate (APU, RAT) werden aufgrund der Mehrfachauslegung (Redundanz) des Brennstoffzellensystems eingespart. Die "überschüssige" Leistung der Mikroturbinen wird zur Erzeugung von Druckluft genutzt und dem Druckluftstrom, der durch Zapfluftentnahme von den Triebwerken gewonnen wird, zugeführt. Durch diese Einspeisung wird weniger Zapfluft von den Triebwerken abgenommen.

Bild 7.4 Systemgrenzen im OBOWAGS[®]

Für den Vergleich der verschiedenen Systeme werden Flugzeug- und Missionsparameter, wie Reiseflughöhe, Flugzeit, Fluggeschwindigkeit, Anzahl der Flüge pro Jahr, etc. nicht verändert.

Die folgenden Kostenelemente der DOC-Rechnung müssen neu kalkuliert werden:

- 1. Systempreis
- 2. Abschreibung
- 3. Kraftstoffkosten für den Transport von fixen und variablen Massen
- 4. Wartungskosten
- 5. Kosten durch Stauluftentnahme

7.4.1 Systempreis

Die Brennstoffzellentechnologie, speziell die der SOFC, ist noch eine junge Technologie. Die Möglichkeiten der kommerziellen Nutzung wurden erst in den letzten Jahren intensiver betrachtet, so dass die Kosten eines SOFC-Stacks bisher nur grob abzuschätzen sind. Laut einer Studie des Department of Energy (DOE) müssen die spezifischen Kosten des SOFC-Gasturbinensystems bei Markteinführung zwischen 400 und 1000 US\$/KW liegen, um mit bestehenden Technologien konkurrieren zu können. Siemens Westinghouse, die weltweit als erste eine SOFC Brennstoffzelle mit einer Turbine gekoppelt und realisiert haben, setzten spezifische Kosten für dieses Brennstoffzellensystem zwischen 1000 und 1300 US\$/KW an bei ca. 220 US\$/KW Stackkosten. 180 bis 330 US\$/KW spezifische Kosten für den Stack wurden von Rolls Royce für einen Markteinstieg genannt. Diese Werte sind im **Bild 7.5** zusammengestellt.

Spezifische Kosten von SOFC-Systemen bei Markteinführung (nach Winkler 2002)

Gleichzeitig wird aus dem **Bild 7.5** der prozentuale Anteil der Kosten des Brennstoffzellenstacks an den Gesamtkosten ersichtlich. In **ASUE 2001** (S. 45) wird eine Aufteilung der Gesamtkosten eines Brennstoffzellensystems abgeschätzt, bei der 1/3 der Investitionskosten auf die eigentliche innovative Brennstoffzelle entfallen, während 2/3 der Gesamtkosten durch konventionelle Subsysteme wie Gasaufbereitung, Stromkonditionierung, Steuerung, Regelung und Wärmenutzung verursacht werden.

Für eine erste Untersuchung wird von Kosten für das Brennstoffzellensystem von 1000 US\$/KW ausgegangen. Damit ergeben sich für das flugzeugabhängige Brennstoffzellensystem die in **Tabelle 7.16** dargestellten Preise.

Tabelle 7.16 Preise des Bren	nstoffzellensystems						
	Einheit	A320	A330-200	A340-600	A380-800		
Durchschnittliche elektr. Leistung	kW	108	138	216	410		
Anschaffungskosten	US\$	108000	138000	216000	410000		

Für die Aufstellung des Systempreises des OBOWAGS[®] sind zusätzliche Kosten für die Wasseraufbereitung, Reinigung, Abwasserfilterung, Frischwassertankreduzierung, Wasserleitungen und Anschlüsse zu ermitteln.

Der Vorratsbehälter muss Spitzenverbräuche der Wasserverbraucher abdecken können. Des Weiteren muss gewährleistet sein, dass beim Anfahren der Brennstoffzelle Wasser zur Verfügung steht. Zurückgreifend auf bestehende Frischwassertankkonfigurationen in konventionellen Wassersystemen, wie sie in **Tabelle A.2** dargestellt sind, werden folgende Vorratsbehältergrößen für das OBOWAGS[®] gewählt. Diese werden in der nachfolgenden **Tabelle 7.17** aufgelistet.

Tabelle 7.17 Vorratsbehälter im OBOWAGS[®]

	Einheit	A320	A330-200	A340-600	A380-800				
maximales Volumen	I	100	200	200	295				
Gewicht	kg	9	19	19	13				

Der Sammelbehälter für das in die Brennstoffzelle zurückzuführende Wasser wird mit einem Volumen von 50 l und einer Masse von 6 kg angenommen. Dieser hat die Aufgabe, das entzogene Wasser aus dem Abwassertank mit dem Wasser aus den Handwaschbecken, Küchen und Duschen zu vermischen.

Über die Auflistung der Gewichte der einzelnen Komponenten und den Systempreis pro Kilogramm System (nach **Tabelle 7.2**) werden die durchschnittlichen Kosten der Einzelkomponenten bestimmt (**Tabelle 7.18**).

	A	320	A330-200		A340-600		A380-800	
Faktor (US\$/kg)	3	13	5	510	5	504	553	
Einheit	kg	US\$	kg	US\$	kg	US\$	kg	US\$
Wasser Aufbereitung	14	4230	28	14243	34	17254	50	27650
Wasser Reinigung	41	12689	84	42730	103	51762	150	82950
Wasser Filterung	14	4230	28	14243	34	17254	50	27650
Anschlüsse/Leitungen Wasser Steuerung/	65	20303	134	68368	164	82819	240	132720
Regulierung	8	2538	17	8546	21	10352	30	16590
Vorratsbehälter	9	2817	19	9690	19	9576	13	7189
Sammelbehälter	6	1878	6	3060	6	3024	6	3318
Gesamt	156	48684	315	160880	381	192042	539	298067

 Tabelle 7.18
 Massen und Preise von Einzelkomponenten

Eine Abschätzung des Systempreises wird über die Preise der Einzelkomponenten (**Tabelle 7.18**) und des Brennstoffzellensystems (**Tabelle 7.16**) vorgenommen und in **Tabelle 7.19** dargestellt.

Tabelle 7.19Systempreis des OBOWAGS[®]

	Einheit	A320	A330-200	A340-600	A380-800
Komponentenkosten	US\$	48684	160880	192042	298067
Brennstoffzellensystemkosten	US\$	108000	138000	216000	410000
Systempreis des OBOWAGS	US\$	156684	298880	408042	708067

7.4.2 Abschreibung

Ausgehend davon, dass bei Markteinführung des SOFC-Systems die Zuverlässigkeit über mehrere Jahre gewährleistet ist und das System danach noch einen Restwert besitzt, werden in **Tabelle 7.6** (Abschnitt 7.3.2) Werte zur Berechnung der Abschreibungskosten bei einem Abschreibungszeitraum von 15 Jahren und einem Wiederverkaufswert von 10 % der Anschaffungskosten festgelegt.

7.4.3 Kraftstoff für den Transport von fixen und variablen Massen

Das Gewicht, welches im OBOWAGS[®] unverändert bleibt, setzt sich aus folgenden Einzelmassen zusammen: Brennstoffzellensystem (inklusive Reformer, Druckbeaufschlagung und Wärmetauscher), Komponenten des Wassersystems, Wasser im Vorratsbehälter, Wasser im Sammelbehälter und einem Brennstoffanteil, der für einen Ausfall beider Triebwerke ausgelegt ist. Das Gewicht des Brennstoffzellensystems inklusive Reformer, Druckbeaufschlagung und Wärmetauscher wird mit zwei Kilogramm pro Kilowatt bei Markteinstieg angenommen. Die Massen der Komponenten des Wassersystems sind in der **Tabelle 7.18** enthalten. Das Wasservolumen in den Vorratsbehältern wird durch die in der **Tabelle 7.17** gegebenen Größen bestimmt. Das Wassergewicht im Sammelbehälter wurde mit 50 l im **Abschnitt 7.4.1** festgelegt. Für die DOC-Rechnung wird davon ausgegangen, dass beide Wasserbehälter immer gefüllt sind. Für die Aufstellung der variablen Massen ist der Kerosinverbrauch in Abhängigkeit von der elektrischen Leistung und von der Flugzeit entscheidend. Des Weiteren muss der Wassermassenstrom, welcher vom Brennstoffzellensystem abgegeben wird und für die Toilettenspülung, Küchen und Handwaschbecken benutzt wird, mit berücksichtigt werden.

Aus der **Tabelle 7.20** ergibt sich je nach Flugzeugtyp und Flugdauer das benötigte Kerosin. Die Masse des Brennstoffes nimmt mit zunehmender Flugzeit ab, ist somit in der DOC-Rechnung als variable Masse einzusetzen und hat damit Einfluss auf die fixe Masse des OBOWAGS[®].

Tabelle 7.20 Masse des Kerosins für die Brennstoffzelle

	Einheit	A320	A330-200	A340-600	A380-800				
Flugzeit	h	7	12	17	17				
durchschnittliche elektr. Leistung	kW	108	138	216	410				
Kerosinmassenstrom	kg/h	16	21	33	62				
Kerosinmasse	kg	112	252	561	1054				

Zu dem während des Fluges benötigten Brennstoff wird in der nachfolgenden **Tabelle 7.21** noch ein zusätzlicher Kraftstoffbedarf für eine Flugzeit angesetzt, bei welcher alle Triebwerke ausgefallen sind und das Flugzeug sich im Sinkflug befindet. Die Zeit, bis das Flugzeug den Boden erreicht, ist abhängig von der Gleitzahl E = L/D, der Sinkfluggeschwindigkeit v, der Vertikalkomponenten der Sinkfluggeschwindigkeit v_V und der Flughöhe h_{Cr} . Mit

$$\tan(\mathbf{c}) = \frac{1}{E},\tag{7.3}$$

$$v_v = v \cdot \sin(\mathbf{c}), \tag{7.4}$$

$$t_{desc} = \frac{h_{Cr}}{v_V},\tag{7.5}$$

und einer Durchschnittsgleitzahl $\frac{L}{D} = 20$, einer Durchschnittsgeschwindigkeit $v = 190 \frac{m}{s}$ und einer Reiseflughöhe $h_{Cr} = 11887$ m ergibt sich eine zusätzliche Flugzeit t_{desc} von 1252 Sekunden. Diese wird hier sicherheitshalber auf 0,5 Stunden gerundet.

Tabelle 7.21 Masse des zusätzlichen Kerosins für die Brennstoffzelle

	Einheit	A320	A330-200	A340-600	A380-800
Flugzeit	h	0,5	0,5	0,5	0,5
elektrische Leistung	kW	180	230	360	600
Kerosinmassenstrom	kg/h	27	34	54	90,4
Kerosinmasse	kg	14	17	27	45

Der Massenstrom $m_{DrainMast}$ an Wasser, welcher über den Drain Mast das System verlässt, wird mit der Formel 7.6 beschrieben.

$$\overset{\bullet}{m}_{DrainMast} = \overset{\bullet}{m}_{BZab} - \overset{\bullet}{m}_{BZzu} - \frac{3}{4} \cdot \overset{\bullet}{m}_{Toilette}$$

$$(7.6)$$

Dabei wird unterstellt, dass ¼ des Abwassers aus den Toiletten durch eine Dehydrierung dem System wieder zugeführt wird.

Zusammenfassend ist in der Tabelle 7.22 die Aufteilung der Einzelmassen ersichtlich.

Die Masse der Gesamtkomponenten ergeben sich aus

$$m_{Komponenten,gesamt} = m_{BZ\,System} + m_{Komponenten} \quad , \tag{7.7}$$

die im System vorhandene Masse an Wasser aus

$$m_{Wasser} = m_{Wasservorrat} + m_{Wassersammel.}$$
(7.8)

und die gesamte Kerosinmasse aus

$$m_{Keros.} = m_{Keros.BZ} + m_{Keros.zusatz}$$
(7.9)

Tabelle 7.22 Massen des OBOWAGS®

Parameter	Einheit	A320	A330-200	A340-600	A380-800
Masse der Komponenten	kg	156	315	381	539
Masse des Brennstoffzellensystems	kg	216	276	432	820
Masse der Komponenten, gesamt	kg	372	591	813	1359
Wassermasse	kg	150	250	250	345
Kerosinmasse	kg	126	269	588	1099
Gesamtmasse OBOWAGS	kg	648	1110	1651	2803
variable Masse	kg	112	252	561	1054
Massenstrom Drain Mast	kg/s	0,0044	0,0058	0,0092	0,0172
fixe Masse	kg	536	858	1090	1749

7.4.4 Wartungskosten

Vorausgesetzt, ein Stackwechsel erfolgt frühestens nach 40.000 Betriebsstunden, werden bei Brennstoffzellen geringere Wartungskosten erwartet als bei Motoren, da unter anderem keine mechanisch bewegten Teile verwendet werden, kein Ölwechsel durchzuführen ist, etc.. Bei den gegebenen Flugmissionsparametern der verschiedenen Flugzeuge sind bis 80.000 Betriebsstunden der Brennstoffzelle veranschlagt. Ausgehend davon, dass bei Markteinführung die Zuverlässigkeit und die Betriebsdauer einer Brennstoffzelle optimiert sind - gegeben durch das Anwenderprofil – werden durch Vergleiche mit **Tabelle 7.23** Wartungs- und Instandhaltungskosten von 0,015 US\$/kWh angenommen. Als Vergleich: Die Firma Vaillant (PEMFC-Brennstoffzellen für die Hausversorgung) hat sich als Vorgabe gesetzt, für ihre Brennstoffzel-len eine Einsatzzeit von 15 Jahren bei bis zu 80.000 Betriebsstunden zu erreichen. Eine Wartung soll alle 2 Jahre und eine Inspektion jedes Jahr erfolgen.

Die zu erwartenden Investitions- und Wartungs-/Instandsetzungskostenkosten von Brennstoffzellen-Systemen sind in der **Tabelle 7.23** enthalten. Für einen Vergleich sind die Kenndaten eines Verbrennungsmotoren-BHKW (Gas) mit aufgezeichnet.

	Einheit	Verbren- nungs- motor	PEMFC	PAFC	MCFC	SOFC	SOFC- Gasturbine	
Leistungsgrößen	kW	5-350	< 250	200	> 250	1-200	> 250	
Investitionen	DM/kW	2.160 bis 4.600	1.800 bis 4.500	3.250 bis 6.500	1.500 bis 2.500	*	1.300 (US\$/kW)	
Wartung und Instandsetzung	PF/kWh	2,5-4,2	1,0	< 3,3	2,7-3,2	*	*	

 Tabelle 7.23
 Erwartete Investitions- und Wartungs-/Instandsetzungskosten von BZ-Systemen (nach Oertel 2001, S. 189)

* keine Daten verfügbar

Zu den erwarteten Investitions- und Wartungskosten von Brennstoffzellensystemen kommen Wartungskosten für Systeme wie Vorratsbehälter, Leitungen, Wasseraufbereitung und Dehydrierung hinzu. Für diese Abschätzung werden die Wartungskosten des Wasser- und Abwassersystems der konventionellen Flugzeuge zugrunde gelegt. Da beim OBOWAGS[®] zusätzliche Komponenten zur Wasseraufbereitung und Dehydrierung vorhanden sind, werden hier um 30 % höhere Wartungskosten angenommen (**Tabelle 7.24**).

Tabelle 7.24Wartungskosten Wasser-/Abwassersystem (Abschätzung nach Tabelle 7.10)

U		-	<u> </u>		/
	Einheit	A320	A330-200	A340-600	A380-800
Wartungskosten am Flugzeug	MMH/FH	0,014	0,025	0,030	0,085
Wartungskosten außerhalb des Flugzeugs	MMH/FH	0,042	0,060	0,068	0,098
Materialkosten am Flugzeug	\$/FH	0,118	0,159	0,212	1,079
Materialkosten außerhalb des Flugzeugs	\$/FH	0,777	0,941	1,140	1,859

Bei den Wartungskosten des OBOWAGS[®] ist zu beachten, dass die Kosten für das Hilfstriebwerk (APU) und die Stauluftturbine (RAT) nicht berücksichtigt werden, da diese Komponenten beim OBOWAGS[®] entfallen.

Die angenommenen Kosten von 0,015US\$/kWh für Wartung und Instandsetzung des Brennstoffzellensystems beinhalten nicht die Komponenten einer Druckbeaufschlagung. Da diese Komponenten (Verdichter und Turbine) den Bauteilen eines Hilfstriebwerkes ähnlich sind, werden die Kosten entsprechend abgeschätzt (**Tabelle 7.25**). Somit entfallen nur die Wartungs- und Instandsetzungskosten der Stauluftturbine (RAT).

Tabelle 7.25	Wartungskosten Verdichte	er/Turbine ((Abschätzung na	ch Tabelle 7.12)

	Einheit	A320	A330-200	A340-600	A380-800
Wartungskosten am Flugzeug	MMH/FH	0,002	0,002	0,003	0,02
Wartungskosten außerhalb des Flugzeugs	MMH/FH	0,02	0,02	0,02	0,03
Materialkosten am Flugzeug	\$/FH	0,07	0,08	0,09	0,51
Materialkosten außerhalb des Flugzeugs	\$/FH	1,13	1,25	1,43	1,68

Die gesamten Wartungs- und Instandsetzungskosten des OBOWAGS[®] C_{OBOWAGS} setzen sich aus den folgenden Einzelkosten C_i zusammen

$$C_{OBOWAGS} = C_{Brennstoffzelle} + C_{Wasserkomponenten} + C_{Verdichter / Turbine}$$
(7.10)

und sind in der Tabelle 7.26 ersichtlich.

Tabelle 7.26	Wartungs- und In	standhaltungskosten	für die <i>DOCs</i> _{vs} -Eingabe
	U	U	J J

	Einheit	A320	A330-200	A340-600	A380-800
Wartungskosten am Flugzeug	MMH/FH	0,040	0,057	0,079	0,191
Wartungskosten außerhalb des Flugzeuges	MMH/FH	0,056	0,077	0,087	0,133
Materialkosten Gesamt	\$/FH	2,097	2,429	2,866	3,159

Für die DOC des OBOWAGS[®] sind darüber hinaus noch die Kosten des Kraftstoffes zu berücksichtigen. Die Kraftstoffkosten pro Jahr (US\$/a) errechnen sich aus dem benötigten Kraftstoffmassenstrom pro Stunde (l/h) mal die Anzahl der Flugstunden pro Jahr mal den Kraftstoffpreis (US\$/l). Sie müssen der DOC zugerechnet werden (**Tabelle 7.27**).

Tabelle 7.27 Kraftstoffkostenanteil pro Jahr für die Brennstoffzelle

	Einheit	A320	A330-200	A340-600	A380-800				
durchschnittliche elektr. Leistung	kWh	108	138	216	410				
Kostenanrechnung BZ	US\$/a	14022	22708	38102	71585				

7.4.5 Stauluftentnahme

Stauluft wird für die Funktion der Brennstoffzelle benötigt und muss beim OBOWAGS[®] berücksichtigt werden. Der benötigte Luftmassenstrom wird von der Brennstoffzelle vorgegeben. Als zusätzliche Werte gibt es die Staulufteintritts- und Stauluftaustrittsflächen sowie den Öffnungswinkel der Stauluftaustrittsklappe. Da sich die Klappe im Staulufteinlasskanal nach innen hin öffnet, kann sie als unkritisch in Bezug auf den Widerstand angesehen werden. Die Klappe am Stauluftauslasskanal wird nach außen geöffnet und hat damit Einfluss auf den Widerstand des Flugzeuges. Bestehende Angaben oder Berechnungsbasisdaten für den zusätzlichen Wi-derstandsbeiwert für diese Klappe standen im Rahmen dieser Arbeit nicht zur Verfügung. Da dieser Einfluss im Verhältnis zu den anderen Komponenten jedoch gering ist, wird dieser Wert bei der nachfolgenden Arbeit nicht berücksichtigt. Der Stauluftmassenstrom, welcher für die DOC_{sys} -Berechnung von Bedeutung ist, ergibt sich aus der Differenz von benötigter Luftmenge und Abgasmenge der Brennstoffzelle (**Tabelle 7.28**).

Tabelle 7.28 Nettostauluftbedarl

	Einheit	A320	A330-200	A340-600	A380-800
Luftbedarf	m³⁄s	0,07805	0,14092	0,15609	0,33243
Luftabgabe	m³∕s	0,077944	0,1407339	0,15589	0,3319877
Netto-Stauluft	m³∕s	0,000106	0,0001861	0,0002	0,0004423

In der **Tabelle 7.29** und im **Bild 7.6** sind die DOC, die durch das OBOWAGS[®] verursacht werden, dargestellt.

	A320	A330-200	A340-600	A380-800
Finhait	US\$	US\$	US\$	US\$
Enner	$Flugzeug \cdot Jahr$	Flugzeug · Jahr	Flugzeug · Jahr	Flugzeug · Jahr
Abschreibungskosten	9401	17932	24482	42484
Kosten durch Wartung und Instandhaltung Kraftstoffkosten durch:	36559	60071	78666	106305
- Transport von fixen Massen	17157	29850	48505	81789
- Transport von variablen Massen	1637	3940	11088	21585
- Wellenleistungsentnahme	0	0	0	0
- Zapfluftentnahme	0	0	0	0
- Stauluftentnahme	1	1	1	3
- Luftwiderstand	0	0	0	0
- Brennstoffzelle	14022	22708	38102	71585
DOC _{sys}	78777	134502	200844	323751

7.5 Zusammenfassender Vergleich der Berechnungsergebnisse

Mit Hilfe der in den vorangegangenen Abschnitten beschriebenen Methoden und Eingabedaten werden die Betriebskosten für das konventionelle System und für das OBOWAGS[®] in Flugzeugen berechnet.

Für die Festlegung der Systemgrenzen des konventionellen Systems und des OBOWAGS[®] wird berücksichtigt, dass das OBOWAGS[®] kein reines Wassersystem ist, sondern auch die gesamte elektrische Energie sowie einen Teil der Druckluft bereitstellt. In der **Tabelle 7.30** sind die Ergebnisse in absoluten Werten zusammengestellt und in **Tabelle 7.31** in relativen Werten. Die Betriebskosten der beiden verschiedenen Systeme werden unter Berücksichtigung der folgenden Parameter berechnet:

- Abschreibung
- Kraftstoffkosten für fixe und variable Massen
- Kraftstoffkosten für Wellenleistungs- und Zapfluftentnahme
- Wartungskosten
- Kraftstoffkosten durch Zapfluftentnahme

0	n
7	υ

Tabelle 7.30absoluter Vergleich der DOC_{svs} des OBOWAGS[®] zum konventionellen System

A320	A330-200	A340-600	A380-800
US\$	US\$	US\$	US\$
$Flugzeug \cdot Jahr$	Flugzeug · Jahr	Flugzeug · Jahr	Flugzeug · Jahr
110117	190828	306139	575071
78777	134502	200844	323751
31340	56326	105295	251320
	A320 US\$ Flugzeug · Jahr 110117 78777 31340	A320 A330-200 US\$ US\$ Flugzeug · Jahr Flugzeug · Jahr 110117 190828 78777 134502 31340 56326	A320 A330-200 A340-600 US\$ US\$ US\$ Flugzeug · Jahr Flugzeug · Jahr Flugzeug · Jahr 110117 190828 306139 78777 134502 200844 31340 56326 105295

Tabelle 7.31	relativer Vergleich der DOC _{svs} des OBOWAGS [®] zum konventionellen System	
--------------	--	--

	A320	A330-200	A340-600	A380-800
Einheit	%	%	%	%
DOC _{sys} konventionelles System	100	100	100	100
DOC _{sys} OBOWAGS	72	70	66	56

Im **Bild 7.7** werden die Betriebskosten des OBOWAGS[®] und des konventionellen Systems als absoluter Vergleich und im **Bild 7.8** als relativer Vergleich dargestellt. In diesem ersten Vergleich lässt sich ersehen, dass in diesem Modell bei allen ausgewählten Flugzeugtypen eine Wirtschaftlichkeit des OBOWAGS[®] gegeben ist.

Bei den Kurz- und Mittelstreckenflugzeugen sind Einsparungen bei den direkten Betriebskosten bis zu 30% zu verzeichnen. Eine noch deutlichere Verbesserung der Wirtschaftlichkeit durch den Einsatz des OBOWAGS[®] lässt sich bei den Langstreckenflugzeugen A340-600 und A380-800 feststellen. Die Einsparungen durch das OBOWAGS[®] liegen beim A340-600 im Verhältnis zum konventionellen System bei 34 % und beim A380-800 sogar bei 44 %. Daraus lässt sich der Rückschluss ziehen, dass mit steigender Passagierzahl und dem damit höheren Wasser- und Energieverbrauch die Einsparungen durch das OBOWAGS[®] zunehmen.

Da als Eingangsparameter für beide Langstreckenflugzeuge eine Flugzeit von 17 Stunden angenommen wird, lässt sich in dieser Auswertung kein Rückschluss über den Einfluss der Flugmissionszeit auf das Einsparungspotential des OBOWAGS[®] ziehen. Eine Untersuchung dieses Einflusses erfolgt in den vorgestellten Szenarien im **Kapitel 8**.

7.6 DOC des OBOWAGS[®] mit den Optionen Luftbefeuchtung und Duschen

In den zukünftigen Flugzeugen A340-600 und A380-800 soll eine separate Luftbefeuchtung für das Cockpit und den Ruhebereich der Piloten angeboten werden. Für das Wohlbefinden ist es erstrebenswert, eine Luftfeuchte von 20 % zu erhalten. Berechnungen von Airbus gehen von einem Wasserbedarf für die Luftbefeuchtung von 5,9 kg pro Stunde aus. Diese beinhalten ein 15 % iges Entweichen des Wassers über die Verkleidung an die Außenhaut, an welcher es auskondensiert und über ein Drainagesystem über Bord gegeben wird. Damit hat die Luftbefeuchtung keinen Einfluss auf die fixen Massen des Systems.

Zusätzlich kann den Flugzeugbetreibern die Option angeboten werden, ihren Passagieren das Duschen an Bord des A380-800 zu ermöglichen. Der Wasserbedarf für das Duschen ohne eine Aufbereitung wird mit 70 Liter pro 10 Minuten Duschzeit veranschlagt. Bei einer Aufbereitung und Rezirkulation des Duschwassers wird von einem Wasserbedarf von 25 Liter pro Duschgang ausgegangen, welcher als Basis für diese Berechnungen gewählt wird. Die Anzahl der Passagiere, die das Duschen an Bord während der Flugzeit benutzen, wird auf 30 Personen festgelegt.

Mit dem im Rahmen dieser Arbeit erstellten $SOFC_{sys}$ -Programm (nähere Erläuterung im **Anhang B**) wird ermittelt, dass bei einer durchschnittlichen elektrischen Leistung von 216 kWh beim A340-600 die Brennstoffzelle 77 Liter Wasser pro Stunde abgibt. Der Wasserbedarf inklusive der Luftbefeuchtung (**Tabelle A.4**) ist geringer und beträgt nur 72 Liter pro Stunde. Das bedeutet, dass das OBOWAGS[®] die Anforderungen aus der Luftbefeuchtung mit übernehmen kann, ohne dass sich die Betriebskosten ändern. Beim A380-800 reicht die durchschnittliche elektrische Leistung von 410 kW nicht aus, um den Wasserbedarf inklusive Luftbefeuchtung und Duschen zu decken. Es wird mit einer angepassten elektrischen Leistung gerechnet (**Tabelle 7.32**). Die Betriebskosten, die durch die Mehrleistung entstehen, werden dem OBOWAGS[®] angerechnet.

	Einheit	A380-800
durchschnittliche elektrische Leistung	kWh	460
Brennstoff	l/h	67
Flugzeit pro Mission	h	16
Anzahl der Flüge pro Jahr	n	334
Kraftstoffpreis	US\$/I	0,21
Kraftstoffkosten pro Jahr gesamt	US\$/a	78556

Kraftstoffkosten pro Jahr für die Brennstoffzelle (Optionen)

Für die DOC_{sys} inklusive der Optionen sind die folgenden Komponenten zu berücksichtigen und zu berechnen:

- Kraftstoffmasse

Tabelle 7.32

- Gesamtmasse OBOWAGS®
- variable Masse
- Massenstrom Drain Mast
- Kraftstoffkosten Gesamtmasse

In **Tabelle 7.33** erfolgt eine zusammenfassende Darstellung der Betriebskosten des konventionellen Systems, des OBOWAGS[®] sowie des OBOWAGS[®] inklusive der Kosten, die durch die Luftbefeuchtung und das Duschen an Bord mit einer Aufbereitung des Duschwassers entstehen. Die Betriebskosten des konventionellen Systems werden aus Gründen der Vollständigkeit mit aufgelistet. Es sei aber angemerkt, dass ein direkter Vergleich zwischen dem OBOWAGS[®] (Optionen) und dem konventionellen System nicht möglich ist, da in beiden Systemen ein unterschiedlicher Wasserbedarf vorliegt.

	Konventionelles System	OBOWAGS®	OBOWAGS [®] inkl. Optionen
Finhait	US\$	US\$	US\$
Ennen	Flugzeug · Jahr	Flugzeug · Jahr	Flugzeug · Jahr
Abschreibungskosten	101220	42484	45484
Kosten durch Wartung und Instandhaltung Kraftstoffkosten durch:	120735	106305	121460
- Transport von fixen Massen	124204	81789	86466
- Transport von variablen Massen	24581	21585	23327
- Wellenleistungsentnahme	72449	0	0
- Zapfluftentnahme	131882	0	0
- Stauluftentnahme	0	3	3
- Luftwiderstand	0	0	0
- Brennstoffzelle	-	71585	77358
DOC _{sys}	575071	323751	354098

 Tabelle 7.33
 Absoluter Vergleich der Betriebskosten des A380-800

Bild 7.9 Absoluter Vergleich der Betriebskosten des A380-800

Die Betriebskosten des OBOWAGS[®] und des OBOWAGS[®] (Optionen) zeigt das **Bild 7.9** in einem quantitativen Vergleich. Zur Vollständigkeit sind auch hier die DOC des konventionellen Systems mit aufgezeigt. Es zeigt sich, dass beim OBOWAGS[®] (Optionen) im Vergleich zum OBOWAGS[®] um 9 % höhere Betriebskosten zu veranschlagen sind, um den Wasserbedarf der Luftbefeuchtung und des Duschens zu gewährleisten.

8 Szenarien

Um den Einfluss verschiedener Faktoren, wie sie im **Abschnitt 7** angesprochen wurden, tendenziell abwägen zu können, werden in dieser Arbeit die Parameter Flugmissionszeit und ein in Zukunft zu erwartender höherer Kraftstoffpreis näher untersucht. Des Weiteren wird die Investitionskostengrenze des wirtschaftlichen Einsatzes des OBOWAGS[®] in verschiedenen Flugzeugtypen ermittelt.

8.1 Parameter Flugmissionszeit

Die verschiedenen maximalen Reichweiten von Airbusflugzeugen sind nach Aussage der Airbus-Abteilung **ECYS3** definiert. Die Flugzeuge sollten theoretisch zwar so einzusetzen sein, dass die maximale Reichweite ausgenutzt wird, jedoch lässt sich dies in der Praxis oft nicht umsetzen. Um den Einfluss der Reichweite auf die wirtschaftlichen Aspekte von Flugzeugsystemen vergleichen zu können, wird mit einer Flugmissionszeit von 60 % der maximalen Flugzeit gerechnet. Für die Abschätzung der Flüge pro Jahr wird zunächst die Nutzung von Flugzeugen betrachtet. Diese wird in **Scholz 2000** (S. 14-35) als eine Funktion in Abhängigkeit von der Flugzeit definiert.

$$NFY = \frac{k_{U1}}{t_f + k_{U2}}$$
(8.1)

Mit der Nutzung verschiedener DOC-Methoden wurden in Scholz 2000 (S. 14-35) die Parameter zur Flugzeugausnutzung k_{U1} und k_{U2} berechnet. Diese sind in der Tabelle 8.1 dargestellt.

Tapelle o. 1 Pala	imeter zur Flugzeu	gaushulzung (nach Scholz z	000)
Quelle		k_{U1} [h]	$k_{\mathrm{U2}}\left[\mathbf{h} ight]$
NASA 1977		3205	0,327
AEA 1989		3750	0,750
AEA 1989b		4800	0,420
Airbus 1988			
R < 1000nm		3994	0,754
1000nm R 20	000nm	5158	1,650
2000nm < R		6566	3,302

 Tabelle 8.1
 Parameter zur Flugzeugausnutzung (nach Scholz 2000)

Mit der vorgegebenen Flugzeit für die einzelnen Flugzeuge lässt sich nun die Anzahl der Flüge pro Jahr ermitteln. In **Tabelle 8.2** werden die Flugzeit und die Anzahl der Flüge pro Jahr gezeigt. Als Grundlage werden die Parameter von **Airbus 1988** gewählt.

	Einheit	A320	A330-200	A340-600	A380
Flugmissionszeit 1.Rechnung	h	7	12	17	17
Flugmissionszeit 2.Rechnung	h	4,2	7,2	10,2	10,2
Anzahl der Flüge pro Jahr für 2. Rechnung	n	881	625	486	486

Tabelle 8.2Anzahl der Flüge pro Jahr (NFY)

Bei diesen verkürzten Flugzeiten ist zu berücksichtigen, dass standardmäßig die benötigte Wassermenge an die Flugzeit und Passagieranzahl angepasst wird. Laut Airbus-Abteilung Water/Waste **ECYS3** wird beim A320 diese Anpassung nicht vorgenommen, da hier der Wasservorrat von 200 Litern relativ gering ist und die Mehrkosten durch den Transport des zusätzlichen Wassers akzeptiert werden. Unter Berücksichtigung dieser Parameter und einer Neuberechnung der Massen des Wassersystems ergeben sich die DOC für konventionelle Systeme bei verkürzter Flugmissionszeit wie in **Tabelle 8.3** dargestellt und für das OBOWAGS[®] wie in **Tabelle 8.4** dargestellt.

Tabelle 8.3 Betriebskosten konventioneller Systeme bei verkürzter Flugzeit

	A320	A330-200	A340-600	A380-800
Finhait	<i>US</i> \$	US\$	US\$	US\$
Ennen	Flugzeug · Jahr	Flugzeug · Jahr	Flugzeug · Jahr	$Flugzeug \cdot Jahr$
Abschreibungskosten	27270	41880	64380	101220
Kosten durch Wartung und Instandhaltung Kraftstoffkosten durch:	26501	39109	49594	108997
- Transport von fixen Massen	22828	36030	55552	96513
- Transport von variablen Massen	1746	3566	6921	12686
- Wellenleistungsentnahme	8356	14013	25875	61262
- Zapfluftentnahme	13331	29508	54673	107355
- Stauluftentnahme	0	0	0	0
- Luftwiderstand	0	0	0	0
DOC _{sys}	100032	164106	256995	488033

Tabelle 8.4 Betriebskosten des OBOWAGS[®] bei verkürzter Flugzeit

	A320	A330-200	A340-600	A380-800
Finhait	US\$	US\$	US\$	US\$
Ennieit	Flugzeug · Jahr	Flugzeug · Jahr	Flugzeug · Jahr	Flugzeug · Jahr
Abschreibungskosten	9401	17932	24482	42484
Kosten durch Wartung und Instandhaltung Kraftstoffkosten durch:	37531	52510	71019	95971
- Transport von fixen Massen	18148	24691	39863	69868
 Transport von variablen Massen 	837	1925	5548	11139
- Wellenleistungsentnahme	0	0	0	0
- Zapfluftentnahme	0	0	0	0
- Stauluftentnahme	1	1	1	3
- Luftwiderstand	0	0	0	0
- Brennstoffzelle	12438	19852	34374	64582
DOC _{sys}	78356	116911	175287	284047

Nachfolgend werden in der **Tabelle 8.5** die DOC des OBOWAGS[®] im relativen Vergleich zu den DOC der konventionellen Systeme jeweils bei verkürzter Flugzeit dargestellt.

 Tabelle 8.5
 Relativer Vergleich der Betriebskosten des OBOWAGS[®] zum konventionellen System bei verkürzter Flugzeit

	A320	A330-200	A340-600	A380-800
Einheit	%	%	%	%
DOC _{sys} konventionelles System	100	100	100	100
DOC _{sys} OBOWAGS	78	72	68	58

Bild 8.1 Absoluter Vergleich der Betriebskosten des OBOWAGS[®] zum konventionellen System bei verkürzter Flugzeit

Bild 8.2 Relativer Vergleich der Betriebskosten des OBOWAGS[®] zum konventionellen System bei verkürzter Flugzeit

Im **Bild 8.1** werden die Betriebskosten des OBOWAGS[®] und des konventionellen Systems als quantitativer Vergleich bei verkürzter Flugzeit und im **Bild 8.2** als qualitativer Vergleich dargestellt. In diesem Vergleich lässt sich feststellen, dass auch bei verkürzter Flugzeit bei allen ausgewählten Flugzeugtypen eine Wirtschaftlichkeit des OBOWAGS[®] gegeben ist.

Bei den Kurzstreckenflugzeugen vom Typ A320 sind Einsparungen bei den direkten Betriebskosten im Verhältnis zum konventionellen System von 22% zu verzeichnen und bei den Mittelstreckenflugzeugen vom Typ A330-200 von 28 %. Bei den Langstreckenflugzeugen liegen die Einsparungen durch das OBOWAGS[®] im Verhältnis zum konventionellen System beim A340-600 bei 32 % und beim A380-800 bei 42 %.

Im Vergleich zu den errechneten Werten bei maximaler Flugzeit (**Bild 7.8**) lässt sich hier feststellen, dass eine Verkürzung der Flugzeit um 40 % bei den Mittel- und Langstreckenflugzeugen eine durchschnittliche Verringerung der Kosteneinsparungen um 2 % im qualitativen Vergleich verursacht, beim A320 jedoch eine Verringerung von 6 %.

Aus der Verringerung des Einsparpotentials bei Verkürzung der Flugmissionszeit läst sich prinzipiell schließen, dass die Effizienz des OBOWAGS[®] vom Einfluss des Parameters Flugmissionszeit abhängig ist und sich mit zunehmender Flugmissionszeit erhöht.

8.2 Parameter Kraftstoffpreis

Obwohl der Kraftstoffpreis immer etwas variiert, blieb er doch in den letzten Jahren relativ konstant. Die bisherigen Rechnungen basierten auf einem Kraftstoffpreis von 0,21 US\$ pro Liter (0,80 US\$ pro US Gallone; 1 Gal = 3,78524 l), welcher von der Airbus-Abteilung Configuration (**ETXGI**) festgelegt wurde. In **Scholz 2000** (S. 14-25) werden die Angaben von Kerosinpreisen aus verschiedenen Quellen verglichen. Dabei wurde ein durchschnittlicher Kraftstoffpreis von 0,2 US\$ pro Liter ermittelt. Momentan wird in Deutschland auf Kerosin keine Steuer erhoben. Da jedoch in letzter Zeit aufgrund der rapide ansteigenden Luftverschmutzung auch durch den wachsenden Flugverkehr die Forderungen nach einer Klimaschutzabgabe pro Liter Kerosin stärker werden, soll der tendenzielle Einfluss eines höheren Kraftstoffpreises beim Einsatz des OBOWAGS[®] aufgezeigt werden. In diesem Szenarium wird ein um 50 % höherer Kraftstoffpreis gewählt, d.h. pro Liter Kerosin werden 0,315 US\$/1 veranschlagt. Als Grundlage werden die DOC bei verringerter Flugmissionszeit gewählt, da diese Werte realitätsnaher sind als die Annahmen bei maximaler Flugzeit.

In der **Tabelle 8.6** sind die Betriebskosten der konventionellen Systeme und in der **Tabelle 8.7** die Betriebskosten des OBOWAGS[®] jeweils bei einem Kraftstoffpreis von 0,315 US\$/1 unter Einbeziehung der Daten bei verkürzter Flugmissionszeit dargestellt.

	A320	A330-200	A340-600	A380-800
Einhoit	US\$	US\$	US\$	US\$
Ennier	$Flugzeug \cdot Jahr$	Flugzeug · Jahr	Flugzeug · Jahr	Flugzeug · Jahr
Abschreibungskosten	27270	41880	64380	101220
Kosten durch Wartung und Instandhaltung Kraftstoffkosten durch:	26501	39109	49594	108997
- Transport von fixen Massen	34243	54045	83329	144770
- Transport von variablen Massen	2620	5350	10382	19029
- Wellenleistungsentnahme	12534	21020	38813	91893
- Zapfluftentnahme	19996	44262	82010	161032
- Stauluftentnahme	0	0	0	0
- Luftwiderstand	0	0	0	0
DOC _{sys}	123164	205666	328508	626941

 Tabelle 8.6
 Betriebskosten konventioneller Systeme bei verkürzter Flugzeit und erhöhtem Kraftstoffpreis

Tabelle 8.7 Betriebskosten des OBOWAGS[®] bei verkürzter Flugzeit und erhöhtem Kraftstoffpreis

	A320	A330-200	A340-600	A380-800
Finhait	US\$	US\$	US\$	US\$
Ennier	Flugzeug · Jahr	Flugzeug · Jahr	Flugzeug · Jahr	Flugzeug · Jahr
Abschreibungskosten	9401	17932	24482	42484
Kosten durch Wartung und Instandhaltung Kraftstoffkosten durch:	37531	52510	71019	95971
- Transport von fixen Massen	27223	37037	59795	104802
- Transport von variablen Massen	1244	2888	8322	16709
- Wellenleistungsentnahme	0	0	0	0
- Zapfluftentnahme	0	0	0	0
- Stauluftentnahme	1	1	1	3
- Luftwiderstand	0	0	0	0
- Brennstoffzelle	18658	29778	51562	96874
DOC _{sys}	94058	140146	215181	356843

Nachfolgend werden in der **Tabelle 8.8** die DOC des OBOWAGS[®] im relativen Vergleich zu den DOC der konventionellen Systeme jeweils bei verkürzter Flugzeit und erhöhtem Kraftstoffpreis dargestellt.

 Tabelle 8.8
 Relativer Vergleich der Betriebskosten des OBOWAGS[®] zum konventionellen System bei verkürzter Flugzeit und erhöhtem Kraftstoffpreis

			-	
	A320	A330-200	A340-600	A380-800
Einheit	%	%	%	%
DOC _{sys} konventionelles Wassersystem	100	100	100	100
DOC _{sys} durch OBOWAGS	76	68	66	56

Bild 8.4 Relativer Vergleich der Betriebskosten des OBOWAGS[®] zum konventionellen System bei verkürzter Flugzeit und erhöhtem Kraftstoffpreis

Im **Bild 8.3** werden die Betriebskosten des OBOWAGS[®] und des konventionellen Systems als absoluter Vergleich und im **Bild 8.4** als relativer Vergleich bei verkürzter Flugzeit und erhöhtem Kraftstoffpreis dargestellt. Im Vergleich mit **Bild 8.1** und **Bild 8.2** lässt sich durch die Erhöhung des Kraftstoffpreises um 50 % eine durchschnittliche Verbesserung der DOC des OBOWAGS[®] im Verhältnis zu den DOC der konventionellen Systeme um 2 % feststellen.

Diese Tendenz ist vor allem darin begründet, dass beim herkömmlichen System die chemische Energie des Kerosins zunächst in mechanische und anschließend in elektrische Energie umgewandelt werden muss. Das Brennstoffzellensystem kann im Unterschied dazu, die chemische Energie des Brennstoffes unmittelbar in elektrische Energie umwandeln und benötigt daher weniger Kerosin zur Bereitstellung einer vergleichbaren Menge an elektrischer Energie als das herkömmliche System. Dementsprechend macht sich ein gestiegener Kraftstoffpreis bei der DOC des OBOWAGS[®] im relativen Vergleich zum konventionellen System positiv bemerkbar.

8.3 Ermittlung der Grenzinvestitionen des OBOWAGS[®]

Bei den vorangegangen Rechnungen wurde von spezifischen Investitionskosten des Brennstoffzellensystems von 1000 US\$ pro Kilowatt ausgegangen. Von Interesse ist, ab welchen Investitionskosten für das Brennstoffzellensystem die Wirtschaftlichkeit gerade noch gegeben ist (**Tabelle 8.9**). Als Bezugskosten werden die Berechnungsergebnisse bei verkürzter Flugzeit (**Tabelle 8.4**) gewählt, da diese Bilanzen von einer praxisnäheren Flugmissionszeit ausgehen.

	Einheit	A320	A330-200	A340-600	A380-800
Systempreis OBOWAGS [®]	US\$	500000	1100000	1800000	4100000
Komponentenkosten	US\$	48684	160880	192042	298067
Brennstoffzellensystemkosten	US\$	451316	939120	1607958	3801933
maximale elektrische Leistung	kWh	108	138	216	410
Spezifische Investitionskosten des BZ-Systems	US\$/kW	4179	6805	7444	9273

Tabelle 8.9 Spezifische Grenzinvestitionskosten des Brennstoffzellensystems

Diese Grenzinvestitionskosten stellen sich im Vergleich zu den von den Herstellern anvisierten Investitionskosten bei Markteinführung relativ hoch dar. Dies ist zunächst durch das Entfallen der Komponenten APU, RAT und IDG im OBOWAGS[®] begründet, die in die Berechnungen des konventionellen Systems bereits mit hohen Investitionskosten eingehen. Des Weiteren macht sich das Einsparpotential des OBOWAGS[®] bei den direkten Betriebskosten aufgrund der effektiveren Energieumwandlung positiv bemerkbar.

8.4 Abschließende Betrachtung

In den Abschnitten 7 und 8 werden die direkten Betriebskosten und die Investitionskosten des OBOWAGS[®] unter dem Einfluss von verschiedenen Parametern betrachtet und mit den entsprechenden Kosten des konventionellen Systems verglichen. Es hat sich dabei gezeigt, dass die DOC der verschiedenen Flugzeugtypen dem Einfluss der jeweiligen Parameter unterliegen und entsprechend variieren.

Grundsätzlich kann festgestellt werden, dass im Rahmen dieser Fallstudie ein Einsatz des OBOWAGS[®] in allen ausgewählten Flugzeugen wirtschaftlich sinnvoll ist. Besonders effizient ist das OBOWAGS[®] in den Flugzeugen, die durch hohe Passagierzahlen, lange Flugmissionszeiten und einen entsprechend großen Wasserbedarf gekennzeichnet sind. Dazu zählt vorrangig der A380-800.

Beim Parameter Flugzeit kann in dieser Untersuchung festgestellt werden, dass eine Wirtschaftlichkeit des OBOWAGS[®] auch dann gegeben ist, wenn die Flugzeuge nicht mit der Flugzeit betrieben werden, zu der sie ausgelegt sind. Das Einsparpotential des OBOWAGS[®] ist jedoch bei maximalen Flugmissionszeiten am größten, da bei Erhöhungen der Flugmissionszeit die Betriebskosten des OBOWAGS[®] im Verhältnis zu denen des konventionellen Systems weniger stark ansteigen.

Ein gestiegener Kraftstoffpreis verursacht bei allen Systemen erhöhte Betriebskosten. Im qualitativen Vergleich zeigt sich jedoch, dass der Einfluss dieses Parameters bei den DOC des OBOWAGS[®] geringer ist als bei den DOC des konventionellen Systems. Diese Tendenz ist vor allem darin begründet, dass beim herkömmlichen System die chemische Energie des Kerosins zunächst in mechanische und anschließend in elektrische Energie umgewandelt werden muss, was größere Verluste verursacht.

Abschließend kann festgestellt werden, dass sich bei den anvisierten Einstiegskosten von ca. 1000 US\$/kW der Einsatz eines OBOWAGS[®] für alle in diesem Modell untersuchten Flugzeuge wirtschaftlich darstellt.

9 Zusammenfassung und Ausblick

Ziel dieser Ausarbeitung ist es, ein geeignetes Brennstoffzellensystem für die Wassergenerierung in Flugzeugen auszuwählen und hinsichtlich der Wirtschaftlichkeit zu beurteilen.

Ein zentraler Punkt ist hierbei zunächst die Auswahl und Auslegung des Brennstoffzellensystems. Dazu müssen die verschiedenen in Frage kommenden Brennstoffzellen-Systeme untersucht und hinsichtlich Einsatzmöglichkeiten, benötigter Brennstoffe, Systemkosten und Wirkungsgrade verglichen werden. Das ausgewählte System ist entsprechend der Anforderungen für den Einsatz im Flugzeug auszulegen und zu berechnen, um die Grundlagen für die Wirtschaftlichkeitsbetrachtung zu schaffen. Im Rahmen dieser Arbeit wird dafür ein Rechenprogramm entwickelt, das die Eingangsparameter für das DOC_{sys} -Programm liefert. Da die Erstellung dieses Rechenverfahrens ($SOFC_{sys}$) einen wichtigen Bestandteil dieser Arbeit ausmacht, soll es im Anhang näher vorgestellt werden.

Ein weiterer Schwerpunkt liegt in der Ermittlung der DOC des aufgestellten Systems unter Betrachtung der entscheidenden Parameter und dem anschließenden Vergleich mit den DOC des bisherigen Wasser-/Abwassersystems. Die Betriebskosten der Systeme werden mit der Methode und dem Programm DOC_{sys} zur Berechnung der Betriebskosten von Flugzeugsystemen ermittelt.

Für die Ermittlung und den Vergleich der DOC werden für ausgewählte Airbus Flugzeugtypen die Wassersysteme angepasst, berechnet und ausgewertet. Anschließend wird eine Variation der Parameter Flugmissionszeit und Kraftstoffpreis vorgenommen, um eine tendenzielle Aussage über deren Einfluss zu geben. An dieser Stelle soll darauf hingewiesen werden, dass diese Berechnungen nur einen Teil des ganzen Feldes möglicher Szenarien darstellen.

Im Rahmen dieses theoretischen Modells wird grundsätzlich festgestellt, dass ein Einsatz des OBOWAGS[®] in allen untersuchten Flugzeugen wirtschaftlich sinnvoll ist. Die Effizienz des OBOWAGS[®] verdeutlicht sich vor allem bei den Flugzeugen, die durch hohe Passagierzahlen, lange Flugzeiten und einen entsprechend hohen Wasser- und Energiebedarf gekennzeichnet sind.

Durch die in diesem Modell vorgenommene Entkopplung des Triebwerksgenerators und die dadurch ermöglichte Einsparung von Wellenleistung zeigt sich, dass weiterführende Untersuchungen in diesem Bereich von großem Interesse sind. Ziel dabei ist es, die Aufgabe des Triebwerkes durch Entkopplung weiterer Komponenten auf Vorschuberzeugung zu beschränken und eine so genannte "clean engine" zu entwickeln. Abschließend sei anzumerken, dass die Brennstoffzellentechnologie hohe Zukunftsperspektiven bietet, zum heutigen Zeitpunkt jedoch noch nicht die technologische Reife besitzt, den Voraussetzungen zu entsprechen, die in dieser Modelluntersuchung angenommen werden. Um für den mobilen Einsatz, speziell den in Flugzeugen, eine geeignete Alternative darzustellen, muss die Brennstoffzellentechnologie so weiter entwickelt werden, dass sie den Anforderungen an Betriebsdauer, Zuverlässigkeit, Systemgewicht, Sicherheit und Investitionskosten genügen kann.

Literaturverzeichnis

AA 1980	AMERICAN AIRLINES: <i>DOC-Methode (Ausdruck des Autors)</i> zitiert nach Scholz 2000
AEA 1989a	ASSOCIATION OF EUROPEAN AIRLINES: Short-Medium Range Aircraft AEA Requirements. Brüssel: AEA, 1989 (G(T)5656) zitiert nach Scholz 2000
AEA 1989b	ASSOCIATION OF EUROPEAN AIRLINES: Long Range Aircraft AEA Requirements. Brüssel: AEA, 1989 (G(T)5656) zitiert nach Scholz 2000
AI 1989	AIRBUS INDUSTRIE: DOC-Methode (Ausdruck des Autors) zitiert nach Scholz 2000
Airbus 1988	AIRBUS INDUSTRIE: DOC-Methode (Ausdruck des Autors) zitiert nach Scholz 2000
Appleby 1987	APPLEBY, A.J.: Fuel Cell: Trends in Research and Applications. Ber- lin: Springer, 1987. – ISBN 3-540-17631-4
ASUE 2001	ARBEITSGEMEINSCHAFT FÜR SPARSAMEN UND UMWELTFREUNDLICHEN ENERGIEVERBRAUCH: <i>Brennstoffzellen und Mikro-KWK</i> . Band 20. Es- sen: Vulkan 2001. – ISBN 3-8027-5248-1
ATA 1967	AIR TRANSPORT ASSOCIATION OF AMERICA: Standard Method of Esti- mating Comparative Direct Operating Cost of Turbine Powered Transport Airplane. Washington D.C.: ATA, 1967. – zitiert nach Scholz 2000
ATHAS	ADVANCED THERMAL ANALYSIS LABORATORY. <i>Recommended Data of Thermodynamic Properties of Macromolecules</i> . Rev. 1997 URL: <u>http://web.utk.edu/~athas/databank/paraffin/c12/c12cala.html</u> (28.09.02)
Brune 2002	BRUNE, Markus: <i>Feinentschwefelung zur Versorgung von Brennstoff-</i> <i>zellenheizanlage mit Brenngas</i> . Karlsruhe, Universität Karlsruhe, 2002. – URL: http:// <u>www-gek.ciw.uni-karlsruhe.de/Mitarbeiter/Brune/</u> <u>body_brune.htm</u> (20.10.2002)

Colsman 1995	COLSMAN, Guido A.: Verfahrenstechnische Optimierung der Brenn- gaserzeugung für Brennstoffzellen in Kraftfahrzeugen. Aachen, Rhei- nisch-Westfälische Technische Hochschule, Fakultät für Maschinen- wesen, Dissertation, 23.10.1995
Dietzel 2001	DIETZEL, Fritz; Wagner, Walter: <i>Technische Wärmelehre</i> . 8. Aufl. Würzburg: Vogel, 2001. – ISBN 3-8023-1871-4
DLH 1982	LUFTHANSA: DLH Method 1982 for Definition of the Performance and Direct Operating Costs of Commercial Fixed Wing Aircraft. Hamburg: Lufthansa, 1982. – zitiert nach Scholz 2000
ECYE2	KRUMBHOLZ; Deutsche Airbus, Abt. Electric Installation ECYE2: Da- ten des Leistungsbedarfs pro ATA-Kapitel; Gewichte von Generato- ren. Persönliches Gespräch, Hamburg, 12.08.2002
ECYS2	ARLT; Deutsche Airbus, Abt. Water/Waste ECYS2: Maximale Was- sermassen. Persönliches Gespräch, Hamburg, 02.09.2002
ECYS3	LUTZER; Deutsche Airbus, Abt. Water/Waste ECYS3: <i>Temperaturdif-</i> <i>ferenz von Wärmetauschern; Generatorenwirkungsgrad; Reichweiten.</i> Persönliches Gespräch, Hamburg, 28.09.2002
EEV	ANELL; Deutsche Airbus, Abt. Auxiliary Power EEV: Preise von Hilfstriebwerken. Persönliches Gespräch, Hamburg, 26.11.2002
ETXGI	THRAMER; Deutsche Airbus, Abt. Configuration ETXGI: <i>Flugmecha-</i> nische Daten; Kraftstoffpreis. Persönliches Gespräch, Hamburg, 20.08.2002
Fokker 1993	VAN RHEE, G.: <i>DOC Roundrules 1993 for the Economic Evaluation of Fokker New Aircraft</i> . Amsterdam: Fokker Aircraft B.V., 1993 (RP-93-523. – zitiert nach Scholz 2000
Forschungsverbun	d 1999 HEINZEL, Angelika; PALM, Clemens; VOGEL, Bernhard: <i>Reformie-</i> <i>rung von Kohlenwasserstoffen</i> . Forschungsverbund Sonnenenergie "Themen 1999/2000"
Gieck 1995	GIECK, K. und R.: <i>Technische Formelsammlung</i> . 30. dt. Aufl. Germer- ing: Gieck, 1995. – ISBN 3-920379-21-7

- Goodger 1994 GOODGER, Eric: Jet Fuel Supply and Quality. Norwich: Landfall Press, 1994. ISBN 0-9520-1861-6
- Hakenesch 2002HAKENESCH, Peter: Technische Thermodynamik. München, Fachhoch-
schule, Fachbereich 03 Maschinenbau, Vorlesungsskript und Übungs-
aufgaben, 2002. URL: http://www.lrz-
muenchen.de/~thermodynamik (20.10.2002)
- h,s Diagram 1998 KRETZSCHMAR, H.; MOLLIER, J.: *h,s-Diagram for Water and Steam*. Berlin: Springer, 1998. – ISBN 3-540-64375-3
- Inchcape 1994INCHCAPE TESTING SERVICES GMBH: Certificate of quality: JET-A1.Hamburg: 1994. report of analysis No94/ p27307
- Kordesch 1996KORDESCH, Karl; SIMADER, Günter: Fuel Cell and Their Applications.Weinheim: VCH, 1996. ISBN 3-527-28579-2
- Lang 1997 LANG, Michael: Entwicklung und Charakterisierung von vakuumplasmagespritzten ZrO2/Ni-Anoden für oxidkeramische Festelektrolyt-Brennstoffzellen (SOFC). Düsseldorf: VDI, 2000. - ISBN: 3-18-343506-3 (Fortschritt-Berichte. Reihe 6, Nr.435)
- Ledjeff-Hey 2001 LEDJEFF-HEY, Konstantin; MAHLENDORF, Falko; ROES, Jürgen: Brennstoffzellen: Entwicklung Technologie Anwendungen. 2. Aufl. Heidelberg: C.F.Müller, 2001. - ISBN 3-7880-7629-1
- Lehmann 1994 LEHMAN, Heinz: Handbuch der Dampferzeugertechnik: Grundlagen und Betrieb. 3. Aufl. Bochum: Resch-Media Mail, 1992. – ISBN 3-87806-117-X

Lemke 2000 LEMKE, Jens: *Betriebskostenberechnung für Kabinensysteme*. Hamburg, Fachhochschule Hamburg, Fachbereich Fahrzeugtechnik, Diplomarbeit, 2000

Lokurlu 1999 LOKURLU, Ahmet: Simulation der Oxidkeramischen Brennstoffzelle "SOFC" mit nachgeschalteten Gas- und Dampfturbinen: Kombi-Anlagen für verschiedene Brenngase. Düsseldorf: VDI, 1999. - ISBN: 3-18-342506-8 (Fortschritt-Berichte, Reihe 6, Nr. 425)

- LORENZ, Hagen: Kaskade 01: Programm zur Ermittlung der spezifischen Wärmekapazität und der Enthalpie. Hamburg, Hochschule für Angewandte Wissenschaften, Labor für Hochtemperaturbrennstoffzellen, 2002. - URL: http://www.HAW-Hamburg.de/pers/Lorenz/ (12.07.2002)
- Lufthansa 1982LUFTHANSA: DLH Method 1982 for Definition of the Performance and
Direct Operating Costs of Commercial Fixed Wing Aircraft, Ham-
burg: Lufthansa, 1982. zitiert nach Scholz 2000
- Mann 1999MANN, Steffen: Experimentelle Untersuchungen des lokalen instatio-
nären Strömungsverhaltens mehrphasiger Medien im Abwassersystem
eines Groβraumflugzeugs. Berlin, TU Berlin, FB 11 Maschinenbau
und Produktionstechnik, Diplomarbeit, 1999
- Mildt 2000 MILDT, Carsten: Entwicklung einer Methode zur Abschätzung der Kosten für die Instandhaltung der Flugzeugzellen und –systeme im kommerziellen Flugzeugbau. Berlin, TU Berlin, Diplomarbeit, 2000. -URL: http://www.ilr.tu-berlin.de/LB/fed-sda/pdf/sa_mildt.pdf (05.09.2002)
- Oertel 2001 OERTEL, Dagmar; FLEISCHER, Torsten.: *Brennstoffzellen-Technologie: Hoffnungsträger für den Klimaschutz.* Berlin: Erich Schmidt, 2001. – ISBN: 3-503-06042-1
- PCD2OGUREK; Deutsche Airbus, Abt. Purchase PCD2: Preise von Stauluft-
turbinen. Persönliches Gespräch, Hamburg, 26.11.2002
- Rachner 1998RACHNER, Michael: Die Stoffeigenschaften von Kerosin Jet A-1. Köln:
Deutsches Zentrum für Luft- und Raumfahrt e.V., 1998. ISBN 1434-
8462
- Raymer 1989RAYMER, D.P.: Aircraft Design: A Conceptual Approach. WashingtonD.C.: AIAA Education Series, 1989
- Reich 1993 REICH, Ronald: *Thermodynamik: Grundlagen und Anwendungen in der allgemeinen Chemie.* 2. Aufl. Weinheim: VCH, 1993. ISBN 3-527-28266-1

Rohrbach 1997	ROHRBACH, Thomas: Untersuchung von Katalysatoren für eine inter- ne Reformierung in Hochtemperaturbrennstoffzellen und thermisches Systemverhalten. Stuttgart, Universität, Fakultät für Energietechnik, Dissertation, 01.07.1997
Schmolke 2000	SCHMOLKE, Siegfried; DEITERMANN, Manfred: Industrielles Rech-

Scholz 1997a SCHOLZ, Dieter; Applied Science Ingenieurbüro: *Betriebskostenbe*rechnung für Wassersysteme in Großraumflugzeugen. Neu Wulmsdorf: Applied Science Ingenieurbüro, 1997. – Abschlussbericht im Auftrag von MAN Technologie AG

nungswesen IKR. Darmstadt: Winklers, 2000. - ISBN: 3-8045-6652-9

- Scholz 1997bSCHOLZ, Dieter: Entwicklung eines CAE-Werkzeuges zum Entwurf von
Flugsteuerungs- und Hydrauliksystemen. Düsseldorf: VDI, 1997
(Fortschritt-Berichte, Reihe 20, Nr. 262)
- Scholz 1999SCHOLZ, Dieter; Applied Science Ingenieurbüro: $DOC_{sys} A$ Method
to Evaluate Aircraft Systems. Neu Wulmsdorf: Applied Science Inge-
nieurbüro, 1999. URL: http://udeedv.dyndns.org/scholz/ (25.10.02)
- Scholz 2000SCHOLZ, Dieter: Flugzeugentwurf. Hamburg, Hochschule für Ange-
wandte Wissenschaften, Vorlesungsskript, 2000
- Scholz 2002SCHOLZ, Dieter: Preise und Wartungs-/Materialkosten von Systembe-
standteilen: Telefongespräch. Hamburg, 25.09.2002
- Steinfort 2000 STEINFORT, Marc: Fortgeschrittene Systemlösungen für einen elektrochemischen Energieumwandler mit materialsparender Zell- und Stapel-Konzeption. Clausthal, Technische Universität, Fakultät für Bergbau, Hüttenwesen, Maschinenwesen, Dissertation, 19.05.2000
- Steinmüller 1992WITTE, U.(Hrsg.): Steinmüller Taschenbuch: Dampferzeugertechnik.25. Aufl. Essen: Vulkan, 1992. ISBN 3-8027-2510-7
- Supcon 2002STOLPER, Gisela: Aufbau und Arbeitsweise einer Festoxid-
Brennstoffzelle (SOFC). Böllenborn: SUPCON Support & Consulting,
2002. URL: http://www.Supcon.de (29.09.2002)
- TN-EV52-348/92 LUTZER, W.; Deutsche Airbus, Abt. EV52: Kraftstoffverbrauch für Sekundärenergie. Hamburg: Deutsche Airbus, 1992. Technische Niederschrift
- TN-EV52-558/91 ARGÜELLO, G.; Deutsche Airbus, Abt. EV52: Secondary Power Management Study. Hamburg: Deutsche Airbus, 1991. Technische Niederschrift
- **VDI Berichte 1383** VEREIN DEUTSCHER INGENIEURE: Energieversorgung mit Brennstoffzellenanlagen '98: Stand und Perspektiven. Düsseldorf: VDI, 1998. – ISBN 3-18-091383-5
- Weast 1980 WEAST, Robert; ASTLE, Melvin: CRC Handbook of Chemistry and Physics. 60. Aufl. Boca Raton: CRC Press, 1980. ISBN 0-8493-0460-8
- Wieland 1999 WIELAND, Steffen: Der Membranreaktor als kompaktes Gaserzeugungs- und Gasreinigungssystem für Brennstoffzellen-Antriebe. Düsseldorf: VDI, 2000. - ISBN: 3-18-344006-7 (Fortschritt-Berichte, Reihe 6, Nr.440)
- Winkler 1990WINKLER, W.: Dampferzeuger. Hamburg, Hochschule für Angewand-
te Wissenschaften, Seminarunterlagen, 1990
- Winkler 1998WINKLER, W.: Auslegung von Brennstoffzellen. Hamburg, Hochschule
für Angewandte Wissenschaften, Seminarunterlagen, 1998

Anhang A

Eingangsparameter für die Brennstoffzellenauslegung und die DOC_{sys} -Berechnung

In den folgenden Tabellen sind die Daten dargestellt, die für die Auslegung des Brennstoffzellensystems und für die DOC_{sys} -Berechnungen benötigt wurden, im eigentlichen Diplomdokument aus Gründen der Übersichtlichkeit nicht eingefügt wurden.

A.1 Wasservorrat konventioneller Flugzeuge

In **Tabelle A.1** sind die maximalen Wassermengen und die Verbräuche in Abhängigkeit von Passagieranzahl und der Flugzeit der verschiedenen Flugzeugtypen aufgeführt.

Tabelle A.1 Wasservorrat konventioneller Flugzeuge							
	Einheit	A320	A330	A340-600	A380-800		
max. Passagiere (Pax)		150	310	380	555		
Flugstunden maximal	h	7	12	17	17		
Flugstunden Mission 1	h	6	11	16	16		
Vorratsbehälter	1	200	700	1050	1800		
Liter/(Stunde*Pax)		0,19	0,19	0,16	0,19		

A.2 Vorratsbehälter in konventionellen Flugzeugen

In der nachfolgenden **Tabelle A.2** sind die Größe und das Gewicht einzelner Vorratsbehälter und die Anzahl im jeweiligen Flugzeugtyp dargestellt.

A330-200 A340-600 A380-800 A320 max. Volumen [I] 200 700 1070 1800 Behältergröße Anzahl der Behälter 200 l á 19 kg 1x 350 l á 22 kg 2x 2x 370 l á 22 kg 1x 295 l á 13 kg 6x

 Tabelle A.2
 Größe der Vorratsbehälter in konventionellen Flugzeugen

A.3 Luftbefeuchtung in Flugzeugen

Speziell bei Langstreckenflugzeugen sinkt die Luftfeuchtigkeit im druckbelüfteten Rumpf, durch die Zugabe der feuchtigkeitsarmen Außenluft in Reiseflughöhe, deutlich ab. In herkömmlichen Flugzeugklimaanlagen wird kein zusätzliches Wasser für eine Luftbefeuchtung der Kabine eingesetzt. Durch Rezirkulation bleibt eine gewisse Luftfeuchte erhalten. Der Behaglichkeitsbereich für Menschen liegt bei einer Luftfeuchte von ca. 25-60 % und bei einer Temperatur von 20-30°C. Es ist also erstrebenswert eine Luftfeuchte von bis zu 30 % zu erhalten, um den Komfort des Wohlbefindens zu bieten.

In zukünftigen Flugzeugen wird den Flugzeugbetreibern die Option geboten, in ausgewählten Bereichen des Flugzeugs eine Befeuchtung der Luft vorzunehmen. Die zugeführte Wassermenge pro Stunde ist abhängig von der Raumgröße. Des Weiteren wird davon ausgegangen, dass 15 % der zugeführten Wassermenge über die Panels entweicht. Bei einer minimalen Luftfeuchte von 25 % während des Fluges ergibt sich eine Wasseranreicherung der Luft wie in der folgenden **Tabelle A.3** dargestellt wird.

Option	A330-200	A340-600	A380-800
Einheit	kg/h	kg/h	kg/h
Flight Deck	4,6	4,6	4,6
Pilot Crew Compartment (2 Plätze LD)	0,8	0,8	0,8
Pilot Crew Rest (1 Platz UD)		0,5	0,5
Summe Option A	5,4	5,9	5,9
Daten für weitere Compartments			
Crew Rest (12 Plätze UD)		2,4	3,5
Crew Rest (18 Plätze LD)		3,6	5,2
First Class (22 Plätze MD)		9,1	13,0
First Class (22 Plätze UD)		4,8	6,9
Summe Option B		19,9	28,6

Tabelle A.3 Luftbefeuchtung von Compartments

A.4 Wasserbedarf in Flugzeugen mit möglichen Optionen

Eine Option der Luftbefeuchtung von ausgewählten Abschnitten im Flugzeug wird es nur beim A340-600 und dem A380-800 geben. Die Option des Duschens ist dem A380-800 vorbehalten. In der **Tabelle A.4** ist der Wasserbedarf bezogen auf eine Flugstunde ersichtlich.

	<u> </u>			
	A320	A330-200	A340-600	A380-800
Einheit	kg/h	kg/h	kg/h	kg/h
Luftbefeuchtung	-	-	5,92	5,92
Toilette	10,9	19,1	19,1	33,7
Küchen	4,8	7,1	7,8	12,6
Handwaschbecken	17,8	37,4	38,6	66,1
Duschen ohne Aufbereitung				131,7
Duschen mit Aufbereitung				46,9
Wasserbedarf ohne Duschen	33,5	69,01	71,42	118,32
Wasserbedarf mit Duschen ohne Aufbereitung				250,02
Wasserbedarf mit Duschen mit Aufbereitung				165,22

 Tabelle A.4
 Wasserbedarf in Passagierflugzeugen mit zukünftigen Optionen

A.5 Wasserverteilung

In den **Tabellen A.5** bis **A.7** ist der Wasserverbrauch in Abhängigkeit von der Flugzeit für die Flugzeugtypen A320, A340-600 und A380-800 dargestellt. Diese Daten basieren auf den Auswertungen durch Lufthansa (**Mann 1999**).

Tabelle A.5	Wasserverteilung	im A320 in Abhängigke	it von der Flugzeit	
Flugzeit (h)	7			
Pax Gesamt	150	(BC: 12, EC: 138)		
	Flugzeit min	Spülanzahl Toilette	Spülanzahl Waschbecken	Küche (Tassen)
Business Class				
Startphase	30,0			
Nachstart	15,0	1,2	1,8	
On-Board-Service	45,0	6,5	9,8	18,0
Essen	15,0	2,0	2,9	
Film/Ruhe	210,0	10,6	12,2	
On-Board-Service	30,0	1,2	1,8	10,0
Vorlandung	45,0	1,0	1,8	
Landephase	30,0			
	420,0	22,6	30,3	28,0
Economy Class				
Startphase	30,0			
Nachstart	15,0	9,8	11,5	
On-Board-Service	90,0	55,8	57,0	150,0
Essen	15,0	26,2	29,1	
Film	100,0	75,0	77,2	
nach Film	15,0	31,0	34,5	
Ruhe	60,0	70,0	73,5	
Ruhe 2	0,0	9,8	11,0	
On-Board-Service	50,0	10,0	12,5	110,0
Vorlandung	15,0	16,4	19,0	
Landephase	30,0			
Gesamt		304,1	325,3	260,0
Wasserbedarf in Liter		65,3	106,7	28,8
Gesamtwasser		32,5	53,1	14,3
	0.404			
	0,191			
wasser in kg	200,8			

Pax Gesamt 321 (BC: 48, EC: 273) Flugzeit min Spülanzahl Toilette Spülanzahl Waschbecken Küche (Tassen) Business Class Startphase 30 Nachstart 30 Nachstart 30 17,3 26,0 Nachstart 72 Business Class 15 19,0 28,5 Film 115 19,0 28,5 Film 72 Essen 15 19,0 28,5 Film Ruhe 270 50,0 60,0 On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 Startphase 30 On-Board-Service 120 60,9 70,0 40 Vorlandung 30 11,4 17,1 Landephase 30 Startphase 30 Startphase 30 121,2 151,0 Film 120 119,0 134,0 Startphase 30 121,2 181,9 Ruhe 240 181,9 219,0 On-Board-Service <td< th=""><th>Flugzeit (h)</th><th>17</th><th></th><th></th><th></th></td<>	Flugzeit (h)	17			
Flugzeit min Spülanzahl Toilette Spülanzahl Waschbecken Küche (Tassen) Business Class Startphase 30 17,3 26,0 0 Nachstart 30 17,3 26,0 0 On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 7 Film 120 47,5 56,0 7 Ruhe 270 50,0 60,0 0 0 On-Board-Service 120 60,9 91,4 72 5 Ruhe2 120 60,0 75,0 0 0 0 On-Board-Service 120 60,9 70,0 40 40 40 40 41 <td< th=""><th>Pax Gesamt</th><th>321</th><th>(BC: 48, EC: 273)</th><th></th><th></th></td<>	Pax Gesamt	321	(BC: 48, EC: 273)		
Flugzeit min Spülanzahl Toilette Spülanzahl Waschbecken Küche (Tassen) Business Class Startphase 30 17,3 26,0 (Tassen) Startphase 30 17,3 26,0 (Tassen) On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 1 Film 120 47,5 56,0 1 Ruhe 270 50,0 60,9 91,4 72 Essen 15 19,0 28,5 1 1 Ruhe2 120 50,0 75,0 0 0 0 0 0 14 17,1 1		1			
min foliette Waschbecken (Tassen) Business Class 30 17,3 26,0 0 Nachstart 30 17,3 26,0 0 0 Nachstart 30 17,3 26,0 0		Flugzeit	Spülanzahl	Spülanzahl	Küche
Business Class 30 Startphase 30 Nachstart 30 120 60,9 91,4 72 Essen 15 120 47,5 56,0 Ruhe 270 50,0 On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 Ruhe 0n-Board-Service 120 0n-Board-Service 120 0n-Board-Service 120 0n-Board-Service 120 0n-Board-Service 120 0n-Board-Service 150 150 12,8 0n-Board-Service 150		min	loilette	Waschbecken	(Tassen)
Startphase 30 Nachstart 30 17,3 26,0 On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 11 Film 120 47,5 56,0 72 Ruhe 270 50,0 60,9 91,4 72 Essen 15 19,0 28,5 74 Ruhe 270 50,0 60,9 91,4 72 Essen 15 19,0 28,5 75 75,0 On-Board-Service 120 60,9 70,0 40 40 Vorlandung 30 11,4 17,1 11 11 Landephase 30 121,2 151,0 75,0 75,0 Nachstart 15 21,8 32,8 410 75,0 75,0 On-Board-Service 150 123,8 185,6 410 410 75,0 Film 120 119,0 134,0 74,0 74,0 74,0 74,0 74,0 74,0 74,0	Business Class				
Nachstart 30 17,3 26,0 On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 56,0 Ruhe 270 50,0 60,0 0 On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 Ruhe2 120 50,0 75,0 On-Board-Service 120 60,9 70,0 40 40 Vorlandung 30 11,4 17,1 1 Landephase 30 11,4 17,1 40 40 Vorlandung 30 11,4 17,1 40 40 Vorlandung 30 121,2 151,0 410 50 Essen 30 121,2 151,0 50 123,8 185,6 410 Film 120 119,0 134,0 410 50 123,8 209,0 410 Film 120 119,0 134,0 41,0 41,0 41,0 41,0 41,0 41,0 4	Startphase	30			
On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 1 Film 120 47,5 56,0 1 Ruhe 270 50,0 60,0 0 On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 1 Ruhe2 120 50,0 75,0 0 On-Board-Service 120 60,9 70,0 40 Vorlandung 30 11,4 17,1 1 Landephase 30 11,4 17,1 1 Landephase 30 121,2 151,0 1 Startphase 30 121,2 151,0 1 1 Film 120 119,0 134,0 1 1 1 Ruhe 240 181,9 219,0 0 0 10 1 1 1 Ruhe 20 123,8	Nachstart	30	17,3	26,0	
Essen 15 19,0 28,5 Film 120 47,5 56,0 Ruhe 270 50,0 60,0 On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 120 60,9 70,0 40 On-Board-Service 120 60,9 70,0 40 Vorlandung 30 11,4 17,1 Landephase 30 Con-Board-Service 120 60,9 70,0 40 Vorlandung 30 11,4 17,1 Landephase 30 Economy Class S	On-Board-Service	120	60,9	91,4	72
Film 120 47,5 56,0 Ruhe 270 50,0 60,0 On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 Ruhe2 120 50,0 75,0 On-Board-Service 120 60,9 70,0 40 Vorlandung 30 11,4 17,1 Landephase 30 11,4 17,1 1 1 1 Landephase 30 11,4 17,1 1 1 1 Landephase 30 121,2 151,0 1<	Essen	15	19,0	28,5	
Ruhe 270 50,0 60,0 On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 Ruhe2 120 50,0 75,0 On-Board-Service 120 60,9 70,0 40 Vorlandung 30 11,4 17,1 Landephase 30 11,4 17,1 Kartphase 30 123,8 185,6 410 Essen 30 121,2 151,0 Film 120 119,0 134,0 nach Film 30 121,2 181,9 Ruhe 240 181,9 219,0 On-Board-Service 150 123,8 209,0 410 Essen 30 121,2 144,0 Ruhe 60 45,5 64,0	Film	120	47,5	56,0	
On-Board-Service 120 60,9 91,4 72 Essen 15 19,0 28,5 120 50,0 75,0 On-Board-Service 120 60,9 70,0 40 40 Vorlandung 30 11,4 17,1 40 40 Landephase 30 11,4 17,1 40 40 Vorlandung 30 11,4 17,1 40 40 Landephase 30 11,4 17,1 40 40 Vorlandung 30 11,4 17,1 40 40 Nachstart 15 21,8 32,8 61 60,9 60,9 70,0 410 50 50,8 410 50 50,9 50,9 50,9 50,9 50,9,0 410 50 50,9,0 110,9 50,9,0 50,9,0 410 50,9,0 50,9,0 410 50,9,0 50,9,0 410 50,9,0 50,9,0 50,9,0 50,9,0 50,9,0	Ruhe	270	50,0	60,0	
Essen 15 19,0 28,5 Ruhe2 120 50,0 75,0 On-Board-Service 120 60,9 70,0 40 Vorlandung 30 11,4 17,1 1 Landephase 30 11,4 17,1 1 Economy Class 5 30 1	On-Board-Service	120	60,9	91,4	72
Ruhe2 120 50,0 75,0 On-Board-Service 120 60,9 70,0 40 Vorlandung 30 11,4 17,1 1 Landephase 30 11,4 17,1 1 Economy Class 30 11,4 17,1 1 Startphase 30 11,4 17,1 1 Bessen 30 123,8 32,8 0 On-Board-Service 150 123,8 185,6 410 Essen 30 121,2 151,0 134,0 Prilm 120 119,0 134,0 140 Ruhe 240 181,9 219,0 0 On-Board-Service 150 123,8 209,0 410 Essen 30 121,2 144,0 140 Ruhe 60 45,5 64,0 0 On-Board-Service 120 109,0 149,0 240 Vorlandung 15 41,0	Essen	15	19,0	28,5	
On-Board-Service 120 60,9 70,0 40 Vorlandung 30 11,4 17,1 1 Landephase 30 11,4 17,1 1 Economy Class 5 30 11,4 17,1 Machstart 15 21,8 32,8 0 On-Board-Service 150 123,8 185,6 410 Essen 30 121,2 151,0 134,0 Film 120 119,0 134,0 140 nach Film 30 121,2 181,9 10 Ruhe 240 181,9 219,0 0 On-Board-Service 150 123,8 209,0 410 Essen 30 121,2 144,0 10 Ruhe 60 45,5 64,0 0 On-Board-Service 120 109,0 149,0 240 Vorlandung 15 41,0 45,0 1244 Wasserbedarf in Liter <	Ruhe2	120	50,0	75,0	
Vorlandung Landephase 30 11,4 17,1 Economy Class 30 11,4 17,1 Economy Class Startphase 30 11,4 17,1 Startphase 30 11,4 17,1 11,4 17,1 Economy Class Startphase 30 121,2 151,0 11,0 11,14 <td>On-Board-Service</td> <td>120</td> <td>60,9</td> <td>70,0</td> <td>40</td>	On-Board-Service	120	60,9	70,0	40
Landephase 30 Economy Class Startphase 30 Startphase 30 30 Nachstart 15 21,8 32,8 On-Board-Service 150 123,8 185,6 410 Essen 30 121,2 151,0 510 134,0 Film 120 119,0 134,0 70 70 nach Film 30 121,2 181,9 70 70 Ruhe 240 181,9 219,0 70 70 70 On-Board-Service 150 123,8 209,0 410 70 70 Ruhe 60 45,5 64,0 70 70 70 On-Board-Service 120 109,0 149,0 240 70 70 Vorlandung 15 41,0 45,0 70 70 74 Wasserbedarf in Liter 305,3 617,7 124,4 70 70 74,4 74,4 74,4	Vorlandung	30	11,4	17,1	
Economy Class 30 Startphase 30 Nachstart 15 21,8 32,8 On-Board-Service 150 123,8 185,6 410 Essen 30 121,2 151,0 Film 120 119,0 134,0 nach Film 120 119,0 134,0 134,0 134,0 140 nach Film 120 119,0 134,0 140 153 150 123,8 209,0 410 153 150 123,8 209,0 410 153 150 123,8 209,0 410 153 150 123,8 209,0 410 153 150 123,8 209,0 410 152 160 150 123,8 209,0 410 153 150 121,2 144,0 150 1240 150 141,0 145,0 150 123,8 205,0 1240 150 1244 1526,5 2059,2 1244 124,4 1526,5 2059,2 <	Landephase	30			
Startphase 30 Nachstart 15 21,8 32,8 On-Board-Service 150 123,8 185,6 410 Essen 30 121,2 151,0 119,0 134,0 Film 120 119,0 134,0 119,0 134,0 nach Film 30 121,2 181,9 219,0 0 On-Board-Service 150 123,8 209,0 410 258en 30 121,2 144,0 10 258en 30 121,2 144,0 10 240 149,0 240 149,0 240 149,0 240 149,0 240 149,0 240 149,0 240 1526,5 2059,2 1244 124 124 124 124 124,4 124,4 124,4 124,4 124,4 124,4 11,9 11,9 11,9 11,9 11,9 11,9 11,9 11,9 11,9 11,9 11,9 11,9 11,9 11,9 11,9	Economy Class				
Nachstart 15 21,8 32,8 On-Board-Service 150 123,8 185,6 410 Essen 30 121,2 151,0 190 134,0 Film 120 119,0 134,0 190 190 190 Nach Film 30 121,2 181,9 219,0 100	Startphase	30			
On-Board-Service 150 123,8 185,6 410 Essen 30 121,2 151,0 151,0 Film 120 119,0 134,0 134,0 nach Film 30 121,2 181,9 181,9 Ruhe 240 181,9 219,0 0 On-Board-Service 150 123,8 209,0 410 Essen 30 121,2 144,0 10 Ruhe 60 45,5 64,0 0 On-Board-Service 120 109,0 149,0 240 Vorlandung 15 41,0 45,0 120 Landephase 30 1526,5 2059,2 1244 Wasserbedarf in 1526,5 2059,2 1244 Wasserbedarf in 305,3 617,7 124,4 %-Anteil vom 29,1 59,0 11,9	Nachstart	15	21,8	32,8	
Essen 30 121,2 151,0 Film 120 119,0 134,0 nach Film 30 121,2 181,9 Ruhe 240 181,9 219,0 On-Board-Service 150 123,8 209,0 410 Essen 30 121,2 144,0 8 Ruhe 60 45,5 64,0 9 On-Board-Service 120 109,0 149,0 240 Vorlandung 15 41,0 45,0 240 Vorlandung 15 41,0 45,0 240 Vasserbedarf in 1526,5 2059,2 1244 Wasserbedarf in 305,3 617,7 124,4 %-Anteil vom 29,1 59,0 11,9	On-Board-Service	150	123,8	185,6	410
Film 120 119,0 134,0 nach Film 30 121,2 181,9 Ruhe 240 181,9 219,0 On-Board-Service 150 123,8 209,0 410 Essen 30 121,2 144,0 40 Ruhe 60 45,5 64,0 40 On-Board-Service 120 109,0 149,0 240 Vorlandung 15 41,0 45,0 45,0 Landephase 30 1526,5 2059,2 1244 Wasserbedarf in 305,3 617,7 124,4 %-Anteil vom 29,1 59,0 11,9	Essen	30	121,2	151,0	
nach Film 30 121,2 181,9 Ruhe 240 181,9 219,0 On-Board-Service 150 123,8 209,0 410 Essen 30 121,2 144,0 140 Ruhe 60 45,5 64,0 240 On-Board-Service 120 109,0 149,0 240 Vorlandung 15 41,0 45,0 45,0 Landephase 30 1526,5 2059,2 1244 Wasserbedarf in Liter 305,3 617,7 124,4 %-Anteil vom 29,1 59,0 11,9	Film	120	119,0	134,0	
Ruhe 240 181,9 219,0 On-Board-Service 150 123,8 209,0 410 Essen 30 121,2 144,0 140 Ruhe 60 45,5 64,0 240 On-Board-Service 120 109,0 149,0 240 Vorlandung 15 41,0 45,0 150 Landephase 30 1526,5 2059,2 1244 Wasserbedarf in Liter 305,3 617,7 124,4 %-Anteil vom 29,1 59,0 11,9	nach Film	30	121,2	181,9	
On-Board-Service 150 123,8 209,0 410 Essen 30 121,2 144,0 Ruhe 60 45,5 64,0 On-Board-Service 120 109,0 149,0 240 Vorlandung 15 41,0 45,0 Landephase 30 1526,5 2059,2 1244 Wasserbedarf in Liter 305,3 617,7 124,4 %-Anteil vom 29,1 59,0 11,9	Ruhe	240	181,9	219,0	
Essen 30 121,2 144,0 Ruhe 60 45,5 64,0 On-Board-Service 120 109,0 149,0 240 Vorlandung 15 41,0 45,0 45,0 Landephase 30 1526,5 2059,2 1244 Wasserbedarf in Liter 305,3 617,7 124,4 %-Anteil vom 29,1 59,0 11,9	On-Board-Service	150	123,8	209,0	410
Ruhe 60 45,5 64,0 On-Board-Service 120 109,0 149,0 240 Vorlandung 15 41,0 45,0 109,0 149,0 240 Landephase 30	Essen	30	121,2	144,0	
On-Board-Service 120 109,0 149,0 240 Vorlandung 15 41,0 45,0 <td>Ruhe</td> <td>60</td> <td>45,5</td> <td>64,0</td> <td></td>	Ruhe	60	45,5	64,0	
Vorlandung 15 41,0 45,0 Landephase 30	On-Board-Service	120	109,0	149,0	240
Landephase30Gesamt1526,52059,21244Wasserbedarf in Liter305,3617,7124,4%-Anteil vom Gesamtwasser29,159,011,9	Vorlandung	15	41,0	45,0	
Gesamt 1526,5 2059,2 1244 Wasserbedarf in Liter 305,3 617,7 124,4 %-Anteil vom Gesamtwasser 29,1 59,0 11,9	Landephase	30			
Wasserbedarf in Liter305,3617,7124,4%-Anteil vom Gesamtwasser29,159,011,9	Gesamt		1526,5	2059,2	1244
Liter 305,3 617,7 124,4 %-Anteil vom 29,1 59,0 11,9	Wasserbedarf in				
%-Anteil vomGesamtwasser29,159,011,9	Liter		305,3	617,7	124,4
Gesamwasser 29,1 59,0 11,9	%-Anteil vom		00.4	E0 0	11.0
	Gesamwasser		29,1	ວອ,0	11,9
l/(h*Pax) 0.192	l/(h*Pax)	0 192			
Wasser in kg 1047.4	Wasser in ko	1047.4			

Tabelle A.6Wasserverteilung im A340-600 in Abhängigkeit von der Flugzeit

Tabelle A.7	Wasserver	teilung im A38	30-800 in Abhäng	jigkeit von de	r Flugzeit	
Flugzeit (h)	17					
Pax Gesamt	555	(FC: 22, BC: 9	96, EC: 334)			
	Flugzeit	Spülanzahl Toilette	Spülanzahl Waschbecken	Küche (Tassen)	Dusch	aänae
First Class		Tonette	Wasenbecken	(Tasselly	Dusch	gange
Startphase	30					
Nachstart	60	З	45		L.	5
On-Board-Service	120	22	33	35	ļ	5
Film/Ruhe/Service	600	40	60	50	1	5
On-Board-Service	120	22	33	35		5
Vorlandung	60	15	22.5	00		•
Landephase	30	10	22,0			
·						
Business Class						
Startphase	30					
Nachstart	30	42,4	63,6			
On-Board-Service	120	146,2	219,2	150		
Essen	15	45,7	68,5	30		
Film	120	114,1	171,2			
Ruhe	270	45,7	68,5			
On-Board-Service	120	146,2	219,2	150		
Essen	15	45,7	68,5			
Ruhe2	120	45,7	68,5			
On-Board-Service	120	146,2	219,2	82		
Vorlandung	30	27,4	41,1			
Landephase	30					
Economy Class						
Startphase	30					
Nachstart	15	32,1	64,0			
On-Board-Service	150	181,7	354,0	533		
Essen	30	66,0	90,0	100		
Film	120	284,0	298,0			
nach Film	30	96,0	123,0			
Ruhe	240	468,0	489,0			
On-Board-Service	150	212,0	246,0	533		
Essen	30	55,0	60,0			
Ruhe	60	171,0	174,0			
On-Board-Service	120	186,0	186,0	312		
Vorlandung	15	42,0	84,0			
Landephase	30					
Gesamt		2700,9	3528,6	2010	3	0
					mit	ohne
Wasserbedarf					Aufbereituna	Aufbereituna
in Liter		540,2	1058,6	201,0	750,0	2100,0
	ohne	Duschen	Duschen ohne	Aufbereitung	Duschen mit	Aufbereitung
l/(h*Pax)	(0,191	0,41	3	0,2	270
Wasser in kg	1	799,8	3899	,8	254	9,8

A.6 Elektrische Leistung von Generatoren

Die elektrische Stromversorgung im Flugzeug besteht aus einem Dreiphasen-Wechselstromsystem 115/200 VAC (400 Hz) und einem Gleichstromsystem von 28 VDC. Das Wechselstromnetz kann von den folgenden Stromquellen versorgt werden: Triebwerksgenerator (IDG – Integrated Drive Generator), Hilfstriebwerk (APU – Auxilary Power Unit), Notgenerator (CSM/G – Constant Speed Motor/Generator), statischen Umformern (Static Inverter) und einem Außenbordanschluss (External Power). Das Gleichstromnetz wird von der Transformer-Gleichrichter-Einheit (Tansformer Rectifier) und den Batterien versorgt.

Die maximale elektrische Leistung von Generatoren des Flugzeugsystems wird bestimmt durch die Generatoren am Triebwerk. In der folgenden **Tabelle A.8** wird dieser Zusammenhang dargestellt.

	Einheit	A320	A330	A340-600	A380-800
Triebwerkstyp		V2500	CF6-80E1A1	Trend 500	Trend 900
Anzahl der Generatoren		2	2	4	4
elektr. Leistung pro Generator	kW	90	115	90	150
Gewicht 1kg/1kVA	kg	90	115	90	150
Gesamtgewicht	kg	180	230	360	600
elektrische Gesamtleistung	kW	180	230	360	600

 Tabelle A.8
 Elektrische Leistung der Triebwerksgeneratoren

A.7 Daten des Leistungsbedarfs pro ATA-Kapitel

In **Tabelle A.9** ist der geschätzte durchschnittliche Leistungsbedarf bezogen auf die einzelnen ATA-Chapter und die Flugzeit aufgezeigt.

(nach Airbus-Abteilung Electric Installation ECYE2)									
	ATA	Start	Roll	Take-Off	Climb	Cruise	Descent	Landing	Taxi
		W	W	W	W	W	W	W	W
Air Conditioning	21	136342	136342	139322	127580	127580	120080	128822	125842
Auto Flight	22	255	255	255	255	255	255	255	255
Communications	23	1097	1097	1097	1097	1097	1097	1097	1097
Electrical Power	24	4877	4877	48873	47424	81558	10333	10333	3428
Equipment/Furnishings	25	2500	2500	15900	15924	15924	15924	2500	2500
Flight Controls	27	16	16	16	16	16	16	16	16
Fuel	28	18800	18800	18800	22800	22800	22800	18800	18800
Hydraulic Power	29	10000	10000	10000	10000	10000	10000	10000	10000
Ice/Rainprotection	30	34070	34070	34070	34936	34936	34936	34936	34070
Indicating/Recording Systems	31	1406	1406	1406	1406	1406	1406	1406	1406
Landing Gear	32	0	0	0	0	0	0	0	0
Lights	33	25866	25866	26991	25018	25005	25000	28196	24626
Navigations	34	917	917	931	931	931	931	917	917
Water/Waste	38	1650	1650	1650	1650	1650	1650	1650	
Cabin System General	44	40295	40295	31439	39764	43764	43764	35439	35439
Onboard Maintenance System	45	250	250	250	250	250	250	250	447
APU	49	310	310	310	310	310	310	310	
Engine Fuel/Control	74	650	650	650	650	650	650	650	650
DC		11180	11180	11900	11648	11620	12101	12635	11175

 Tabelle A.9
 Daten des Leistungsbedarfs pro ATA (A380-800)

 (nach Airbus-Abteilung Electric Installation ECYE2)

A.8 Klimaanlage

Mit der Klimaanlage wird in der Kabine die gewünschte Behaglichkeit erzielt. Die Aufgaben der Klimaanlage bestehen in der Druck- und bedingt Feuchtigkeitsregelung, Erhitzung, Abkühlung, Filterung sowie Verteilung der Luft im Flugzeug. Für den Aufbau eines Überdrucks in der Kabine gegenüber der Atmosphäre wird Zapfluft von den Triebwerken über das Druckluftsystem der Klimaanlage zugeführt. Anschließend wird gefilterte Luft aus der Kabine und Stauluft aus der Umgebung zugemischt und in die Kabine geleitet. Die Menge des Luftdurchsatzes in den Klimapacks ist abhängig von der Kabinengröße. Die Eingangstemperatur in die Klimapacks beträgt 200 °C, am Ausgang kann eine Temperatur zwischen -30 °C und +70 °C eingestellt werden. Der Druck des Heißluftstroms beträgt 30 PSI (2,04 bar). In **Tabelle A.10** sind verschiedene Leistungsdaten der Klimaanlage ersichtlich.

	Einheit	A320	A330-200	A340-600	A380-800
Anzahl der Klimapacks		2	2	2	2
Bleed-Air Durchsatz	kg/s	0,90	1,60	1,80	3,40
Bleed-Air Druck	PSI	30,00	30,00	30,00	30,00
Bleed-Air Temperatur	°C	200,00	200,00	200,00	200,00
Leistung pro Fan	kWh	1,00	1,00	1,00	1,00
Gesamtleistung	kWh	2,00	2,00	2,00	2,00
Anzahl der Recirculation Fans		2	2	3	4
Leistung pro Fan	kWh	13,60	13,60	13,60	13,60
Gesamtleistung	kWh	27,20	27,20	40,80	54,40
Anzahl der Extraction Fans		1	1	1	1
Leistung pro Fan	kWh	6,80	6,80	6,80	6,80
Gesamtleistung	kWh	6,80	6,80	6,80	6,80
Anzahl der CRU					
(Card Reader Unit)		2	2	3	4
Leistung pro Unit	kWh	9,50	9,50	9,50	9,50
Gesamtleistung	kWh	19,00	19,00	28,50	38,00
Anzahl der E/E bb Wing Fans		2	2	2	2
Leistung pro Fan	kWh	6,80	6,80	6,80	6,80
Gesamtleistung	kWh	13,60	13,60	13,60	13,60
Gesamtleistung	kWh	68,60	68,60	91,70	114,80

Tabelle A.10 Leistungsdaten der Klimaanlage

A.9 Hilfstriebwerk (APU, Auxilary Power Unit)

Die Aufgabe des Hilfstriebwerks besteht darin, das Flugzeug am Boden und im Flug mit Druckluft und Strom zu versorgen. Am Boden ist die APU in Betrieb, wenn am Flugplatz kein Strom aus der "Steckdose" vorhanden ist. Des Weiteren wird zum Anlassen eines der Haupt-

triebwerke Druckluft von p = 4 bar und ein Massenstrom von m = 2,4 kg/s von der APU bereitgestellt. Im Flug wird für den Fall, dass eines der Triebwerke außer Betrieb ist, die APU gestartet. Sie übernimmt dann die Energieversorgung mit und es werden die Mindestbedingungen für den Flug erhalten. In **Tabelle A.11** sind die für diese Arbeit relevanten Daten dargestellt.

Tabelle A.11 Daten der APU

	Einheit	A320	A330	A340-600	A380-800
APU		GTCP 331-	APS 3200	GTCP	331-600
Gewicht	kg	350	500	500	750
Bleed-Air Druck	PSI (bar)	59 (4)	59 (4)	59 (4)	59 (4)

A.10 Thermodynamische Eigenschaften von Mikromolekülen

Die nachfolgende **Tabelle A.12** inklusive Anmerkungen stellt einen Auszug der chemischen Stoffdatenbank **ATHAS** dar, aus der die Enthalpieänderungen in Abhängigkeit von den Temperaturen für die Berechnung der Energiebilanz des SOFC-Systems entnommen wurden.

Recommended I Name: File Name:	Data of Thermodynam n-Dodecane, Amo C12	ic Properties of Macromolecules orphous Calculated Data		
Structure:	CH3-(CH2)10-CH	13		
Tabelle A.12	Enthalpieänderunge	en (Auszug)		
Temperatur T	Wärmekapazität c _p	Änderungsenthalpie H-H0[C]	Entropie S	H0[C]-G
K		J/(kmol)	J/(kmol)	J/(kmol)
298,15	378,627	90236,190	488,086	55286,67
300	379,524	90937,39	490,431	56191,89
310	384,371	94756,36	502,954	61159,53
320	389,218	98623,81	515,234	66251,17
330	394,064	102539.72	527,285	71464,45
340	398,911	106504,09	539,121	76797,16
350	403,758	110516,94	550,755	82247,20
360	408,605	114578,25	562,197	87812,61
370	413,452	118688,04	573,458	93491,54
380	418,298	122846,29	584,549	99282,21
390	423,145	127053,00	595,477	105182,97
400	427,992	131308,19	606,251	111192,23
410	432,839	135611,84	616,879	117308,50
420	437,686	139963,97	627,367	123530,35
430	442,532	144364,56	637,723	129856,41
440	447,379	148813,61	647952	136285,39
450	452,226	153311,14	658,060	142816,05
460	457,073	157857,13	668,053	149447,21
470	461,92	162451,60	677,935	156177,74
480	466,766	167094,53	687,711	163006,55
490	471,613	171785,92	697,385	169932,61

1 : Calculated solid Cp agrees with experimental data (<3%)

2 : Calculated liquid Cp agrees with experimental data (<5%)

3 : Linearly extrapolated experimental liquid Cp data

Advanced Thermal Analysis Laboratory 1993

4 : Calculated solid Cp lacks comparison with experimental data (>3%)

5 : Calculated liquid Cp lacks comparison with experimental data (>5%)

 $\mathbf{6}$: Crystalline Cp data approximated by the Cp data of glass

7 : Glassy Cp data approximated by the Cp data of crystals

Glass Transition Temp. Tg (K):	?	
Change of Cp at Glass Transition (J/kmol):	?	
Number of Beads:	?	
Equilibrium Melting Temp. Tm (K):	263.600	(Ref. 1)
Heat of Fusion Hf (kJ/mol):	36.800	(Ref. 1)
Residual Entropy at 0 K (J/K.mol):	?	
Crystalline Theta 1 Temp. (K):	494.000	(Ref. 2)
Theta 3 Temp. (K	128.000	(Ref. 2)
Amorphous Theta 1 Temp. (K):	494.000	(Ref. 2)
Theta 3 Temp. (K):	(128)	(Ref. 2)

No. of Skeletal Vibrational Modes:	27.000	(Ref. 2)
Lindemann Const. A0 [0.001 (K.mol/J)]:	3.18	(Ref. 3)

Ref.: 1: ATHAS Data Bank update, (1992).
2: Y. Jin and B. Wunderlich, J. Phys. Chem., 95, 22 (1991).
3: R. Pan, M. Varma-Nair and B. Wunderlich, J. Thermal Anal., 35, 955 (1989).

Last revision December 25, 1997 by Marek Pyda

URL : http://funnelweb.utcc.utk.edu/~athas/databank/paraffin/c12/c12cala.html

Anhang B

Programmkommentierung des SOFC_{sys}-Programms

Im Folgenden wird das *SOFC*_{sys}-Berechnungsprogramm vorgestellt und erläutert, welches im Rahmen dieser Arbeit zur Berechnung der Eingangsparameter für die DOC-Rechnungen erstellt wurde.

Bild B.1 SOFC_{sys}-Programm

Als Basis dient die Anwendungssoftware *Microsoft EXCEL*, welche aus dem *Microsoft Office Paket* installiert werden muss. Des Weiteren werden Zusatzprogramme aus diesem Paket verwendet, die bei einer Fehlermeldung evtl. noch installiert und eingebunden werden müssen.

Programmbeschreibung

Das $SOFC_{sys}$ -Programm gibt unter Eingabe von spezifischen Parametern und dem Leistungsbedarf der Brennstoffzelle die Stoffbilanz, die Temperaturen und die ökonomischen Kenndaten des Brennstoffzellensystems wieder. Auf dem ersten Arbeitsblatt "*Ein-Ausgabe Prinzipskizze*" erfolgen die Eingabe, der Berechnungsstart und die Ausgabe der Rechenergebnisse. Das Arbeitsblatt "*Bilanz Rechnung*" beinhaltet alle Formeln, die zur Berechnung der Stoffund Energiebilanz des Systems notwendig sind. Um die Enthalpieänderung verschiedener Stoffe bei unterschiedlichen Temperaturen zu bestimmen, wird auf die Tabellen im Arbeitsblatt "*cp-Werte*" zugegriffen. Im letzten Arbeitsblatt befinden sich die Stoffdaten von C₁₂H₂₄, welche dem Kerosin ähnlich sind. Da dies feste Werte sind, ist es im Programm nicht möglich, die Eingangstemperatur des Brennstoffes zu variieren. An dieser Stelle ist anzumerken, dass die Tabellen (*cp-Werte*) zur Ermittlung der Enthalpieänderung von Dipl.-Ing. Hagen Lorenz zur Verfügung gestellt worden.

Installationsanweisung

- Datei auf lokaler Festplatte abspeichern
- Makros beim Öffnen aktivieren
 - Wenn die Sicherheitseinstellungen auf *Hoch* eingestellt sind, ist ein Aktivieren der Makros nicht möglich.
 - Über *Extras/Optionen/Sicherheit/Makrosicherheit Sicherheitseinstellungen* auf *Niedrig* oder *Mittel* setzen
 - Datei schließen und erneut öffnen
 - Makros aktivieren
- Unterprogramm Solver installieren
 - Falls das Unterprogramm *Solver* noch nicht in *EXCEL* eingebunden ist, über *Extras/Add-Ins Solver* aktivieren.

Fehlermeldung: "Fehler beim Kompilieren: Projekt oder Bibliothek nicht gefunden."

- Erfolgt beim Betätigen der Iterationsschaltfläche diese Fehlermeldung, so ist sie zunächst mit "OK" zu bestätigen.
- Anschließend in *Microsoft Visual Basic*:
 - Schaltfläche Entwurfsmodus aktivieren
 - Über *Extras/Verweise* "*Solver.xla*" einbinden (Standardverzeichnis auf Festplatte *C:\Programme\Microsoft Office\Office 10\Makro\Solver\Solver.xla*)
 - Speichern
 - Schaltfläche Entwurfsmodus deaktivieren
- Programm beenden und neu aufrufen

Programmanwendung

Das Arbeitsblatt "Ein-Ausgabe Prinzipskizze" ist in die folgenden vier Bereiche aufgeteilt:

1. Eingabebereich

Hier erfolgt die Spezifikation der Brennstoffzelle durch die Eingabe von Parametern. Bei der Auswahl des Eingabefeldes öffnet sich ein Fenster, in welchem eine Erklärung des Parameters erfolgt. Die Eingabetoleranz wurde begrenzt, um die Eingabe von fehlerhaften oder nicht der Praxis entsprechenden Werten auszuschließen.

2. Abgleich

Nach der Festlegung und Eingabe der Parameter muss eine Berechnung des Brennstoffzellensystems. Diese Neuberechnung wird über die Iterationsschaltfläche gestartet. Diese ist immer dann notwendig, wenn die im System eingebauten Wärmetauscher WT nicht abgeglichen sind. Dies wird optisch durch eine rote Unterlegung der Wärmetauscherfelder signalisiert. Nach einer Rechnung müssen diese den Wert 0 besitzen und grün unterlegt sein.

Sollten jetzt im Bereich Ergebnisse Temperaturfelder rot gekennzeichnet sein, so muss eine manuelle Anpassung des Luft- oder Wasserüberschusses erfolgen. Zur Verdeutlichung soll nachfolgend ein Beispiel kurz erläutert werden: Die Temperatur t_6 ist rot gekennzeichnet, d.h. der Wert dieser Temperatur ist zu hoch. Zu beachten ist, dass diese Temperatur maximal die Betriebstemperatur der Brennstoffzelle erreichen kann. In diesem Fall könnte dann z.B. der Luftüberschuss höher gewählt werden, um die Temperatur t_6 zu verringern.

Sollte die Temperatur t_6 orange unterlegt sein, ist diese Temperatur zu gering und in der sich anschließenden Turbine wird nicht die maximale Leistung über das Temperaturniveau erzielt. Hier könnte z.B. der Luftüberschuss verringert werden.

Die Temperatur t_{14} ist dann rot unterlegt, wenn sie unter der Temperatur t_{11} von 220 °C liegt. Dies ist technisch nicht möglich und kann über eine höhere Betriebstemperatur der Brennstoffzelle oder einen geringeren Wasserüberschuss korrigiert werden.

3. Ergebnisse

Sind keine rot unterlegten Felder im Bereich Abgleich und Ergebnisse mehr vorhanden, können die Temperaturen, die zugeführten und abgegebenen Massenströme, die zusätzliche Druckluft mit Temperaturniveau, die Investitionskosten und das Gewicht abgelesen werden.

4. Prinzipskizze

Es wird das Modell des SOFC-Systems als Prinzipaufbau dargestellt. Zusätzlich sind die unterschiedlichen Temperaturen und Massenströme zugeordnet.