fachhochschule hamburg

FACHBEREICH FAHRZEUGTECHNIK Studiengang Flugzeugbau

> Berliner Tor 5 D - 20099 Hamburg

Diplomarbeit - Flugzeugbau -

Anpassung von Statistik-Gleichungen des Flugzeugentwurfs an neue Flugzeugtypen

Verfasser: Paul Müller

Abgabedatum: 22.09.99

1. Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME 2. Prüfer: Prof. Dr.-Ing. H. Zingel

Fahrzeugtechnik

Kurzreferat

In der vorliegenden Diplomarbeit werden aus der Literatur bekannte statistische Zusammenhänge des Flugzeugentwurfs überprüft. Untersucht werden Business Jets, Regionalverkehrsflugzeuge mit PTL-Triebwerken und Strahlverkehrsflugzeuge. Für folgende Parameter werden dabei Zusammenhänge mit anderen Parametern des Flugzeugentwurfs untersucht: Anfluggeschwindigkeit, Sicherheitslandestrecke, Verhältnis aus benetzter Fläche des Flugzeugs und Flügelfläche, Schwerpunktlage des unbeladenen Flugzeugs und Schwerpunktbereich. Weiterhin werden charakteristische Parameter zur Beschreibung der Flugzeugkabine und des Frachtraums untersucht. Die verwendeten Stichproben werden unter Berücksichtigung der Verfahren der Statistik innerhalb ihrer jeweiligen Flugzeugkategorie verarbeitet. Die Statistikverfahren selbst werden vorgestellt und anhand von einer Beispielrechnung erklärt. Ferner wird ein Überblick über die verwendeten Flugzeugtypen und deren signifikante Daten samt Dreiseitenansichten gegeben. Neben den statistischen Zusammenhängen werden zu den bearbeiteten Themen Vorschriften der JAR und FAR sowie der ICAO benannt. Ziel der Arbeit ist die Modifizierung von vorhandenen Statistikgleichungen des Flugzeugentwurfs, aber auch das Auffinden von neuen statistischen Zusammenhängen. Beispielsweise wird ein Zusammenhang der Frachtraumgröße mit der Passagieranzahl aufgefunden. Die einzelnen Abhängigkeiten der untersuchten Parameter werden in Diagrammen veranschaulicht und durch Regressionsgeraden beschrieben.

fachhochschule hamburg

FACHBEREICH FAHRZEUGTECHNIK Studiengang Flugzeugbau

Anpassung von Statistik-Gleichungen des Flugzeugentwurfs an neue Flugzeugtypen

Diplomarbeit nach § 21 der Prüfungsordnung.

Hintergrund

Der Flugzeugentwurf "lebt" von der Erfahrungen, die beim Entwurf von Flugzeugen weltweit gesammelt wurden. Grund: 1.) Die Zusammenhänge lassen sich (bei vertretbarem Aufwand) oft nicht "exakt" beschreiben. 2.) Das Vorgehen im Flugzeugentwurf ist durch "Synthese" statt durch "Analyse" geprägt. Statistik-Gleichungen werden im Flugzeugentwurf daher immer dann angewandt, wenn analytische Gleichungen nicht zur Verfügung stehen.

Aufgabe

Aus der Literatur bekannte statistische Zusammenhänge des Flugzeugentwurfs sollen überprüft und gegebenenfalls unter Einbeziehung von Entwurfsdaten neuer Flugzeuge auf den heutigen Stand gebracht werden.

Es sollen für folgende Parameter statistische Zusammenhänge mit anderen Parametern des Flugzeugentwurfs gefunden werden:

- Anfluggeschwindigkeit (evtl. getrennt für Strahlflugzeuge und Propellerflugzeuge),
- Sicherheitslandestrecke (evtl. getrennt für Strahlflugzeuge und Propellerflugzeuge),
- Verhältnis aus benetzter Fläche des Flugzeugs und Flügelfläche (S_{wet} / S_W) ,
- Schwerpunktlage des unbeladenen Flugzeugs und Schwerpunktbereich.

Weiterhin sollen Maße und Kennzahlen zur Flugzeugkabine, zur Bestuhlung und zum Frachtraum recherchiert werden. Diese Daten sollen dann zur Unterstützung einer Kabinen- und Frachtraumauslegung systematisch präsentiert werden.

Bei der Auswertung der statistischen Zusammenhänge sollen die mathematischen Methoden der Statistik herangezogen werden.

Die Ergebnisse sollen in einem Bericht dokumentiert werden. Bei der Erstellung des Berichtes sind die entsprechenden DIN-Normen zu beachten.

Erklärung

Ich versichere, daß ich diese Diplomarbeit ohne fremde Hilfe selbständig verfaßt und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht.

.....

Datum

Unterschrift

Inhalt

		Seite
Verzeic	hnis der Bilder	
Verzeic	hnis der Tabellen	13
Liste de	r Symbole	
Liste de	r Abkürzungen	
Verzeic	hnis der Begriffe und Definitionen	
1	Einleitung	25
1.1	Begriffsdefinitionen	26
1.2	Aufbau und Ziel der Arbeit	
1.3	Literaturübersicht	
2	Anfluggeschwindigkeit	
2.1	Definition	
2.2	Anmerkungen der Flugsicherung	
2.3	Anfluggeschwindigkeit als Funktion der Flächenbelastung	
2.3.1	Passagierflugzeuge mit Strahltriebwerken	
2.3.2	Passagierflugzeuge mit Propellerturbinen	
2.3.3	Business Jets	
3	Sicherheitslandestrecke	40
3.1	Definition	40
3.2	Anfluggeschwindigkeit als Funktion der Sicherheitslandestrecke	
3.2.1	Passagierflugzeuge mit Strahltriebwerken	
3.2.2	Passagierflugzeuge mit Propellerturbinen	
3.2.3	Business Jets	
3.3	Flächenbelastung als Funktion der Sicherheitslandestrecke	
3.4	Sicherheitslandestrecke nach Marckwardt 1997	49
3.5	Sicherheitslandestrecke als Funktion der Landemasse	

4	Verhältnis aus benetzter Fläche des Flugzeugs und Flügelfläche (S_{wet}/S_W)54
4.1	Darstellung der verwendeten Gleichung
4.2	Überprüfung der benetzten Fläche der Triebwerksgondeln
4.3	Überprüfung der Leitwerksflächen
4.4	Überprüfung des Schlankheitsgrades
4.5	Überprüfung des Verhältnisses d_F^2/S_W
4.6	Herleitung der Loftin 1980 Formel für S_{wet}/S_{W}
4.7	Vergleich mit der Torenbeek 1982 Gleichung für S_{wet}/S_W
4.8	Vergleich des Verhältnisses S_{wet}/S_W zwischen den Flugzeugkategorien
5	Schwerpunktlage des unbeladenen Flugzeugs und Schwerpunktbereich73
5.1	JAR- und FAR-Vorschriften
5.2	Das Beladediagramm
5.3	Das Flugzeug-Abwiegeprotokoll
5.4	Schwerpunktlage
5.5	Schwerpunktbereich
6	Rumpf und Frachtraum
6.1	Schlankheitsgrad und Passagierzahl
6.2	Abschätzung der Rumpflänge aus der Abflugmasse
6.3	Berechnung des Frachtraums91
6.4	Frachtraum-Container und -Paletten
6.5	Kabine
7	Zusammenfassung
Literaturv	erzeichnis
Anhang A	Tabellen
Anhang B	Grundlagen
B .1	Vorgehen bei der Datenaufnahme
B.2	Häufigkeitstabelle und Histogramm
B.3	Rechenregeln und Begriffe der Statistikverfahren142
Anhang C	Verwendete Flugzeugtypen
C.1	Passagierflugzeuge mit Strahltriebwerken
C.2	Passagierflugzeuge mit Propellerturbinen
C.3	Business Jets

Verzeichnis der Bilder

Bild 2.1	Phasen des Anflugs (ICAO)	30
Bild 2.2	Missed Approach Segmente (ICAO)	31
Bild 2.3	Anfluggeschwindigkeit über Wurzel aus Flächenbelastung (Loftin 1980)	34
Bild 2.4	v_A in $[m/s]$ über $\sqrt{m_{_{ML}}/S_{_W}}$ in $\sqrt{kg/m^2}$ bei Passagierflugzeugen mit	
	Strahltriebwerken	36
Bild 2.5	v_A in $[m/s]$ über $\sqrt{m_{_{ML}}/S_{_W}}$ in $\sqrt{kg/m^2}$ bei Passagierflugzeugen mit	
	Propellerturbinen	37
Bild 2.6	v_A in $[m/s]$ über $\sqrt{m_{ML}/S_W}$ in $\sqrt{kg/m^2}$ bei Business Jets	38
Bild 3.1	Definition der Sicherheitslandestrecke nach FAR 25 und JAR 25	
	- Auszug aus Loftin 1980	40
Bild 3.2	S_{LFL} als Funktion von v_A^2 (Loftin 1980)	41
Bild 3.3	$v_A [m/s]$ über $\sqrt{s_{LFL}} \sqrt{m}$ - Passagierflugzeuge mit Strahltriebwerken	42
Bild 3.4	$v_A [m/s]$ über $\sqrt{s_{LFL}} \sqrt{m}$ - Passagierflugzeuge mit Propellerturbinen (1)	43
Bild 3.5	$v_A [m/s]$ über $\sqrt{s_{LFL}} [\sqrt{m}]$ - Passagierflugzeuge mit Propellerturbinen (2)	44
Bild 3.6	$v_A [m/s]$ über $\sqrt{s_{LFL}} [\sqrt{m}]$ - Business Jets	45
Bild 3.7	Flächenbelastung m_{ML}/S_W über $c_{A,\max,L} \cdot s_{LFL}$	48
Bild 3.8	$x_{Landebahn}$ über $(m_L/S_W)/r/c_{Amax}$ (Diagramm 4.5 - Marckwardt 1997)	50
Bild 3.9	$x_{Landebahn}$ über $(m_L/S_W)/r/c_{A \max}$	51
Bild 3.10	Sicherheitslandestrecke s_{LFL} über Landemasse m_{ML}	52
Bild 4.1	Triebwerksbemaßung nach Torenbeek 1982	56
Bild 4.2	Benetzte Fläche der Triebwerksgondeln S_N in [m ²] über Flügelfläche S_W	
	in [m ²] bei Passagierflugzeugen mit Strahltriebwerken und Business Jets	57
Bild 4.3	Benetzte Fläche der Höhen- und Seitenleitwerke in [m ²] über	
	Flügelfläche S_w in [m ²] der drei Flugzeugkategorien	58
Bild 4.4	Rumpflänge l_F über Rumpfdurchmesser d_F	60
Bild 4.5	Histogramm mit Normalverteilung vom Merkmalswert d_F^2/S_W	
	- Passagierflugzeuge mit Strahltriebwerken	64
Bild 4.6	Histogramm mit Normalverteilung vom Merkmalswert d_F^2/S_W	
	- Passagierflugzeuge mit Propellerturbinen	65
Bild 4.7	Histogramm mit Normalverteilung vom Merkmals-	
	wert d_F^2/S_W - Business Jets	65
Bild 4.8	Prozentuale Verteilung von den Stichproben des Merkmals-	
	wertes d_F^2/S_W der drei Flugzeugkategorien	66

Bild 4.9	Zeichnung nach dem Loftin 1980 Zitat	68
Bild 4.10	Benetzte Rumpfoberfläche $S_{wet,Fuselage}$ über Rumpflänge l_F	70
Bild 4.11	S_{wet} über S_W bei Passagierflugzeugen mit Strahltriebwerken	
	und Business Jets	71
Bild 5.1	Beladediagramm am Beispiel ATR 42-500 (Lufthansa 1998)	74
Bild 5.2	Ergebnisse der Wiegestationen am Beispiel A340-211 (Lufthansa 1999)	75
Bild 5.3	Weight & Balance Calculation am Beispiel A340-211 (Lufthansa 1999)	77
Bild 5.4	Massenabzüge am Beispiel A340-211 (Lufthansa 1999)	78
Bild 5.5	Massenzusatz am Beispiel A340-211 (Lufthansa 1999)	78
Bild 5.6	Schwerpunktbemaßung	78
Bild 5.7	Histogramm und Normalverteilung des Merkmalswertes CG in MAC	80
Bild 6.1	Anzahl der Sitze pro Reihe als Funktion der Passagiere und des	
	Schlankheitsgrades des Rumpfes (Marckwardt 1998)	82
Bild 6.2	Kabinenlänge als Funktion der Passagierzahl geteilt durch die	
	Sitzplätze nebeneinander	83
Bild 6.3	Rumpflänge als Funktion der Passagierzahl geteilt durch die	
	Sitzplätze nebeneinander	84
Bild 6.4	Rumpfdurchmesser als Funktion von den Sitzplätzen nebeneinander	85
Bild 6.5	n_{SA} als Funktion von $\sqrt{n_{PAX}}$	86
Bild 6.6	Anzahl der Sitze pro Reihe als Funktion der Passagierzahl und	
	des Schlankheitsgrades des Rumpfes	88
Bild 6.7	Masse als Funktion der Reichweite (Marckwardt 1998)	89
Bild 6.8	Rumpflänge l_F als Funktion der Abflugmasse $\sqrt[3]{m_{TO}}$	90
Bild 6.9	Frachtraumvolumen als Funktion der Passagierzahl	93
Bild 6.10	LD3-Container (China Airlines)	94
Bild 6.11	Gängige Palettentypen (Cathay Pacific) - (1)	95
Bild 6.12	Gängige Palettentypen (Cathay Pacific) - (2)	95
Bild 6.13	Layout der Boeing 777-200 (British Airways)	96
Bild 6.14	Bodenfläche der Toiletten, Küchen und Ausgänge als Funktion	
	der Kabinenfläche	100
Bild B.1	Beispiel eines Histogramm mit Normalverteilung	140
Bild B.2	y als Funktion von x - Darstellung der Werte des Beispiels	147
Bild C.1	Dreiseitenansicht der A300-600 (Jane's)	149
Bild C.2	Layout der A300-600 (Lufthansa)	149
Bild C.3	Dreiseitenansicht der A310 (Jane's)	150
Bild C.4	Layout der A310 (Austrian Airlines)	150
Bild C.5	Fotomontage der A318 (nach Kreuzer 1999)	151
Bild C.6	Dreiseitenansicht der A319 (nach Daimler-Chrysler (1))	152
Bild C.7	Layout der A319 (Swissair)	152

Bild C.8	Dreiseitenansicht der A320 (Jane's)	153
Bild C.9	Layout der A320 (Lufthansa)	.153
Bild C.10	Dreiseitenansicht der A321 (Jane's)	.154
Bild C.11	Layout der A321 (Air France)	.154
Bild C.12	Dreiseitenansicht der A330-300 (Jane's)	.155
Bild C.13	Layout der A330-300 (LTU)	.155
Bild C.14	Dreiseitenansicht der A340-200 (Jane's)	.156
Bild C.15	Layout der A340-200 (Austrian Airlines)	.156
Bild C.16	Layout der A340-300 (Air France)	157
Bild C.17	Layout der A340-600 (Daimler-Chrysler (2))	.158
Bild C.18	Dreiseitenansicht der B717-200 (Jane's)	159
Bild C.19	Dreiseitenansicht der B737-300 (Jane's)	160
Bild C.20	Layout der B737-300 (Air France)	.160
Bild C.21	Layout der B737-400 (KLM)	.161
Bild C.22	Layout der B737-500 (Hapag-Lloyd)	162
Bild C.23	Dreiseitenansicht der B737-600 (nach Boeing)	.163
Bild C.24	Dreiseitenansicht der B737-700 (nach Endres 1998)	.164
Bild C.25	Dreiseitenansicht der B737-800 (nach Boeing)	.165
Bild C.26	Layout der B737-800 (Lauda Air)	.165
Bild C.27	Dreiseitenansicht der B747-400 (Jane's)	.166
Bild C.28	Layout der B747-400 (KLM)	.166
Bild C.29	Dreiseitenansicht der B757-200 (Jane's)	.167
Bild C.30	Layout der B757-200 (LTU)	167
Bild C.31	Dreiseitenansicht der B767-200 (Jane's)	168
Bild C.32	Layout der B767-200 (Malev)	168
Bild C.33	Dreiseitenansicht der B767-300 (nach Endres 1998)	169
Bild C.34	Layout der B767-300 (Sabena)	169
Bild C.35	Dreiseitenansicht der B777-200 (Jane's)	170
Bild C.36	Layout der B777-200 (Lauda Air)	170
Bild C.37	Dreiseitenansicht der B777-300 (nach Boeing)	171
Bild C.38	Dreiseitenansicht der BAC-Airstar 2500 (Jane's)	172
Bild C.39	Dreiseitenansicht der BAe 146-300 (Jane's)	173
Bild C.40	Layout der BAe 146-300 (Crossair)	173
Bild C.41	Dreiseitenansicht des Canadair Regional Jets (Jane's)	174
Bild C.42	Layout des Canadair Regional Jets (Lufthansa)	174
Bild C.43	Dreiseitenansicht der Embraer EMB-145 (Jane's)	175
Bild C.44	Bild des Fairchild Dornier 328Jet (nach Kreuzer 1999)	.176
Bild C.45	Dreiseitenansicht der Fokker 100 (Jane's)	177
Bild C.46	Dreiseitenansicht der Fokker 70 (Jane's)	178
Bild C.47	Layout der Fokker 70 (Austrian Airlines)	.178

Bild C.48	Dreiseitenansicht der Il-96-300 (Jane's)	179
Bild C.49	Dreiseitenansicht der MD-11 (Jane's)	180
Bild C.50	Layout der MD-11 (Alitalia)	180
Bild C.51	Dreiseitenansicht der MD-82 (nach Endres 1998)	181
Bild C.52	Layout der MD-82 (Alitalia)	181
Bild C.53	Layout der MD-83 (Crossair)	182
Bild C.54	Dreiseitenansicht der MD-87 (Jane's)	183
Bild C.55	Layout der MD-87 (Austrian Airlines)	183
Bild C.56	Dreiseitenansicht der MD 90-30 (Jane's)	184
Bild C.57	Dreiseitenansicht der Tu-204-220 (Jane's)	186
Bild C.58	Dreiseitenansicht der YAK-142 (Jane's)	187
Bild C.59	Dreiseitenansicht der CN-235 (Jane's)	188
Bild C.60	Bild der An-140 (nach Kreuzer 1999)	189
Bild C.61	Dreiseitenansicht der An-38-100 (Jane's)	190
Bild C.62	Dreiseitenansicht der ATR 42 (Jane's)	191
Bild C.63	Layout der ATR 42 (Alitalia)	191
Bild C.64	Dreiseitenansicht der ATR 72 (Jane's)	192
Bild C.65	Layout der ATR 72 (LOT)	192
Bild C.66	Dreiseitenansicht der BAe ATP (nach Endres 1998)	193
Bild C.67	Dreiseitenansicht der BAe Jetstream 41 (Jane's)	194
Bild C.68	Dreiseitenansicht der DHC-8 100 und DHC-8 300 (Jane's)	195
Bild C.69	Layout der DHC-8 100 (Tyrolean Airways)	195
Bild C.70	Dreiseitenansicht der DHC-8 400 (Jane's)	196
Bild C.71	Dreiseitenansicht der EMB-120ER (Jane's)	197
Bild C.72	Dreiseitenansicht der Dornier 228 (Jane's)	198
Bild C.73	Dreiseitenansicht der Dornier 328 (Jane's)	199
Bild C.74	Dreiseitenansicht der METRO 23 (Jane's)	200
Bild C.75	Dreiseitenansicht der Fokker 50 (Jane's)	201
Bild C.76	Layout der Fokker 50 (Lufthansa)	201
Bild C.77	Dreiseitenansicht der Il-114 (Jane's)	202
Bild C.78	Dreiseitenansicht der IPTN N-250 (Jane's)	203
Bild C.79	Dreiseitenansicht der LET L-610 (Jane's)	204
Bild C.80	Dreiseitenansicht der Beech 1900D (Jane's)	205
Bild C.81	Dreiseitenansicht der Saab 2000 (Jane's)	206
Bild C.82	Layout der Saab 2000 (Crossair)	206
Bild C.83	Dreiseitenansicht der Saab 340B (Jane's)	207
Bild C.84	Layout der Saab 340B (Crossair)	207
Bild C.85	Dreiseitenansicht der ASTRA SPX (Jane's)	208
Bild C.86	Dreiseitenansicht der BD 701 - Global Express (Jane's)	209
Bild C.87	Bild der Challenger (nach Kreuzer 1999)	210

Bild C.88	B Dreiseitenansicht des Learjet 45 (Jane's)	211
Bild C.89	Dreiseitenansicht des Learjet 60 (Jane's)	212
Bild C.90	Bild der 560 XL Citation Excel (nach Jane's)	213
Bild C.91	Dreiseitenansicht der 650 Citation VII (Jane's)	214
Bild C.92	2 Dreiseitenansicht der 750 Citation X (Jane's)	215
Bild C.93	Dreiseitenansicht des Falcon 2000 (Jane's)	216
Bild C.94	Dreiseitenansicht des Falcon 50 EX (Jane's)	217
Bild C.95	Dreiseitenansicht des Falcon 900B (Jane's)	218
Bild C.96	Dreiseitenansicht der Galaxy (Jane's)	219
Bild C.97	Dreiseitenansicht der Gulfstram V (Jane's)	220
Bild C.98	B Dreiseitenansicht der Hawker 1000 (Jane's)	221
Bild C.99	Dreiseitenansicht der SJ30-2 (Jane's)	222
Bild C.10	0 Dreiseitenansicht der VA-10 Vantage (Jane's)	223

Verzeichnis der Tabellen

Tabelle 2.1	Geschwindigkeiten für die Anflugphasen in Kilometer pro	
	Stunde (km/h) (ICAO)	32
Tabelle 3.1	Verhältnis aus maximaler Landemasse und maximaler	
	Startmasse m_{ML} / m_{MTO} - Statistische Mittelwerte für	
	Passagierflugzeuge mit Strahltriebwerken	48
Tabelle 3.2	Verhältnis aus maximaler Landemasse und maximaler	
	Startmasse m_{ML} / m_{MTO} - Statistische Mittelwerte für Business Jets	48
Tabelle 4.1	Extrem- und Mittelwerte der drei Kategorien	59
Tabelle 5.1	Schwerpunktbereich aus den Beladediagrammen	81
Tabelle 6.1	Verfügbare Containertypen für den Unterflurbereich	94
Tabelle 6.2	Verfügbare Palettentypen für den Unterflurbereich	95
Tabelle 6.3	Sitzabstände als Mittelwerte der jeweiligen Reichweitenklassifizierung	97
Tabelle 6.4	Sitzbreite als Mittelwerte der jeweiligen Reichweitenklassifizierung	97
Tabelle 6.5	Gangbreite als Mittelwert der jeweiligen Reichweitenklassifizierung	98
Tabelle 6.6	Mittelwerte der Passagiere pro Toilette	98
Tabelle 6.7	Mittelwert der Bodenfläche der Küchen pro Sitzplatz	99
Tabelle 6.8	Vergleich der Sitzplätze nebeneinander mit der	
	Reichweitenklassifikation	101
Tabelle A.1	Verwendete Flugzeugtypen (Loftin 1980)	108
Tabelle A.2	Werte für das Diagramm in Bild 2.4 - Passagierflugzeuge mit	
	Strahltriebwerken	109
Tabelle A.3	Werte für das Diagramm in Bild 2.5 - Passagierflugzeuge mit	
	Propellerturbinen	110
Tabelle A.4	Werte für das Diagramm in Bild 2.6 - Business Jets	110
Tabelle A.5	Werte für das Diagramm in Bild 3.3	
	- Passagierflugzeuge mit Strahltriebwerken	111
Tabelle A.6	Werte für das Diagramm in Bild 3.4 und Bild 3.5	
	- Passagierflugzeuge mit Propellerturbinen	112
Tabelle A.7	Werte für das Diagramm in Bild 3.6 - Business Jets	113
Tabelle A.8	Werte für das Diagramm in Bild 3.9 und Bild 3.10 - Passagierflugzeuge	,
	mit Strahltriebwerken	113
Tabelle A.9	Werte für das Diagramm in Bild 3.9 und Bild 3.10 - Passagierflugzeuge	, /
	mit Propellerturbinen	114
Tabelle A.10	Werte für das Diagramm in Bild 3.9 und Bild 3.10 - Business Jets	115
Tabelle A.11	Werte für die Tabelle 3.1 - Passagierflugzeuge mit Strahltriebwerken	116
Tabelle A.12	Werte für den Mittelwert der Passagierflugzeuge mit Propellerturbinen	117
Tabelle A.13	Werte für die Tabelle 3.2 - Business Jets	117

Tabelle A.14	Verwendete Triebwerke der Flugzeugtypen der drei Kategorien (Jan	e's).118
Tabelle A.15	Werte für die Gleichungen (4.6) bis (4.8) und für das Bild 4.2	
	- Passagierflugzeuge mit Strahltriebwerken	120
Tabelle A.16	Werte für die Gleichungen (4.6) bis (4.8) und für das Bild 4.2	
	- Business Jets	121
Tabelle A.17	Werte der Flugzeugtypen für die Tabelle 4.1 und für das Bild 4.3	
	der drei Flugzeugkategorien	121
Tabelle A.18	Werte für die Normalverteilung der Passagierflugzeuge mit	
	Strahltriebwerken	123
Tabelle A.19	Häufigkeitstabelle der Passagierflugzeuge mit Strahltriebwerken	
	- Merkmalswert d_F^2/S_W	124
Tabelle A.20	Werte für die Normalverteilung der Passagierflugzeuge mit	
	Propellerturbinen	124
Tabelle A.21	Häufigkeitstabelle der Passagierflugzeuge mit Propellerturbinen	
	- Merkmalswert d_F^2/S_W	125
Tabelle A.22	Werte für die Normalverteilung der Business Jets	125
Tabelle A.23	Häufigkeitstabelle der Business Jets - Merkmalswert d_F^2/S_W	125
Tabelle A.24	Häufigkeitstabelle für alle Flugzeuge - Merkmalswert d_F^2/S_W	126
Tabelle A.25	Werte der Flugzeugtypen für Bild 4.10 und Bild 4.11 der drei	
	Kategorien	126
Tabelle A.26	Werte der Normalverteilung für Bild 5.7 - Schwerpunktlage	128
Tabelle A.27	Häufigkeitstabelle für Bild 5.7 - Merkmalswert CG	128
Tabelle A.28	Werte der Flugzeugtypen für Bild 6.2 bis Bild 6.6 der drei Kategorie	n129
Tabelle A.29	Werte für die Passagieranzahl aus den Gleichungen (6.8) und (6.9)	131
Tabelle A.30	Werte für das Bild 6.8 und Bild 6.9	131
Tabelle A.31	Werte der Sitzabstände für Tabelle 6.3	133
Tabelle A.32	Werte der Sitzbreite für Tabelle 6.4	134
Tabelle A.33	Werte der Gangbreiten für Tabelle 6.5	135
Tabelle A.34	Werte der Toiletten für Tabelle 6.6.	136
Tabelle A.35	Werte der Küchen und Ausgänge für Tabelle 6.7	137
Tabelle A.36	Werte der Kabinenlänge, Küchen, Toiletten und Ausgänge	
	für das Bild 6.14	138
Tabelle B.1	Beispiel einer Häufigkeitstabelle	140
Tabelle B.2	Datenpunkttabelle für das Beispiel	146

Liste der Symbole

a	Aufwärtsbeschleunigung
a/g	Verhältnis aus Auftriebsbeschleinigung zu Erdbeschleunigung
Α	Streckung (aspect ratio)
$C_{A,\max}$	maximaler Auftriebsbeiwert
$C_{A,\max,L}$	maximalen Auftriebsbeiwert bei Landekonfiguration (auch: $c_{A \max}$)
C_L	Auftriebsbeiwert (lift)
$\mathcal{C}_{L,A}$	Auftriebsbeiwert beim Anflug auf die Landebahn
$C_{L,\max,L}$	maximaler Auftriebsbeiwert
C _{MAC}	Länge der Tiefenlinie (mean aerodynamic chord)
d	Durchmesser
$d_{\scriptscriptstyle F}$	Äquivalenter Rumpfdurchmesser
D	Widerstand
$D_{e\!f}$	Durchmesser des Luftaustritts vom Fan
D_{eg}	Durchmesser des Luftaustritts aus der Gasturbine
D_{g}	großer Durchmesser der Gasturbine
D_h	Durchmesser des Lufteintritts vom Fan
D_n	größter Durchmesser des Fans
D_p	Durchmesser des Endstücks eines Triebwerks
g	Erdbeschleunigung
l	Länge
l _{cabin}	Kabinenlänge
l_F	Rumpflänge
l_g	Länge des Gasturbinen-Abschnitts
l_n	Länge des Fan-Abschnitts
l_p	Länge des Endstücks eines Triebwerks
$l_{Zylinder}$	Länge des zylindrischen Teils des Rumpfes
l_F / d_F	Schlankheitsgrad des Rumpfes
L/D	Gleitzahl (lift/drag)
$(L/D)_{max}$	maximale Gleitzahl (Reiseflug)
m_F	Kraftstoffmasse
m_L	Landemasse
m _{ML}	maximale Landemasse (maximum landing weight)

m _{MTO}	maximale Startmasse (maximum take off weight)
m_{OE}	Betriebsleermasse
m _{PL}	Nutzlast, zahlende Last
m/S_W	Flächenbelastung in kg/m^2
$m_{_{ML}}/S_{_W}$	Flächenbelastung bei maximaler Landemasse
$m_{_{MTO}}/S_{_W}$	Flächenbelastung bei maximaler Startmasse
M _{Halbkugel}	Mantelfläche der Halbkugel
$M_{_{Kegel}}$	Mantelfläche des Kegels
M _{Zylinder}	Mantelfläche des Zylinders
n	Anzahl der Stichproben
n _{PAX}	Anzahl der Passagiere (passenger, pax)
n _{sa}	Sitze in einer Reihe (seats abreast)
Р	Leistung
r	Korrelationskoeffizient
R ²	Bestimmtheitsmaß
S	Seitenlänge des Kegels
S _L	Landestrecke (landing distance)
S _{LDA}	verfügbare Landestrecke (landing distance available)
S _{LFL}	Sicherheitslandestrecke (landing field length)
S	Fläche
$S_{Ausgang}$	Bodenfläche des Ausgangs
$S_{\it FanCowling}$	benetzte Fläche der Verkleidung des Fans
$S_{\it GasgeneratorCowling}$	benetzte Fläche der Verkleidung der Gasturbine
S _H	Fläche des Höhenleitwerks
$S_{_{K\"üche}}$	Bodenfläche der Küche (galley)
S_{N}	benetzte Fläche der Triebwerksgondeln
S_{Plug}	benetzte Fläche des Endstücks
$S_{_{Toilette}}$	Bodenfläche der Toilette
S_{V}	Fläche des Seitenleitwerks
S_{wet}	benetzte Fläche
$S_{\scriptscriptstyle wet,Fuselage}$	benetzte Fläche des Rumpfes
S_{W}	Flügelfläche
S_{wet} / S_W	Verhältnis der benetzten Fläche zur Flügelfläche
ν	Fluggeschwindigkeit

V _{APP}	Anfluggeschwindigkeit (auch v_A, v_{at})
V _{CARGO}	Volumen des Frachtraums
V _S	Abreißgeschwindigkeit (stall)
W/S	Flächenbelastung in lb/ft^2
$x_{CG, LEMAC}$	Abstand vom LE auf dem MAC (LEMAC) des Gesamtflugzeugs bis
	zum CG
$x_{Landebahn}$	Sicherheitslandestrecke (auch: s_{LFL})

Griechische Symbole

b	Verhältnis aus Länge bis zum größten Durchmesser des Fans zu Gesamtlänge
	des Fans
\boldsymbol{I}_F	Schlankheitsgrad $\Rightarrow I_F = l_F / d_F$
т	Mittelwert $\Rightarrow \mathbf{m} = \overline{x}$
r	Luftdichte
\boldsymbol{r}_{0}	Luftdichte in Meereshöhe
S	relative Luftdichte $\boldsymbol{s} = \boldsymbol{r} / \boldsymbol{r}_0$ oder Standardabweichung
S^2	Varianz

Indizes

А	<u>A</u> nflug oder <u>A</u> uftrieb
APP	Anflug (<u>app</u> roach)
CABIN	Kabine
CARGO	Frachtraum
CG	Schwerpunkt (center of gravity)
ef	Austritt aus dem Fan (<u>f</u> an <u>e</u> xhaust opening)
eg	Austritt aus der Gasturbine (gas generator \underline{e} xhaust opening)
F	Kraftstoff (<u>f</u> uel) oder Rumpf (<u>f</u> uselage)
Fan Cowling	Verkleidung des Fans
g	Gasturbine (gas generator)
Gasgenerator Cowling	Verkleidung der Gasturbine
Н	Höhenleitwerk (<u>h</u> orizontal tail)
1	Auftrieb (<u>l</u> ift)

L	Landung (landing)		
LDA	verfügbare Landestrecke (landing distance available)		
LE	Nasenkannte der Tragfläche (<u>l</u> eading <u>e</u> dge)		
LEMAC	Nasenkannte der Tiefenlinie (leading edge of mean aerodynamic		
	<u>c</u> hord)		
LFL	Sicherheitslandestrecke (landing field length)		
max	maximaler Wert		
MA	Startabbruch (<u>m</u> issed <u>a</u> pproach)		
MAC	mittlere aerodynamische Flügeltiefe, Tiefenlinie (mean aerody-		
	namic <u>c</u> hord)		
ML	maximale Landemasse (maximum landing weight)		
MTO	maximale Startmasse (<u>m</u> aximum <u>t</u> ake <u>o</u> ff weight)		
Ν	Triebwerksgondel (<u>n</u> acelle)		
OE	Leermasse (operating empty)		
р	Endstück eines Triebwerks (<u>p</u> lug)		
PAX	Passagier (passenger, <u>pax</u>)		
Plug	Endstück eines Triebwerks (plug)		
PL	Nutzlast, zahlende Last (p ay l oad)		
S	Abriβ (<u>s</u> tall)		
SA	Sitze in einer Reihe (seats abreast)		
V	Seitenleitwerk (vertical tail)		
wet	benetzt (<u>wet</u> ted)		
W	Tragfläche (<u>W</u> ing)		

Konstante Faktoren

k _A	konstanter Faktor für die Anfluggeschwindigkeit als Funktion der Sicherheits-
	landestrecke
k _{CABIN}	konstanter Faktor für die Kabinenlänge als Funktion des Verhältnisses Passa-
	gieranzahl zu Sitzplätze in einer Reihe
k _{CARGO}	konstanter Faktor für das Frachtraumvolumen als Funktion der Passagieranzahl
k _F	konstanter Faktor für die Rumpflänge als Funktion der maximalen Startmasse
k _L	konstanter Faktor für die Flächenbelastung bei maximaler Landemasse als
	Funktion der Sicherheitslandestrecke multipliziert mit dem maximalen Auf- triebsbeiwert
k _{ML}	konstanter Faktor der Sicherheitslandestrecke als Funktion der maximalen Lan-
	demasse

 $k_{S,Prop}$ konstanter Faktor der Sicherheitslandestrecke für Passagierflugzeuge mit Propellerturbinen als Funktion des Verhältnisses Flächenbelastung bei maximaler Landemasse zu der Luftdichte multipliziert mit dem maximalen Auftriebsbeiwert konstanter Faktor der Sicherheitslandestrecke für Passagierflugzeuge mit Strahltriebwerken als Funktion des Verhältnisses Flächenbelastung bei maximaler Landemasse zu der Luftdichte multipliziert mit dem maximalen Auftriebsbeiwert

Liste der Abkürzungen

А	Airbus Industrie International
AIS	Air Information Service
AN	Konstruktionsbüro Antonow, GUS
ATP	Advanced Turboprop
ATR	Avions de Transport Regional, Frankreich/Italien
A/C	aircraft
В	Boeing Commercial Airplane Group
BAC	British Aircraft Corporation
BAe	British Aerospace
BC	business class
CF	Typbezeichnung der Triebwerke von General Electrics
CFM	Typbezeichnung der Triebwerke von General Electrics
CRJ	Canadair Regional Jet
DHC	De Havilland of Canada
EMB	EMBRAER, Brasilien
FAF	final approach fix
FAR	Federal Aviation Regulations
FC	first class
GE	General Electric
HTTP	hypertext transfer protocol
IAF	initial approach fix
IAS	indicated air speed (angezeigte Fluggeschwindigkeit)
ICAO	International Civil Aviation Organization
IF	intermediate fix
IL	Konstruktionsbüro Iljuschin, GUS
IPTN	Industri Pesawat Terbang Nusantara, Indonesien
ISBN	Internationale Standard-Buchnummer
JAR	Joint Aviation Requirements
JT	Typbezeichnung der Triebwerke von Pratt & Whitney
LET	staatl. Flugzeugindustrie der ehemaligen Tschechoslowakei
LR	long range (Langstrecke)
MAC	mean aerodynamic chord (mittlere aerodynamische Flügeltiefe, Tiefenlinie)
MAPt	missed approach point
MD	McDonnell Douglas Company
MLW	maximum landing weight (maximales Landegewicht)
MR	medium range (Mittelstrecke)
MTOW	maximum take of weight (maximales Startgewicht)
OEW	operating empty weight (Betriebsleermasse)

OPS	Aircraft Operations
PW	Pratt & Whitney
RJ	Regional Jet
RR	Rolls-Royce
SR	short range (Kurzstrecke)
ТО	take off
TOW	take off weight (Startmasse)
TPE	Typbezeichnung der Triebwerke von Garrett
TU	Tupolew/Aviastar, GUS
ULD	Unit Load Device
URL	Universal Resource Locator
WWW	world wide web
YAK	Konstruktionsbüro Yakowlew, GUS
YC	yankee class (Touristen-Klasse)

Verzeichnis der Begriffe und Definitionen

Abreißgeschwindigkeit

Die Abreißgeschwindigkeit ist die Geschwindigkeit, bei der es am Flugzeug zum Strömungsabriß kommt.

Anfluggeschwindigkeit

Sie bezeichnet die Geschwindigkeit eines Flugzeugs 50 ft über der Landebahn. Die Anfluggeschwindigkeit darf laut **JAR**-Vorschrift nicht kleiner als das 1,3fache der Abreißgeschwindigkeit sein. Näheres ist dem **Kapitel 2.1** zu entnehmen.

Benetzte Fläche

Eine benetzte Fläche ist die gesamte Außenfläche eines Gegenstandes.

Bestuhlung

Die Bestuhlung gibt die Anzahl der Sitzplätze in einem Flugzeug an. Unterschieden wird zwischen einer Drei-Klassen-Bestuhlung, einer Zwei-Klassen-Bestuhlung (Touristenklasse und zweite Klasse oder erste Klasse) und einer durchgängigen Touristenklasse. Der Begriff "Maximalbestuhlung" beschreibt die maximal zulässige Bestuhlung bei einer durchgängigen Touristenklasse.

Dreiseitenansicht

Die Dreiseitenansicht ist eine Darstellungsmethode des technischen Zeichnens. Sie beinhaltet die Draufsicht, die Vorderansicht und die Seitenansicht eines Gegenstandes.

Flugzeugderivat

Ein Derivat ist ein einzelnes Flugzeug einer "Familie". Als "Familie" werden Flugzeugtypen eines Herstellers bezeichnet, die der selben Erstentwicklung entstammen und somit eine hohe Ähnlichkeit zueinander aufweisen. Sie unterscheiden sich meist nur in der Rumpflänge und den Leitwerksflächen. Die Systeme dieser Flugzeuge sind innerhalb dieser Familie überwiegend gleich. Ein Beispiel ist die A320-Familie und deren Derivate A318, A319, A320, A321.

Flugzeugkategorie

Flugzeuge können Kategorien zugeordnet werden. Scholz 1998 gibt hierfür eine mögliche Aufteilung an:

- Eigenbauflugzeug (homebuilt),
- einmotoriges Propellerflugzeug (single engine propeller driven airplane),
- zweimotoriges Propellerflugzeug (twin engine propeller driven airplane),
- Agrarflugzeug (agricultural airplane),
- Geschäftsreiseflugzeug (business jet),
- Regionalverkehrsflugzeug mit PTL-Triebwerk (regional turboprop),

- Strahlverkehrsflugzeug (jet transport),
- Überschallverkehrsflugzeug (supersonic civil transport, SCT),
- Wasserflugzeug (seaplane). Weiterhin gibt es natürlich noch Militärflugzeuge verschiedener Kategorien.

Flugzeugtyp

Ein Flugzeugtyp ist ein einzelnes Flugzeug eines Herstellers (z.B.: A340-600).

Häufigkeitstabelle

In der Häufigkeitstabelle werden statistische Stichproben festgehalten und zur näheren statistischen Betrachtung als Histogramm aufbereitet.

Histogramm

In einem Histogramm werden die in der Häufigkeitstabelle gesammelten Stichproben eines Merkmalswertes graphisch dargestellt. An der Ordinate wird die Anzahl der Stichproben der jeweiligen Klasse dargestellt. An der Abszisse wird der Merkmalswert in Klassen aufgeteilt. Eine Klasse entspricht einem Bereich des Merkmalswertes. Näheres ist dem **Anhang B.2** zu entnehmen.

Layout

Ein Layout ist in diesem Fall die im Flugzeug verwendete Anordnung der Bestuhlung, Küchen, Toiletten und eventueller Gepäckaufbewahrung innerhalb der Fahrgastkabine. Layouts werden als Draufsicht der Kabine im Vollschnitt dargestellt. **Anhang C.1** und **Anhang C.2** zeigen Beispiele von Layouts.

Merkmalswert

Der Merkmalswert ist der Wert einer Datengruppe, der einer näheren statistischen Betrachtung unterzogen wird. Er wird daraufhin in Klassen eingeteilt, deren Intervall-Größe und Anzahl von der Stichprobenanzahl abhängen.

Reichweitenklassifikation

Man kann Flugzeuge in Klassen aufteilen, die ihre Einsatzreichweite kennzeichnen. Es gibt drei übergeordnete Klassen: Kurzstrecke (SR), Mittelstrecke (MR) und Langstrecke (LR). Die Kurzstrecke beinhaltet die Klasse der Regionalverkehrsflugzeuge. Für die Klasse der Regionalverkehrsflugzeuge wird den Stichproben ein Bereich von 500-2000 km entnommen.

Schwerpunktbereich

Der Schwerpunktbereich ist der Bereich zwischen vorderer und hinterer Schwerpunktgrenze, in dem die Wanderung des Schwerpunktes eines Flugzeugs beim Beladen und bei den verschiedenen Flugphasen erlaubt ist. Der Bereich darf nicht überschritten werden.

Schwerpunktlage

Die Schwerpunktlage beschreibt den Ort des Schwerpunktes. Er wird in der Luftfahrtindustrie in %MAC (Prozent der Tiefenlinie) angegeben.

Sicherheitslandestrecke

Die Sicherheitslandestrecke ist die Landestrecke multipliziert mit einem Sicherheitsfaktor. Näheres ist dem **Kapitel 3.1** zu entnehmen.

Statistische Begriffe und Definitionen

Folgende statistische Begriffe und deren Rechenregeln werden im Anhang B.3 erklärt:

- arithmetisches Mittel,
- Bestimmtheitsmaß,
- Korrelationskoeffizient,
- Median,
- Modus,
- Normalverteilung,
- Regressionsgerade,
- Regressionssatz,
- Standardabweichung,
- Varianz

Stichproben

Für statistische Betrachtungen werden einer Datengruppe Proben entnommen. Die Datengruppe muß zunächst eingegrenzt werden (z.B.: Business Jets). Die Proben beinhalten den zur Untersuchung stehenden Merkmalswert (z.B.: Anzahl der Sitzplätze), der beim Ergebnis als Größe in Prozent der Datengruppe oder als Mittelwert angegeben werden kann (z.B.: Die untersuchten Business Jets haben durchschnittlich 11 Sitzplätze). Die Stichproben können weiteren statistischen Betrachtungen unterzogen werden, die in **Anhang B.2** und **Anhang B.3** aufgezeigt werden.

Tiefenlinie

Die Tiefenlinie (mean aerodynamic chord, MAC) ist die Verbindung des vordersten mit dem hintersten Punkt eines Profils durch eine Gerade parallel zur Rumpflängsachse (**Techn. Wör-terbuch**).

Unit load device

Unit load device (ULD) werden die Container für die Frachträume von Flugzeugen genannt. Abgekürzt bekommen sie die Bezeichnung LDx. Wobei x eine Zahl zwischen eins und elf ist, die den Typ des Containers kennzeichnet.

1 Einleitung

Sind keine **analytischen Gleichungen** vorhanden, muß beim Flugzeugentwurf auf **statistische Gleichungen** zurückgegriffen werden. Das geschieht nicht ohne einer "Sorge" um die Genauigkeit des Ergebnisses. Statistische Gleichungen werden aus bereits vorhandenen Daten erstellt und geben aus diesem Grund als Ergebnis nur Durchschnittswerte mit einem Streubereich an. **Neue Technologien**, die in früheren Flugzeugen noch nicht vorhanden waren, können in der Statistik nicht berücksichtigt werden. Da jedoch beim Flugzeugentwurf zu Beginn nur wenige Daten aus den Anforderungen bekannt sind, muß beim weiteren Vorgehen auf die Statistik zurückgegriffen werden. Durch Iterationen werden die gewonnenen Daten im weiteren Verlauf genauer.

Um die Qualität einer statistischen Gleichung möglichst hoch zu halten, ist schon beim Aufnehmen der Daten Vorsicht geboten. Folgende Regeln müssen beachtet werden:

- Zusammenhang der Daten: Soll eine statistische Gleichung erstellt werden (y = f(x)), muß ein beweisbarer Zusammenhang zwischen y und x bestehen. Im günstigsten Fall besteht ein physikalischer Zusammenhang, bei dem der Faktor noch unbekannt ist.
- **Begrenzung des Datenbereichs:** Es muß sichergestellt werden, ob die Daten zweier Flugzeugkategorien zusammen oder einzeln betrachtet werden können.
- Menge der Daten: Für ein qualitativ hochwertiges Ergebnis muß auch die Anzahl der Daten stimmen. Sind beispielsweise nur fünf Datenpunkte vorhanden (siehe Beispielrechnung in Anhang B.3), kann es bei der Berechnung des Bestimmtheitsmaßes, das die Aussage über die Qualität des Diagramms macht, zu einer starken Kohärenz kommen. Fünf Datenpunkte können aber auch nur zufällig auf einer Geraden liegen.
- Alter der Daten: Sind Daten zu alt, kann das ebenfalls zu verfälschten Ergebnissen führen (veraltete Technologien).
- Genauigkeit der Daten: Die Datenquelle muß zuverlässig sein. Gegebenenfalls müssen die gewonnenen Werte mit anderen Datenquellen verglichen werden.
- Verwendbarkeit der Daten: Es ist darauf zu achten, ob die Daten einer Flugzeugkategorie genauso wie die einer anderen verwendet werden können, oder ob hier eine andere Auslegungsphilosophie bestand. Am Beispiel der Anfluggeschwindigkeit als Funktion der Sicherheitslandestrecke ist bei den beiden Flugzeugkategorien "Passagierflugzeuge mit Strahltriebwerken" und "Passagierflugzeuge mit Propellerturbinen" bei einem Anstieg der Anfluggeschwindigkeit ebenfalls ein Anstieg der Sicherheitslandestrecke zu erkennen. Bei den Business Jets ist die Anfluggeschwindigkeit in einem Bereich etwa gleich, die Sicherheitslandestrecke variiert jedoch erheblich.
- Erstentwicklungen und Weiterentwicklungen: Bei einigen statistischen Zusammenhängen kann es sinnvoller sein, Daten von Weiterentwicklungen nicht zu berücksichtigen. Als

Weiterentwicklung ist hierbei die gestreckte oder verkürzte Version eines Flugzeugs gemeint (Beispiel: A320-Familie).

Wird einer dieser Punkte mißachtet, kann dies zu verfälschten Ergebnissen führen, wobei das Bestimmtheitsmaß hoch ausfallen kann, der Zusammenhang aber nicht korrekt erstellt wurde und die gewonnene Gleichung unbrauchbar ist.

1.1 Begriffsdefinitionen

Statistik

Der Begriff der Statistik wird in Meyers Lexikon in folgender Weise definiert:

[lat.], 1. (meist in Tabellenform zusammengestellte) Ergebnisse von zahlenmäßigen Erfassungen bestimmter Sachverhalte (z. B. Bevölkerungs-, Ind.-, Landwirtschafts-, Verkehrs- und Preisstatistik); 2. Teilgebiet der angewandten Mathematik, das sich mit der Erfassung und Auswertung von Massenerscheinungen befaßt, also mit Erscheinungen, die an Gesamtheiten von vielen Objekten beobachtbar sind. Die deskriptive (beschreibende) Statistik beschäftigt sich damit, empirisches Material über Zufallsgrößen zu sammeln, geeignet darzustellen und zu charakterisieren. - Die Aufgabe der analytischen (beurteilenden) Statistik besteht darin, mit Hilfe der Wahrscheinlichkeitsrechnung aus dem statist. Material Rückschlüsse auf die Grundgesamtheit zu ziehen (z. B. Schätzen von Wahrscheinlichkeiten, Testen von Hypothesen).

Die Statistik wird im Fall dieser Diplomarbeit auf zwei Arten angewendet:

Erstellen einer Gleichung durch eine Regressionsgerade¹

Aus physikalischen oder aus der Literatur bekannten Zusammenhängen wird ein Diagramm erstellt. Die betreffenden Parameter der gesammelten Daten werden in dieses Diagramm als Datenpunkte eingetragen. Mittels einer Regressionsgeraden wird daraufhin die statistische Gleichung erstellt. Die Qualität des Diagramms wird durch das Errechnen des Bestimmtheitsmaßes ermittelt.

Häufigkeitstabelle und Histogramm

Ist kein erkennbarer Zusammenhang eines zur Untersuchung stehenden Parameters zu anderen zu erkennen, wird dieser Parameter einzeln untersucht. Dies geschieht, indem er zunächst in einer Häufigkeitstabelle verarbeitet wird. Hier wird er in Klassen aufgeteilt. Daraufhin kann die Anzahl der Stichproben in einem Histogramm über den in Klassen aufgeteilten Parameter aufgetragen werden. Zusätzlich wird die Normalverteilung berechnet und ebenfalls in dem Histogramm dargestellt.

1.2 Aufbau und Ziel der Arbeit

Die Anpassung von Statistik-Gleichungen an neue Flugzeugtypen wird von Abschnitt 2 bis Abschnitt 6 an den unten aufgeführten Themen vorgenommen. Die Abschnitte sind getrennt voneinander zu betrachten. Lediglich zwischen Abschnitt 2 und Abschnitt 3 besteht eine Verbindung in Form eines direkten statistischen Zusammenhangs. Die Anhänge dienen rein informativen Zwecken und enthalten zum größten Teil Daten der verwendeten Flugzeugtypen.

Der Hauptteil der Arbeit enthält die Ausführungen zum Thema:

Abschnitt 2	beschreibt Vorschriften der Anfluggeschwindigkeit und enthält statistische				
	Zusammenhänge zu anderen Parametern,				
Abschnitt 3	beschreibt Vorschriften der Sicherheitslandestrecke und enthält statistische				
	Zusammenhänge zu der Anfluggeschwindigkeit und anderen Parametern,				
Abschnitt 4	stellt einen Vergleich zweier Gleichungen des Verhältnisses aus benetzter				
	Fläche des Flugzeugs und Flügelfläche dar und überprüft einzelne Parameter				
	der Gleichungen,				
Abschnitt 5	behandelt die Schwerpunktlage und den Schwerpunktbereich eines unbelade				
	nen Flugzeugs,				
Abschnitt 6	enthält statistische Betrachtungen für den Rumpf, den Frachtraum, die Kabi-				
	ne und gibt einen Überblick über vorhandene Frachtraum-Container,				
Anhang A	enthält die Tabellen für die Diagramme,				
Anhang B	enthält das vorgehen bei der Datenaufnahme sowie die verwendeten Stati-				
	stikverfahren samt Beispielrechnungen,				
Anhang C	gibt einen Überblick der verwendeten Flugzeugtypen mit Dreiseitenansichten,				
	Layouts ² und signifikanten Daten wieder.				

Ziel der Arbeit ist die Modifikation bereits vorhandener Statistikgleichungen und das Auffinden neuer statistischer Zusammenhänge innerhalb der Themen, die in den Abschnitten benannt sind. Dabei werden drei Flugzeugkategorien berücksichtigt:

- Passagierflugzeuge mit Strahltriebwerken
- Passagierflugzeuge mit Propellerturbinen
- Business Jets (Geschäftsreiseflugzeuge)

Diese drei Kategorien werden größtenteils getrennt voneinander behandelt. Es kann zur Erhöhung der Qualität sinnvoll sein, zwei Kategorien gemeinsam zu untersuchen. An den Stellen, an

¹ Begriffe und Rechenregeln der Statistik sind dem Anhang B.2 und Anhang B.3 entnehmbar.

² Siehe "Verzeichnis der Begriffe und Definitionen".

denen dies gemacht wird, ist vorher eine separate Betrachtung durchgeführt worden und eine Übereinstimmung festgestellt worden.

1.3 Literaturübersicht

Die Literaturauswahl zu dieser Diplomarbeit läßt sich drei Kategorien zuordnen:

Literatur für die Datensammlung

Hierbei ist als renommiertestes Werk "Jane's all the world aircraft" zu nennen, das zu allen Flugzeugen der Welt Daten besitzt. Die in der Diplomarbeit verwendeten Daten sind größtenteils **Jane's 1992/1993** und **Jane's 1996/1997** entnommen. Das Werk erscheint alle zwei Jahre in einer Neuauflage mit allen neu entwickelten Flugzeugen. Die dabei zur Verfügung stehenden Daten und Informationen zu den Flugzeugsystemen sind zahlreich und übersichtlich. Bei älteren Flugzeugtypen wird auf die vorherigen Jahrgänge des Buches verwiesen. Der offensichtlichen Nachteil dieses Buches ist der hohe Anschaffungspreis von ca. 1200 DM.

Als zweite Quelle ist das Buch "Moderne Verkehrsflugzeuge & Business Jets" von **Kreuzer 1999** für diejenigen zu empfehlen, die sich einen kurzen Überblick der zur Zeit als *modern* bezeichneten Flugzeuge verschaffen wollen. Hier sind nur grundsätzliche Daten verzeichnet. Neben dem Entwicklungsgrund und einer kurzen Beschreibung wird von jedem Flugzeug ein Farbbild gezeigt.

Schließlich ist noch "Das grosse Buch der Passagierflugzeuge" von **Endres 1998** zu erwähnen, das sich zwar weniger den Daten der Flugzeuge widmet, jedoch eine ausführliche Beschreibung zu jedem Passagierflugzeug bietet, die Flugzeuge anhand von Farbbildern und Dreiseitenansichten darstellt und bei den 40 wichtigsten Flugzeugen mit überaus detaillierten Schnittzeichnungen aufwartet. Die ersten Kapitel des Buches sind der Beschreibung der Flugzeugtechnologie, dem Flugzeugbau und dem Flugbetrieb gewidmet.

Als eine gute Datensammlung ist noch die Homepage der Uni Würzburg zu nennen.

Literatur für die Statistik

Am meisten Nutzen für die Diplomarbeit wird aus dem Buch "Computerunterstützte Statistik" von **Heise 1994** gezogen. Die Rechenregeln der Statistik sind hier knapp gehalten. Dafür bietet das Buch anschauliche Beispiele und Darstellungsmöglichkeiten für computerunterstützte Anwendungen der Statistik. Grundlegende Begriffe der Statistik sind in praxisnaher Form beschrieben. Das ideale Buch für einen Einstieg in die Problematik.

Das Buch "Angewandte Statistik" von **Sachs 1992** widmet sich mehr den Rechenregeln der Statistik. Dieses Buch ist demjenigen zu empfehlen, der schon einen Einstieg in die Statistik gefunden hat und Statistik-Gleichungen für spezielle Anwendungen sucht. Durch die gute Gliederung des Buches wird er hier auch fündig.

Literatur für den Flugzeugentwurf

Neben dem "Skript zur Vorlesung Flugzeugentwurf" von Scholz 1998 und den "Unterlagen zur Vorlesung Flugzeugentwurf" von Marckwardt 1997, die den größten Teil der behandelten Themen abdecken, werden hier folgende Bücher verwendet: Am meisten profitiert wird von "Synthesis of Subsonic Airplane Design" von Torenbeek 1982, das für diese Arbeit Anregungen für die Rumpfauslegung bietet und bei der Berechnung von benetzten Flächen hilft. Auszugsweise wird "Subsonic Aircraft: Evolution and the Matching of size to Performance" von Loftin 1980 für die Darstellungsweise der Anfluggeschwindigkeit und der Sicherheitslandestrecke verwendet. "Layout Design of Cockpit, Fuselage, Wing and Empennage: Cutaways and Inboard Profiles" von Roskam III wird bei der Rumpfauslegung verwendet. " Preliminary Calculation of Aerodynamic, Thrust and Power Characteristics" von Roskam VI findet unter anderem Verwendung für die Berechnung der benetzte Flächen der Triebwerke.

2 Anfluggeschwindigkeit

Im Zuge dieses Kapitels werden Zusammenhänge zwischen der Anfluggeschwindigkeit und anderen Parametern bei neueren Flugzeugtypen betrachtet. Es sollen hierfür bereits bestehende Statistikgleichungen an die neueren Flugzeugtypen angepaßt werden. Dies wird getrennt für Strahlflugzeuge, Propellerflugzeuge und Business Jets gemacht. Da die Sicherheitslandestrecke auch mit der Anfluggeschwindigkeit zusammenhängt und die Sicherheitslandestrecke der nächste zu bearbeitende Punkt ist, sind Überschneidungen diesbezüglich unvermeidlich. Die Zusammenhänge zwischen der Anfluggeschwindigkeit und der Sicherheitslandestrecke werden im Kapitel der Sicherheitslandestrecke (**Kapitel 3.2**) bearbeitet.

2.1 Definition

Die von der **ICAO** festgelegten Regeln über die Anfluggeschwindigkeit sind dem Dokument *Flight Procedures* entnommen. Im Folgenden wird eine kurze Zusammenfassung über die Passagen des Dokuments wiedergegeben, die direkt die Anfluggeschwindigkeit betreffen:

Der Anflug wird zunächst in zwei Bereiche aufgeteilt. Wobei sich der erste Bereich vor dem Missed Approach Point (MAPt)³ und der zweite Bereich hinter dem MAPt befindet. Diese beiden Bereiche werden wiederum in Segmente eingeteilt, die die Flugphasen beschreiben (siehe **Bild 2.1**).

³ Der Punkt des Instrumenten-Landeanflugs, an dem spätestens das Durchstartmanöver eingeleitet werden muß, um bei einem Abbruch des Anflugs die in den Vorschriften festgelegte Hindernishöhe (Obstacle Clearance) nicht zu unterschreiten.

Wie **Bild 2.1** zu entnehmen ist, wird der Bereich hinter der Arrival Route (Ankunftsstrecke) in Initial (Anfangssegment), Intermediate (Zwischensegment) und Final (Endsegment) unterteilt. Der Missed Approach (Durchstartmanöver) Sektor ist ebenfalls in diese drei Segmente eingeteilt:

Das *Initial Approach Segment* beginnt beim Initial Approach Fix (IAF) und endet beim Intermediate Fix (IF). Die Flughöhe beträgt hier mindestens 300 m.

Das *Intermediate Approach Segment* ist der Bereich, bei dem sich das Flugzeug von der Geschwindigkeit und der Landekonfiguration auf den Endanflug vorbereiten muß. Aus diesem Grund wird hier die Steigrate so flach wie möglich gehalten. Die Mindesthöhe beträgt hier 150 m.

Das *Final Approach Segment* beginnt am Final Approach Fix (FAF) und endet am Missed Approach Point (MAPt).

Ist der Anflug nicht erfolgreich gewesen, muß hier das Durchstartmanöver eingeleitet werden. Das Flugzeug kommt dann in den Missed Approach Bereich (siehe **Bild 2.2**).

Bild 2.2 Missed Approach Segmente (ICAO)

Während der Missed Approach Phase muß der Pilot die Konfiguration des Flugzeugs, Fluglage und Flughöhe ändern. Aus diesem Grund muß die Missed Approach Prozedur so einfach wie möglich gehalten werden:

Das *Initial Missed Approach Segment* beginnt beim Missed Approach Point (MAPt) und endet an dem Punkt, an dem das Flugzeug wieder zu steigen beginnt. Diese Steigphase wird dann *Intermediate Missed Approach Segment* genannt, das beim Überschreiten der 50 m Hindernishöhe endet. Ab diesem Punkt beginnt das *Final Missed Approach Segment*, das wiederum bei Beginn eines neuen Anflugs endet.

Den im einzelnen beschriebenen Segmenten werden von der **ICAO** Geschwindigkeiten zugewiesen, die hauptsächlich von der Abreißgeschwindigkeit v_s der einzelnen Flugzeuge abhängen. Die Anfluggeschwindigkeit v_A wird dabei $1,3 \cdot v_s$ gesetzt. Die sich so ergebenden verschiedenen Anfluggeschwindigkeiten werden in fünf Kategorien eingeteilt (siehe **Tabelle 2.1**).

Aircraft category	V.,	Range of speeds for initial approach	Range of final approach speeds	Max speeds for visual manoeuvring (circling)	Max speeds for missed approach	
					Intermediate	Final
Α	<169	165/280(205*)	130/185	185	185	205
В	169/223	220/335(260*)	155/240	250	240	280
с	224/260	295/445	215/295	335	295	445
D	261/306	345/465	240/345	380	345	490
Е	307/390	345/467	285/425	445	425	510

 Tabelle 2.1
 Geschwindigkeiten f
 ür die Anflugphasen in Kilometer pro Stunde (km/h) (ICAO)

V_ - Speed at threshold based on 1.3 times stall speed in the landing configuration at maximum certificated landing mass.

* Maximum speed for reversal and racetrack procedures.

 $(v_{at} = v_A)$

2.2 Anmerkungen der Flugsicherung

Im Verlauf der Recherchen über die Vorschriften der Anfluggeschwindigkeit wurde Kontakt mit der Flugsicherung aufgenommen. Das Ergebnis der Auskünfte ist nachstehend ersichtlich. Nach Auskunft von **Hartening** werden am Hamburger Flughafen wegen dem Mischverkehr keine festen Anfluggeschwindigkeiten vorgegeben. Hier tritt lediglich die Regel in Kraft, daß beim Durchstoßen der Flugfläche 100 (3000 m Flughöhe) eine angezeigte Fluggeschwindigkeit (IAS) von 250 Knoten (463 km/h) nicht überschritten werden darf.

Laut **Rockel** müssen diese **ICAO**-Vorschriften am Frankfurter Flughafen wegen der hohen Flugdichte strikt eingehalten werden. Die Geschwindigkeiten werden gleichfalls zur Berechnung der Abfertigungszeiten verwendet. Ferner dürfen die Flugzeuge ab 12 Meilen (19,3 km) vor dem Flughafen eine Geschwindigkeit von IAS = 210 Knoten (389 km/h) nicht unterschreiten. Diese Geschwindigkeit wird Minimum Clean Speed (keine Klappen und kein Fahrwerk ausgefahren) genannt. Ab 4-6 Meilen (6,4-9,7 km) vor dem Flughafen soll eine IAS von 170 Knoten ± 10 Knoten (315 km/h ± 19 km/h) eingehalten werden. Diese beiden Vorschriften gelten für alle Flugzeuge, die diese Geschwindigkeit fliegen können.

2.3 Anfluggeschwindigkeit als Funktion der Flächenbelastung

Die Anfluggeschwindigkeit v_A darf, wie in **Kapitel 2.1** schon erwähnt, laut **FAR**-Vorschrift nicht geringer als $1,3 \cdot v_s$, der Abreißgeschwindigkeit sein. Dieser Wert wird 50 ft über der Landebahn bestimmt, wobei das Flugzeug in Landekonfiguration sein muß. Was bedeutet, daß die Landeklappen voll ausgefahren sein sollen und das Fahrwerk ausgefahren sein muß. Als maßgebliche Landemasse gilt die maximal zulässige Masse bei der Landung (Maximum Landing Weight).

Loftin 1980 gibt für die Anfluggeschwindigkeit folgende Formel an:

$$v_{A} = 17,15 \cdot \sqrt{\frac{W}{S} \cdot \frac{1}{r} \cdot \frac{1}{c_{L,A}}}$$
(2.1)

dabei sind:

- $\frac{W}{S}$ Flächenbelastung $\left[\frac{lb}{ft^2}\right]$ • r Luftdichte, hier: 1,0 $\left[\frac{kg}{m^3}\right]$
- $c_{L,A}$ Auftriebsbeiwert beim Anflug auf die Landebahn

für
$$c_{L,A}$$
 gilt: $c_{L,A} = \frac{c_{A,\max}}{1,69}$

Dies wird aus dem Zusammenhang zwischen der Geschwindigkeit und dem Auftriebsbeiwert deutlich:

$$c_A = \frac{\frac{m}{s} \cdot g}{\frac{r}{2} \cdot v^2} \tag{2.2}$$

Da zu dem maximalen Auftriebsbeiwert $c_{A,\max}$ die minimale Geschwindigkeit v_s , also die Abreißgeschwindigkeit gehört, läßt sich für $c_{A,\max}$ folgender Ausdruck herleiten:

$$c_{A,\max} = \frac{\frac{m}{s} \cdot g}{\frac{r}{2} \cdot v_s^2}$$
(2.3)

Die Anfluggeschwindigkeit wird laut **FAR**-Vorschrift $1,3 \cdot v_s$ gesetzt. Somit ergibt sich:

$$c_{L,A} = \frac{\frac{m}{s} \cdot g}{\frac{r}{2} \cdot (1, 3 \cdot v_s)^2}$$
(2.4)

Durch das Quadrieren des Faktors 1,3 ergibt sich ein Teiler von 1,69.

Die Gleichung (2.1) stellt **Loftin 1980** nun in einem Diagramm dar (siehe **Bild 2.3**), indem er die Anfluggeschwindigkeit v_A (Approach Speed) über die Wurzel der Flächenbelastung $\sqrt{(W_L/S)/s}$ aufträgt. Das Verhältnis der Luftdichten $s = r/r_0$ wird hier für eine vereinfachte Betrachtung auf Meereshöhe gesetzt ($r = r_0$).

Da diese Flugzeugmuster ca. 20 Jahre alt sind, ist hier eine erneute Betrachtung nötig.

Die von Loftin 1980 verwendeten Flugzeugmuster sind der Tabelle A.1 zu entnehmen. Wie dort zu sehen ist, hat Loftin 1980 Business Jets und Passagierflugzeuge mit Strahltriebwerken betrachtet, die er beide in Bild 2.3 dargestellt hat. In Kapitel 3.2.3 wird beschrieben, warum die in der Literatur angegebenen Anfluggeschwindigkeit von den Business Jets nicht ohne weiteres für eine physikalische Betrachtung verwendbar sind. (Was jedoch keine Deutung der Qualität des Diagramms von Loftin 1980 sein soll, denn die von ihm verwendeten Daten sind nicht bekannt.)

Zusätzlich werden im weiteren Verlauf auch Passagierflugzeuge mit Propellerturbinen betrachtet, was es nötig macht, mehrere Diagramme anzufertigen.

Hierfür werden zunächst die dafür nötigen Parameter auf die metrische Form umgerechnet:

$$1knot \equiv 1 \frac{Seamile}{h} \equiv 1,852 \frac{km}{h} \equiv 0,514 \frac{m}{s}$$
(2.5)

$$1\frac{lb}{ft^2} \equiv \frac{0,4536kg}{0,0929m^2} \equiv 4,88\frac{kg}{m^2}$$
(2.6)

Wenn die Gleichung (2.4) nach v_A umgestellt wird, ergibt sich für die Anfluggeschwindigkeit:

$$v_{A} = \sqrt{\frac{\frac{m_{ML}}{S_{W}} \cdot g}{\frac{\mathbf{r}}{2} \cdot c_{L,A}}}$$
(2.7)

Dabei ist $c_{L,A}$ der Auftriebsbeiwert bei Anfluggeschwindigkeit. Die Luftdichte \mathbf{r} wird dabei auf Meereshöhe $\mathbf{r} = \mathbf{r}_0 = 1,225 kg/m^3$ gesetzt. Bei Beachtung der Umrechnungen sind die beiden Gleichungen (2.1) nach **Loftin 1980** und Gleichung (2.7) beliebig austauschbar.

2.3.1 Passagierflugzeuge mit Strahltriebwerken

Bei den folgenden Betrachtungen wird die metrische Form verwendet, wobei v_A über der Wurzel der Flächenbelastung $\sqrt{m_{ML}/S_W}$ aufgetragen wird. $c_{L,A}$ wird hier nicht mit einbezogen, da dieses von den Hochauftriebssystemen der einzelnen Flugzeugmuster abhängt und solche Daten aus der Literatur nicht bekannt sind. Demnach könnte es nur nach Gleichung (2.4) berechnet werden.

Bild 2.4 zeigt die Anfluggeschwindigkeit v_A über den von **Loftin 1980** verwendeten Parameter der Flächenbelastung, dessen Zusammenhang mit der Anfluggeschwindigkeit der Gleichung (2.1) entnommen wird. Die Werte für das Diagramm des **Bildes 2.4** sind der **Tabelle A.2** zu entnehmen.

- 2 Triebwerke
- 3 Triebwerke
- 4 Triebwerke

Das Bestimmtheitsmaß⁴ des **Bildes 2.4** deutet nach **LTH - Gewichte 1986** auf einen mittelstarken Zusammenhang der beiden Parameter hin.

⁴ Das Bestimmtheitsmaß ist das Quadrat des Korrelationskoeffizienten r (Rechenregel im **Anhang B** in Gleichung (B.6))
Die Anfluggeschwindigkeit läßt sich somit durch die Gleichung der Regressionsgeraden ausdrücken, wenn der Auftriebsbeiwert $c_{L,A}$ nicht bekannt ist :

$$v_A = 3.12 \cdot \sqrt{\frac{m_{ML}}{S_W}} \quad \left[\frac{m}{s}\right] \tag{2.8}$$

Wie weiterhin zu sehen ist, liegt lediglich ein Flugzeugtyp mit vier Triebwerken außerhalb der Datenanhäufung. Das Flugzeug, die BAe 146-300, weist eine im Verhältnis zu niedrige Anfluggeschwindigkeit für die Flächenbelastung auf, was an einer für ihre Kategorie ungewöhnlichen Bauweise liegt. Kein anderes Flugzeug in dieser Kategorie hat eine Hochdeckerbauweise und vier Triebwerke.

2.3.2 Passagierflugzeuge mit Propellerturbinen

Bei den Passagierflugzeugen mit Propellerturbinen (siehe **Bild 2.5**) entfällt die Einteilung in verschiedene Kategorien, da hier alle verwendeten Flugzeuge zwei Propellerturbinen haben. Die Werte des Diagramms sind der **Tabelle A.3** zu entnehmen.

Bild 2.5 v_A in [m/s] über $\sqrt{m_{ML}/S_W}$ in $\sqrt{kg/m^2}$ bei Passagierflugzeugen mit Propellerturbinen

Wie dem Bestimmtheitsmaß des **Bildes 2.5** zu entnehmen ist, besteht auch hier ein mittelstarker Zusammenhang zwischen den beiden Parametern. Bei Fehlen des Auftriebsbeiwertes $c_{L,A}$ bei den Passagierflugzeugen mit Propellerturbinen kann künftig die Gleichung der Regressionsgeraden für v_A herangezogen werden:

$$v_A = 2,98 \cdot \sqrt{\frac{m_{ML}}{S_W}} \left[\frac{m}{s}\right]$$
(2.9)

2.3.3 Business Jets

Die Betrachtung des Zusammenhangs wird jetzt auch auf die Business Jets angewandt (siehe **Bild 2.6**). Die Werte sind der **Tabelle A.4** zu entnehmen.

Bild 2.6 v_A in [m/s] über $\sqrt{m_{ML}/S_W}$ in $\sqrt{kg/m^2}$ bei Business Jets

Das Bestimmtheitsmaß des **Bildes 2.6** deutet auf einen lediglich schwachen Zusammenhang der beiden Parameter hin, was eine Folge der Angabe der Anfluggeschwindigkeiten der Business Jets ist, die nicht wie bei den anderen Flugzeugkategorien auf $1,3 \cdot v_s$ gesetzt werden

kann. Wie bereits erwähnt, geht **Kapitel 3.2.3** näher auf dieses Thema ein. Aus diesem Grund ist die Verwendung der Regressionsgeraden als Berechnung von v_s bei den Business Jets nicht zu empfehlen.

3 Sicherheitslandestrecke

In diesem Kapitel werden Zusammenhänge zwischen der Sicherheitslandestrecke und anderen Parametern gesucht. Zusätzlich werden die aus der Literatur bekannten statistischen Zusammenhänge auf ihre Richtigkeit in bezug auf neue Flugzeugtypen überprüft. Wenn Handlungsbedarf besteht, werden die bekannten Statistikgleichungen geändert. Die Zusammenhänge der Parameter werden getrennt für Passagierflugzeuge mit Strahltriebwerken, Passagierflugzeuge mit Propellerturbinen und Business Jets durchgeführt.

3.1 Definition

Scholz 1998 definiert die Sicherheitslandestrecke folgendermaßen:

Ein Flugzeug darf auf einem Flugplatz landen, wenn die Sicherheitslandestrecke (landing field length) s_{LFL} kürzer ist als die verfügbare Landestrecke (landing distance available, LDA) s_{LDA} . Die Sicherheitslandestrecke wird nach **JAR/FAR** berechnet aus der Landestrecke (landing distance) s_L und einem **Sicherheitsfaktor**. Für **Jets** beträgt dieser Sicherheitsfaktor 1/0,6 = **1,667** und für **Turboprops** 1/0,7 = **1,429**.

Die Landestrecke beginnt beim Überfliegen der 50 ft Hindernishöhe (siehe Bild 3.1).

Bild 3.1 Definition der Sicherheitslandestrecke nach FAR 25 und JAR 25 - Auszug aus Loftin 1980

3.2 Anfluggeschwindigkeit als Funktion der Sicherheitslandestrecke

Das statistische Diagramm von **Loftin 1980** (siehe **Bild 3.2**) stellt für Passagierflugzeuge mit Strahltriebwerken den Zusammenhang zwischen der Sicherheitslandestrecke und der Anfluggeschwindigkeit dar. Beim Umstellen der in dem Diagramm dargestellten Geraden läßt sich dabei folgende Formel für die Anfluggeschwindigkeit ausdrücken:

$$v_A = k_A \cdot \sqrt{s_{LFL}} \tag{3.1}$$

mit
$$k_{A} = 1,70\sqrt{m} / s^{2}$$

 S_{LFL} als Funktion von v_A^2 (Loftin 1980) Bild 3.2

Da dieses Diagramm aus dem Jahr 1980 stammt, gilt es zu überprüfen, ob der durch die Steigung der Geraden ermittelte Faktor k_A bei heutigen Flugzeugtypen noch Anwendung finden kann. Das Loftin 1980 Diagramm bezieht sich wiederum auf Passagierflugzeuge mit Strahltriebwerken und Business Jets. (Verwendete Flugzeugtypen siehe Tabelle A.1)

Bei den im Folgenden durchgeführten Betrachtungen wird hier wieder eine Trennung dieser beiden Flugzeugkategorien vorgenommen und zusätzlich werden noch die Passagierflugzeuge mit Propellerturbinen behandelt.

3.2.1 Passagierflugzeuge mit Strahltriebwerken

Die Anfluggeschwindigkeit $v_A [m/s]$ wird über der Wurzel der Sicherheitslandestrecke $\sqrt{s_{LFL}}$ $\left[\sqrt{m}\right]$ aufgetragen (siehe **Bild 3.3**), um der Form der Gleichung (3.1) zu entsprechen. Die Werte für das Diagramm in **Bild 3.3** sind der **Tabelle A.5** zu entnehmen.

Der Faktor k_A der in dem Diagramm dargestellten Gleichung ($y = 1,7033 \cdot x$) behält also auch weiterhin seine Gültigkeit bei.

Aus dem Bestimmtheitsmaß von $R^2 = 0,3021$ läßt sich ein Korrelationskoeffizient von r = 0,55 und somit nach **LTH - Gewichte 1986** eine mittelstarke Kohärenz zwischen den beiden Parametern bestimmen.

3.2.2 Passagierflugzeuge mit Propellerturbinen

Da der soeben beschriebene k_A Faktor nur für Passagierflugzeuge mit Strahltriebwerken gültig ist, werden nun die beiden Parameter bei Passagierflugzeugen mit Propellerturbinen überprüft (siehe **Bild 3.4**). Die Werte für das Diagramm in **Bild 3.4** sind der **Tabelle A.6** zu entnehmen.

Aus der im Diagramm dargestellten Gleichung der Regressionsgeraden läßt sich ein k_A Faktor von 1,58 ablesen. Somit läßt sich für Passagierflugzeuge mit Propellerturbinen folgende Geradengleichung darstellen:

$$v_A = 1,58 \cdot \sqrt{s_{LFL}} \tag{3.2}$$

Aus dem Bestimmtheitsmaß von $R^2 = 0,2354$ läßt sich ein Korrelationskoeffizient von r = 0,49 bestimmen. Nach **LTH - Gewichte 1986** ist hier lediglich eine schwache Kohärenz zwischen den beiden Parametern vorhanden (**Bild 3.4**).

Bild 3.4 $v_A [m/s]$ über $\sqrt{s_{LFL}} \sqrt{m}$ - Passagierflugzeuge mit Propellerturbinen (1)

Das Bestimmtheitsmaß und somit auch der Korrelationskoeffizient lassen sich durch eine Modifizierung der Art der Regressionsgeraden (Gl. (3.2)) auf ein erhebliches Maß verbessern. Das geschieht durch die Verschiebung des Schnittpunktes mit der Ordinatenachse (siehe **Bild 3.5**). Vorher lag der Schnittpunkt im Nullpunkt. Das Bestimmtheitsmaß $R^2 = 0,8433$ weist auf eine deutliche Verbesserung hin, wenn man in dem Fall der Passagierflugzeuge mit Propellerturbinen einen Schnittpunkt mit der Ordinatenachse von $v_A = 23,7 m/s$ wählt. Der daraus resultierende Korrelationskoeffizient r = 0,92 beschreibt bei Verwendung der neuen Geradengleichung einen starken Zusammenhang der beiden Parameter. Die modifizierte Geradengleichung lautet dann:

$$v_A = k_A \cdot \sqrt{s_{LFL}} + 23.7 \frac{m}{s} \tag{3.3}$$

$$\mathbf{Bid 3.5}$$

mit
$$k_A = 0,861 \sqrt{m} / s^2$$

3.2.3 Business Jets

Der bisher in Form eines Diagramms dargestellte Zusammenhang zwischen der Anfluggeschwindigkeit und der Sicherheitslandestrecke wird nun auch auf die Business Jets angewandt (siehe **Bild 3.6**). Die Werte für das Diagramm des **Bildes 3.6** sind der **Tabelle A.7** zu entnehmen.

Wie durch das Bestimmtheitsmaß ($\mathbf{R}^2 = 0,0006$) zu sehen ist, besteht hier keine Kohärenz zwischen den beiden Parametern. Im Diagramm ist weiterhin eine äußerst **geringe Steigung der Regressionsgeraden** ersichtlich. Die Anfluggeschwindigkeiten der Business Jets finden in einem großen Streubereich um die Gerade herum Platz. Das muß bedeuten, daß die in der Literatur angegeben Werte für v_A nicht den erhofften Zusammenhang mit sich bringen.

Beispiel:

Kreuzer 1999 gibt für die "Galaxy" von Galaxy Aerospace für $v_A = 58,3 m/s$ an, wohingegen **Moon** von Galaxy Aerospace für $v_A = 69,4 m/s$ als einen aus dem Handbuch abgelesenen Wert angibt, was einer Abweichung von 16 % entspricht.

Moon gibt hier als mögliche Erklärung an, daß **Kreuzer 1999** zum Zeitpunkt des Buchdruckes die von dem Prototypen der "Galaxy" verwendeten Daten übernommen hat, wohingegen seine Daten von einem aus der Produktion kommenden Flugzeugs sind. In der Tat war der Erstflug der "Galaxy" am 25.12.1997, so daß hier das geschilderte Problem auftreten konnte. Weiterhin kann der große Streubereich bedeuten, daß sich die Angabe der Anfluggeschwindigkeit v_A bei den Business Jets nicht auf die **FAR**-Vorschrift von

$$v_A = 1, 3 \cdot v_S \tag{3.4}$$

bezieht. Die **FAR**-Vorschrift ist ein Mindestmaß für die Anfluggeschwindigkeit. Möglich ist aber eine höheres v_A zur Verkürzung der Zeit des Landeanflugs. Gibt der Hersteller trotzdem eine aus der **FAR**-Vorschrift für v_A berechnete Sicherheitslandestrecke an, so ist der Zusammenhang zwischen Anfluggeschwindigkeit und Sicherheitslandestrecke nicht mehr ersichtlich.

3.3 Flächenbelastung als Funktion der Sicherheitslandestrecke

Die folgende Methode zur Bestimmung der Sicherheitslandestrecke über die Flächenbelastung bei maximaler Startmasse ist **Scholz 1998** entnommen.

Die Flächenbelastung bei maximaler Landemasse ist:

$$m_{ML} / S_W = \frac{\mathbf{r} \cdot v_s^2}{2 \cdot g} c_{A,\max,L}$$
(3.5)

Die Luftdichte r ist auf die Meereshöhe bezogen und wird somit nach der Standardatmosphäre auf $r_0 = 1,225 kg/m^3$ gesetzt.

$$\boldsymbol{s} = \frac{\boldsymbol{r}}{\boldsymbol{r}_0} \tag{3.6}$$

Jetzt werden Gl. (3.1) und Gl. (3.6) in Gl. (3.5) eingesetzt. Als Resultat erhält man

$$m_{ML} / S_W = k_L \cdot \mathbf{s} \cdot c_{A,\max,L} \cdot s_{LFL}$$
(3.7)

mit einem Wert für den Faktor k_L , der bisher eine Größe von $0,107 kg/m^3$ hatte.

Diesen Wert gilt es auf seine Richtigkeit, durch Einbeziehung neuer Flugzeugtypen, zu überprüfen.

Hierfür wird die Flächenbelastung m_{ML}/S_W der Flugzeuge in kg/m^2 über dem maximalen Auftriebsbeiwert bei Landekonfiguration $c_{A,\max,L}$ multipliziert mit der Sicherheitslandestrecke s_{LFL} aufgetragen (siehe **Bild 3.7**). Da der Wert für das Verhältnis der Luftdichten s = 1 gesetzt wurde, entfällt er bei dieser Betrachtung.

 $c_{A,\max,L}$ ist unbekannt und auch nicht aus der Literatur für alle Flugzeuge zu beschaffen. Er wird deshalb berechnet, indem Gleichung (3.5) nach $c_{A,\max,L}$ umgestellt wird:

$$c_{A,\max,L} = \frac{\frac{m_{ML}}{S_W} \cdot g}{\frac{\mathbf{r}}{2} \cdot v_S^2}$$
(3.8)

Da die Abreißgeschwindigkeit v_s ebenfalls in den seltensten Fällen in der Literatur angegeben wird, wird die Anfluggeschwindigkeit nach Gleichung (3.4) eingesetzt.

Die endgültige Formel für $c_{A,\max,L}$ lautet also:

$$c_{A,\max,L} = \frac{\frac{m_{ML}}{S_W} \cdot g}{\frac{\mathbf{r}}{2} \cdot \left(\frac{v_A}{1,3}\right)^2}$$
(3.9)

Die Ergebnisse für das $c_{A,\max,L}$ für die Passagierflugzeuge mit Strahltriebwerken sind in der **Tabelle A.5** aufgelistet. Für die Passagierflugzeuge mit Propellerturbinen ist es die **Tabelle A.6**. Die Ergebnisse für die Business Jets sind in der **Tabelle A.7** aufgelistet, sie sollten jedoch keine Verwendung finden.

In **Bild 3.7** ist für die Business Jets keine Regressionsgerade eingezeichnet worden, weil hier nicht von einer Kohärenz zwischen Anfluggeschwindigkeit und Sicherheitslandestrecke gesprochen werden kann.

Das Bestimmtheitsmaß des **Bildes 3.7** deutet bei den Passagierflugzeugen mit Strahltriebwerken auf einen starken Zusammenhang hin. Bei den Passagierflugzeugen mit Propellerturbinen ist der Zusammenhang nur schwach bis mittelstark.

Für den Faktor k_L ist bei den Passagierflugzeugen mit Strahltriebwerken ein Wert von $0,105 kg/m^3$ abzulesen. Der alte Wert von $k_L = 0,107 kg/m^3$ behält also immer noch seine Gültigkeit bei. Bei Passagierflugzeugen mit Propellerturbinen ist hier für $k_L = 0,0896 kg/m^3$ abzulesen.

Die Flächenbelastung, die nicht überschritten werden darf, um den Anforderungen der Sicherheitslandestrecke zu entsprechen lautet nach **Scholz 1998**:

$$m_{MTO} / S_W = \frac{m_{ML} / S_W}{m_{ML} / m_{MTO}}$$
 (3.10)

Für das Verhältnis aus m_{ML}/m_{MTO} lassen sich statistische Mittelwerte aus der **Tabelle 3.1** ablesen. Die für die statistischen Mittelwerte verwendete Daten sind der **Tabelle A.11** (Passagierflugzeuge mit Strahltriebwerken), **Tabelle A.12** (Passagierflugzeuge mit Propellerturbinen) und **Tabelle A.13** (Business Jets) entnommen. Die Angaben zur Reichweitenklassifikation sind

Kreuzer 1999 entnommen. Mehrfachnennungen sind hier möglich (z.B.: Kurzstrecke und Mittelstrecke).

Für Passagierflugzeuge mit Propellerturbinen, die alle auf Regionalstrecken eingesetzt werden, wird hier ein Wert von $m_{ML}/m_{MTO} = 0,970$ ermittelt. Bei den Business Jets ist dieses Verhältnis in der **Tabelle 3.2** verzeichnet.

Bild 3.7 Flächenbelastung m_{ML}/S_W über $c_{A, max, L} \cdot s_{LFL}$

Tabelle 3.1Verhältnis aus maximaler Landemasse und maximaler Startmasse m_{ML} / m_{MTO} -
Statistische Mittelwerte für Passagierflugzeuge mit Strahltriebwerken

Reichweitenklassifikation	m_{ML} / m_{MTO}
Kurzstrecke	0,904
Mittelstrecke	0,882
Langstrecke	0,811

Tabelle 3.2Verhältnis aus maximaler Landemasse und maximaler Startmasse m_{ML} / m_{MTO} -
Statistische Mittelwerte für Business Jets

Reichweitenklassifikation	$m_{_{ML}}$ / $m_{_{MTO}}$
Kurzstrecke	0,924
Mittelstrecke	0,885
Langstrecke	0,875

3.4 Sicherheitslandestrecke nach Marckwardt 1997

Als weiterer Punkt wird die von **Marckwardt 1997** erstellte Statistikgleichung für Passagierflugzeuge mit Strahltriebwerken und Passagierflugzeuge mit Propellerturbinen auf die in dieser Diplomarbeit verwendeten Flugzeugtypen angewandt. Es wird auch hier eine getrennte Betrachtung durchgeführt. Dies hat sich, in bezug auf die Qualität des statistischen Zusammenhangs, als der bessere Weg herausgestellt.

Die Sicherheitslandestrecke läßt sich nach **Marckwardt 1997** als Statistikgleichung in folgender Form darstellen:

$$x_{Landebahn} = 150[m] + \left(3,7 + \frac{2,2}{\frac{a}{g}}\right) \cdot \frac{\frac{m_L}{S_W}}{\mathbf{r} \cdot c_{A\max}}$$
(3.11)

Darin ist:

- $x_{Landebahn} = s_{LFL}$
- $c_{A \max} = c_{A, \max, L}$
- $m_L = m_{ML}$
- $\mathbf{r} = \mathbf{r}_0 = 1,225 \frac{kg}{m^3}$
- a/g ≡ Verhältnis aus Auftriebsbeschleinigung zu Erdbeschleunigung; übliche Werte liegen hier laut Marckwardt 1997 bei a/g ≈ 0,3 ÷ 0,4

Im dazugehörigen statistischen Diagramm ist die Landebahnlänge $x_{Landebahn}$ über $(m_L/S_W)/r/c_{A_{max}}$ aufgetragen (siehe **Bild 3.8**).

Um ein vergleichbares statistisches Diagramm erstellen zu können, müssen zunächst die 150 m, die in der Gleichung (3.11) als konstanter Wert angegeben sind, herausgenommen werden. Dieser Wert wird im Diagramm (**Bild 3.9**) durch Erstellung einer Regressionsgeraden neu berechnet. Die Steigung (3,7 + 2,2/(a/g)) wird ebenfalls neu berechnet. Das Verhältnis a/g ist künftig nicht mehr "getrennt" in der Steigung ersichtlich. Sie wird zum konstanten Faktor, der die Bezeichnung k_s zugewiesen bekommt.

Der maximale Auftriebsbeiwert $c_{A \max}$ wird, wie auch schon in **Kapitel 3.3**, nach der Gleichung (3.9) berechnet. **Bild 3.9** zeigt das Ergebnis der Betrachtung getrennt für Passagierflugzeuge mit Strahltriebwerken, Passagierflugzeuge mit Propellerturbinen und Business Jets.

Die Ergebnisse sind für die Passagierflugzeuge mit Strahltriebwerken in **Tabelle A.8** aufgelistet. Für die Passagierflugzeuge mit Propellerturbinen sind sie in der **Tabelle A.9** aufgelistet und für die Business Jets ist es **Tabelle A.10**.

Wie aus **Bild 3.9** ersichtlich ist, kann für die Sicherheitslandestrecke der Passagierflugzeuge mit Strahltriebwerken bei einem mittelstarken Zusammenhang der Parameter folgende Gleichung angegeben werden:

$$s_{LFL,Strahltriebwerke} = 120[m] + k_{S,Strahl} \cdot \frac{\frac{m_L}{S_W}}{\mathbf{r} \cdot c_{A\max}}$$
(3.12)

mit $k_{S,Strahl} = 10,5$

Bild 3.9 $x_{Landebahn}$ über $(m_L/S_W)/r/c_{Amax}$

Für die Passagierflugzeuge mit Propellerturbinen kann bei einem starken Zusammenhang der Parameter folgende Gleichung angegeben werden:

$$s_{LFL, \Pr opellerturbinen} = -460[m] + k_{S, \Pr op} \cdot \frac{\frac{m_L}{S_W}}{\mathbf{r} \cdot c_{A \max}}$$
(3.13)

mit
$$k_{S, Pr op} = 18,9$$

Für die Business Jets kann wegen dem praktisch nicht gegebenen Zusammenhang zwischen den Parametern (r = 0,047) keine Formel angegeben werden, was an der für die Berechnung von $c_{A,\max,L}$ verwendeten Anfluggeschwindigkeit liegt. Das Problem wird in **Kapitel 3.2.3** näher erläutert.

3.5 Sicherheitslandestrecke als Funktion der Landemasse

Zum Schluß wird die Sicherheitslandestrecke über die Landemasse der drei Flugzeugkategorien aufgetragen (siehe **Bild 3.10**). Hierbei ist aus Gründen der Trägheit eine größere Sicherheitslandestrecke bei schwereren Flugzeugen zu erwarten.

Bild 3.10 Sicherheitslandestrecke s_{LFL} über Landemasse m_{ML}

Die Werte für das **Bild 3.10** sind für die Passagierflugzeuge mit Strahltriebwerken in **Tabelle A.8** aufgelistet. Für die Passagierflugzeuge mit Propellerturbinen sind sie in der **Tabelle A.9** und für die Business Jets in der **Tabelle A.10** aufgelistet.

In diesem Diagramm ist ein nur schwacher Zusammenhang zwischen der Sicherheitslandestrecke und der Landemasse bei kleinen Flugzeugen (Passagierflugzeuge mit Propellerturbinen) zu sehen. Bei den Business Jets ist praktisch kein Zusammenhang zu erkennen. Hier bestimmt die Auslegung die Sicherheitslandestrecke.

Bei großen Flugzeugen (Passagierflugzeuge mit Strahltriebwerken) ist ein mittelstarker bis starker Zusammenhang zwischen den beiden Parametern vorhanden. Kurze Sicherheitslandestrecken sind hier aufgrund der hohen Landemasse nicht möglich.

Der hohe Unterschied zwischen den Sicherheitslandestrecken der beiden rot eingekreisten Datenpunkte ist auf die unterschiedliche Triebwerksanzahl zurückzuführen. Der obere rot eingekreiste Datenpunkt ist die Boeing 777-300. Sie hat bei zwei Triebwerken eine maximale Landemasse von $m_{ML} = 237700 kg$. Der untere rot eingekreiste Datenpunkt ist die Boeing 747-400, die bei vier Triebwerken eine maximale Landemasse von $m_{ML} = 260400 kg$ hat.

Durch die starke Kohärenz zwischen den beiden Parametern bei den Passagierflugzeugen mit Strahltriebwerken läßt sich hier folgende durch die Regressionsgerade ermittelte Gleichung darstellen:

$$s_{LFL} = k_{ML} \cdot m_{ML} + 1200[m] \tag{3.14}$$

mit $k_{ML} = 0,0043 \frac{m}{kg}$

4 Verhältnis aus benetzter Fläche des Flugzeugs und Flügelfläche (S_{wet} / S_w)

Die in diesem Kapitel vorgenommenen Betrachtungen beziehen sich hauptsächlich auf die von Loftin 1980 für S_{wet} / S_W angegebene Gleichung, die für die Berechnung der maximalen Gleitzahl $(L/D)_{max}$ Verwendung findet. Außerdem wird ein Vergleich zu der von Torenbeek 1982 angegebenen Formel für das Verhältnis von S_{wet} / S_W erstellt. Beide Gleichungen sind auf Flugzeuge mit zylindrischer Mittelsektion des Rumpfes bezogen. Ist das bei dem zur Betrachtung stehenden Flugzeug nicht der Fall⁵, müssen andere Gleichungen für die benetzte Fläche des Rumpfes verwendet werden. Hierfür bietet Torenbeek 1982 Abschätzgleichungen an.

4.1 Darstellung der verwendeten Gleichung

Die Gleichung für das Verhältnis S_{wet} / S_W von **Loftin 1980** wird hier kurz mit den Bedeutungen ihrer Parameter vorgestellt. Hauptsächliche Verwendung findet das Ergebnis des Verhältnisses von S_{wet} / S_W in der Gleichung für die maximale Gleitzahl, die für zivile Jets nach **Scholz 1998**

$$(L/D)_{\text{max}} = 7.5 \cdot \frac{A}{S_{wet}/S_W} + 8$$
 (4.1)

lautet.

Die Gleichung für das Verhältnis aus der benetzten Fläche zu Flügelfläche lautet nach Loftin 1980:

$$\frac{S_{wet}}{S_W} = \frac{\boldsymbol{p} \cdot d_F^2}{S_W} \cdot \left(\frac{l_F}{d_F} - 1\right) + 2 \cdot \left(1 + \frac{S_H + S_V}{S_W}\right) + \frac{S_N}{S_W}$$
(4.2)

Darin ist:

- d_F äquivalenter Rumpfdurchmesser
- l_F Rumpflänge
- S_W Flügelfläche

- S_{wet} benetzte Fläche
- S_H Fläche des Höhenleitwerks
- S_V Fläche des Seitenleitwerks
- S_N benetzte Fläche der Triebwerksgondeln

Loftin 1980 ermittelt als Durchschnittswerte verschiedener Flugzeuge:

$$\frac{S_N}{S_W} = 0,47$$
 (4.3)

$$\frac{S_H + S_V}{S_W} = 0,44 \tag{4.4}$$

4.2 Überprüfung der benetzten Fläche der Triebwerksgondeln

In diesem Kapitel wird überprüft, ob die von **Loftin 1980** berechneten Durchschnittswerte für das Verhältnis von benetzter Fläche der Triebwerksgondeln zu Flügelfläche S_N/S_W noch auf die neuen Flugzeugmuster anwendbar sind, oder ob hier Änderungsbedarf besteht.

 S_w ist aus der Literatur bekannt. Für die benetzte Fläche der Triebwerksgondeln S_N wird die **Torenbeek 1982** Gleichung für Strahltriebwerke verwendet, die sich wie folgt zusammensetzt:

$$S_N = S_{FanCowling} + S_{GasgeneratorCowling} + S_{Plug}$$
(4.5)

Darin ist:

- S_{FanCowling} benetzte Fläche der Verkleidung des Fans
 S_{GasgeneratorCowling} benetzte Fläche der Verkleidung der Gasturbine
- S_{Plug} benetzte Fläche des Endstücks

Diese benetzten Teilflächen sind dabei verschiedenen Gleichungen zugeordnet:

$$S_{FanCowling} = l_n \cdot D_n \cdot \left\{ 2 + 0.35 \cdot \boldsymbol{b} + 0.8 \cdot \boldsymbol{b} \cdot \frac{D_h}{D_n} + 1.15 \cdot (1 - \boldsymbol{b}) \cdot \frac{D_{ef}}{D_n} \right\}$$
(4.6)

5

Als ein Beispiel für andere Rumpfquerschnitte seien hier durch zwei Kreise ("Double Bubble") erstellte Rumpfquerschnitte genannt.

$$S_{GasgeneratorCowling} = \mathbf{p} \cdot l_g \cdot D_g \cdot \left[1 - \frac{1}{3} \cdot \left(1 - \frac{D_{eg}}{D_g} \right) \cdot \left\{ 1 - 0.18 \cdot \left(\frac{D_g}{l_g} \right)^{\frac{5}{3}} \right\} \right]$$
(4.7)

$$S_{Plug} = 0,7 \cdot \boldsymbol{p} \cdot \boldsymbol{l}_{P} \cdot \boldsymbol{D}_{P} \tag{4.8}$$

Die einzelnen Parameter der Gleichungen können von der Triebwerksbemaßung des **Bildes 4.1** abgelesen werden.

Bild 4.1 Triebwerksbemaßung nach Torenbeek 1982

Die Berechnungen der benetzten Flächen der Triebwerksgondeln werden für die Passagierflugzeuge mit Strahltriebwerken und für die Business Jets durchgeführt. Die **Passagierflugzeuge mit Propellerturbinen** werden bei der benetzten Fläche der Triebwerksgondeln **nicht betrachtet**. Für diese Flugzeugkategorie ist keine einheitliche Gleichung zu finden, da die Formgebungen der Propellerturbinen unterschiedlich sind. Hier ist teilweise auch das Hauptfahrwerk untergebracht. Sollten die Mantelstromtriebwerke keinen Abschnitt für die Verkleidung der Gasturbine aufweisen, wird die benetzte Fläche der Triebwerke nur nach der Gleichung für die benetzte Fläche des Fans berechnet.

Die verwendeten Triebwerke und ihre Standschubleistungen sind in der **Tabelle A.14** verzeichnet. Die Werte für die Parameter und die Ergebnisse der benetzten Flächen sind für Passagierflugzeuge mit Strahltriebwerken der **Tabelle A.15** und für Business Jets der **Tabelle A.16** zu entnehmen.

Mit den so errechneten Werten wird nun das Diagramm für das Verhältnis von S_N/S_W erstellt (siehe **Bild 4.2**).

Wie in **Bild 4.2** zu sehen ist, sollten die Durchschnittswerte für das Verhältnis von S_N/S_W aufgrund der unterschiedlichen Steigungen der Regressionsgeraden, künftig getrennt für Passagierflugzeuge mit Strahltriebwerken und Business Jets betrachtet werden.

Bild 4.2 Benetzte Fläche der Triebwerksgondeln S_N in [m²] über Flügelfläche S_W in [m²] bei Passagierflugzeugen mit Strahltriebwerken und Business Jets

Für Passagierflugzeuge mit Strahltriebwerken wird bei einem starken Zusammenhang zwischen den Parametern (**LTH - Gewichte 1986**) für das Verhältnis folgender Durchschnittswert aus der Steigung abgelesen:

$$\frac{S_N}{S_W} = 0.37$$
 (4.9)

Bei den Business Jets ist, ebenfalls bei einer starker Kohärenz, folgender Durchschnittswert aus der Steigung abzulesen:

$$\frac{S_N}{S_W} = 0.53$$
 (4.10)

4.3 Überprüfung der Leitwerksflächen

Die Größen der Höhen- und Seitenleitwerksflächen und der Tragflügelfläche für die Bildung des Durchschnittswertes von $(S_H + S_V)/S_W$ sind der **Tabelle A.17** zu entnehmen. In **Bild 4.3** sind die benetzten Flächen der Höhen- und Seitenleitwerke der drei Flugzeugkategorien über der Fläche der Tragfläche aufgetragen.

Bild 4.3 Benetzte Fläche der Höhen- und Seitenleitwerke in $[m^2]$ über Flügelfläche S_w in $[m^2]$ der drei Flugzeugkategorien

Das Bestimmtheitsmaß zeigt in **Bild 4.3** eine starke Kohärenz bei den Passagierflugzeugen mit Strahltriebwerken und den Business Jets an. Bei den Passagierflugzeugen mit Propellerturbinen ist die Kohärenz mittelstark, was in dieser Klasse an der Art der Auslegung liegen kann. Ist das Flugzeug für kurze Landestrecken ausgelegt, wird die Tragfläche vergrößert. Zur stabileren Fluglage wurden auch teilweise Luftleitflächen am unteren Teil des Rumpfes angebracht, die als Fläche zu dem Seitenleitwerk addiert wird. Ein weiteres Beispiel ist die Antonov An-38-100, die zwei Seitenleitwerke hat. Diese Beispiele tragen dazu bei, daß hier bei einem direkten Vergleich der Leitwerksflächen der Passagierflugzeuge mit Propellerturbinen ein schlechterer Zusammenhang bei der Gesamtbetrachtung entsteht. Aus dem Diagramm (**Bild 4.3**) lassen sich nun Durchschnittswerte ablesen.

$$\frac{S_H + S_V}{S_W} = 0.37 \tag{4.11}$$

Passagierflugzeuge mit Propellerturbinen:

$$\frac{S_H + S_V}{S_W} = 0,46 \tag{4.12}$$

Business Jets:

$$\frac{S_H + S_V}{S_W} = 0,39 \tag{4.13}$$

4.4 Überprüfung des Schlankheitsgrades

Laut **Roskam III** wird ein Schlankheitsgrad von $l_F/d_F = 8$ für eine Erstentwicklung im Unterschallbereich als optimal angesehen. **Tabelle 4.1** zeigt die Extrem- und Mittelwerte von den verwendeten Stichproben der drei Kategorien an.

$\frac{l_F}{d_F}$	Passagierflugzeug mit Strahltriebwerken	Passagierflugzeuge mit Propellerturbinen	Business Jets
Minimum	7,95	7,60	6,61
Maximum	13,2	11,8	11,0
Mittelwert	9,93	9,04	8,39

 Tabelle 4.1
 Extrem- und Mittelwerte des Schlankheitsgrades der drei Kategorien

Einen besseren Überblick über den Schlankheitsgrat bietet **Bild 4.4**. Auch hier werden die drei Flugzeugkategorien getrennt voneinander betrachtet. Die dazugehörigen Werte sind der **Ta-belle A.17** zu entnehmen.

Das Diagramm weist bei den Passagierflugzeugen mit Strahltriebwerken zwischen $d_F \approx 4m$ und $d_F \approx 5m$ eine Lücke auf, was nicht an fehlenden Stichproben in diesem Bereich liegt, sondern an dem Übergang von einem Passagiergang auf zwei Passagiergänge. Laut JAR-Vorschrift dürfen nicht mehr als drei Sitzplätze nebeneinander auf jeder Seite eines Passagierganges vorhanden sein. Da bei $d_F \approx 4m$ eine Sitzplatzanzahl von sechs in einer Reihe erreicht wird, muß ab hier ein weiterer Passagiergang folgen. Da ein Sitz und ein Passagiergang zusammen ungefähr 1 m breit sind (genauere Werte sind dem **Kapitel 6.5** zu entnehmen), ist der nächste Rumpfquerschnitt erst bei $d_F \approx 5m$ zu erwarten.

Bild 4.4 Rumpflänge l_F über Rumpfdurchmesser d_F

Eine Sitzplatzkonfiguration von sieben Sitzen in einer Reihe sollte jedoch bei der Auslegung vermieden werden, da hier der Rumpfdurchmesser bei einem Gewinn von nur einem Sitzplatz pro Reihe gleich um 1 m vergrößert werden muß. Das entspricht, durch die Erhöhung des Rumpfwiderstandes und dem vergleichbar geringem Zuwachs an der Passagieranzahl n_{PAX} , nicht einer wirtschaftlichen Auslegung. Im Umkehrschluß bedeutet das allerdings nicht, daß ein solches Flugzeug sich nicht auf dem Markt etablieren könnte, was die Boeing 767 ($n_{SA} = 7$) beweist. Hier müssen folglich noch andere Faktoren, als die Wirtschaftlichkeit des Rumpfquerschnittes, eine Rolle spielen. Ein Grund für den Erfolg der Boeing 767 wird von **Endres 1998** beschrieben:

Es wurden viele neuartige Werkstoffe verwendet, dazu gehörten moderne Legierungen und Verbundmaterialien, und zu den Avionik-Systemen gehörten Computersysteme und ein elektronisches Fluginstrumentensystem (EFIS), das eines der ersten seiner Art war, das in einem Zivilflugzeug eingesetzt wurde.

4.5 Überprüfung des Verhältnisses d_{F}^{2}/S_{W}

Als letzter Parameter der Gleichung (4.2) wird das angegebene Verhältnis d_F^2/S_w untersucht. Für dieses Verhältnis ist kein erkennbarer Zusammenhang zu anderen Parametern vorhanden, das Verhältnis muß daher einzeln als Merkmalswert untersucht werden. Zunächst wird jedoch ein Beispiel gezeigt, wie bei der Suche nach Zusammenhängen vorgegangen wird.

Als erstes stellt sich die Frage, zu welchen Parametern der Zähler und der Nenner des Verhältnisses getrennt voneinander proportional sind.

Man weiß, daß der Durchmesser des Rumpfes d_F proportional zu der Anzahl der Sitzplätze in einer Reihe n_{SA} sein muß. $\Rightarrow d_F \sim n_{SA}$

Aus der Betrachtung der Parameter untereinander wurde festgestellt, daß die Flügelfläche S_w proportional zum Quadrat der Länge des Flugzeugs l ist. $\Rightarrow S_w \sim l^2$

Also kann beim Zusammenfügen der Parameter folgende Proportionsgleichung aufgestellt werden:

$$\frac{d_F^2}{S_W} \sim \frac{n_{SA}^2}{l^2}$$
(4.14)

Laut Scholz 1998 besteht ein Zusammenhang zwischen n_{SA} und der Anzahl der Passagiere n_{PAX} :

$$n_{SA} = 0.45 \cdot \sqrt{n_{PAX}} \tag{4.15}$$

 n_{SA} kann also als proportional zu $\sqrt{n_{PAX}}$ betrachtet werden.

$$n_{SA} \sim \sqrt{n_{PAX}} \tag{4.16}$$

Weiterhin gibt **Scholz 1998** für die Kabinenlänge l_{CABIN} einen Zusammenhang zum Verhältnis Passagieranzahl zu Sitzplätze nebeneinander an:

$$l_{CABIN} = k_{CABIN} \cdot \frac{n_{PAX}}{n_{SA}}$$
(4.17)

Da die Flugzeuglänge l proportional zu der Kabinenlänge l_{CABIN} ist, kann man $l \sim n_{PAX} / n_{SA}$ setzen. Für l^2 heißt das:

$$l^2 = \frac{n_{PAX}^2}{n_{SA}^2} \tag{4.18}$$

Jetzt wird Gleichung (4.18) in Gleichung (4.14) eingesetzt:

$$\frac{d_F^2}{S_W} \sim \frac{n_{SA}^2}{l^2} \sim \frac{n_{SA}^2 \cdot n_{SA}^2}{n_{PAX}^2}$$
(4.19)

Gleichung (4.16) kann nun in Gleichung (4.19) eingesetzt werden:

$$\frac{d_F^2}{S_W} \sim \frac{n_{SA}^2}{l^2} \sim \frac{n_{SA}^2 \cdot n_{SA}^2}{n_{PAX}^2} \sim \frac{n_{PAX}^2}{n_{PAX}^2} = 1$$
(4.20)

Ein Vergleich mit den angegebenen Parametern ist also nicht sinnvoll.

Der Parameter d_F^2/S_W wird einer näheren statistischen Betrachtung unterzogen, um eine möglichst genaue Aussage über seine Größe treffen zu können. Hierfür werden folgende statistische Werte berechnet:

- Mittelwert (arithmetisches Mittel)
- Median (Zentralwert)
- Modus (Häufigkeitswert)
- Standardabweichung *s*
- Varianz S^2 , S^2
- Normalverteilung

Die nähere Beschreibung der aufgezählten statistischen Werte ist dem Anhang B.3 zu entnehmen.

Zunächst werden nur die *Passagierflugzeuge mit Strahltriebwerken* betrachtet. Hier werden jedoch keine Derivate (z.B.: A319, A321) berücksichtigt, da nur Neuentwicklungen und keine Weiterentwicklungen in Betracht gezogen werden sollen. Derivate sind meist nur im Schlankheitsgrad unterschiedlich. Der Parameter d_F^2/S_W hat keinen Unterschied zu dem der Erstentwicklung. Ein Einbeziehen würde somit die Ergebnisse verfälschen. 13 der 38 Passagierflugzeuge mit Strahltriebwerken wurden zu diesem Zweck entfernt.

Passagierflugzeuge mit Strahltriebwerken:

Zunächst wird der Mittelwert berechnet:

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = 0,1117$$
(4.21)

Die Varianz wird nach Sachs 1992 berechnet und ist:

$$s^{2} = \frac{n \cdot \sum x^{2} - (\sum x)^{2}}{n \cdot (n-1)} = 5,77 \cdot 10^{-4}$$
(4.22)

Die Standardabweichung wird nach der von **Bolch 1968** angegebenen Näherungsgleichung berechnet und setzt sich aus der Varianz und der Anzahl der Stichproben zusammen:

$$\mathbf{s} = (1 + 1/(4(n-1))) \cdot \mathbf{s} = 2,41 \cdot 10^{-2} \tag{4.23}$$

Gleichung (4.21) und Gleichung (4.23) werden zur Berechnung der Normalverteilung nach **Sachs 1992** verwendet:

$$f(x) = \frac{1}{\sqrt{2 \cdot \boldsymbol{p}} \cdot \boldsymbol{s}} \cdot \boldsymbol{e}^{-\frac{1}{2} \left(\frac{x-\boldsymbol{m}}{\boldsymbol{s}}\right)^2}$$
(4.24)

mit $\boldsymbol{m} = \overline{x}$

Mit den Werten für die Normalverteilung (**Tabelle A.18**) und den Werten der Häufigkeitstabelle (**Tabelle A.19**) läßt sich ein Histogramm samt Normalverteilung erstellen (**Bild 4.5**). Der Modus, der die Mitte der höchsten Säule des Histogramms beschreibt, hat einen Wert von 0,12 (siehe **Bild 4.5**). Der Median (50 %-Punkt der Verteilung) hat in dem Fall die Größe 0,113.

Daraufhin wird die gleiche Betrachtungsweise für die 19 Passagierflugzeuge mit Propellerturbinen durchgeführt. Hier kommen keine Derivate im Stichprobenumfang vor, was die Betrachtung erleichtert. Die Verwendeten Gleichungen bei den Passagierflugzeugen mit Propellerturbinen und den Business Jets sind die gleichen, wie bei den Passagierflugzeugen mit Strahltriebwerken. Aus diesem Grund sind künftig nur noch Ergebnisse angeben.

Passagierflugzeuge mit Propellerturbinen:

- Mittelwert $\bar{x} = 0,1202$
- Varianz $s^2 = 3,69 \cdot 10^{-4}$
- Standardabweichung $s = 1,92 \cdot 10^{-2}$

Bild 4.5 Histogramm mit Normalverteilung vom Merkmalswert d_F^2/S_W - Passagierflugzeuge mit Strahltriebwerken

Die Standardabweichung und der Mittelwert werden wieder zur Berechnung der Normalverteilung benutzt (**Tabelle A.20**). Die Häufigkeitstabelle ist die **Tabelle A.21**. Das Histogramm mit Normalverteilung ist in **Bild 4.6** zu sehen. Der Modus ist in diesem Fall nicht definiert, da zwei Säulen gleicher Größe existieren. Der Median hat die Größe 0,128.

Business Jets:

Bei den 16 Business Jets sind ebenfalls keine Derivate bei den Stichproben vorhanden. Die ermittelten Werte werden aufgelistet:

- Mittelwert $\bar{x} = 0,1165$
- Varianz $s^2 = 8,51 \cdot 10^{-4}$
- Standardabweichung $s = 2,94 \cdot 10^{-2}$

Die Werte für die Normalverteilung sind in der **Tabelle A.22** ersichtlich. Die Häufigkeitstabelle ist die **Tabelle A.23**. Mit diesen beiden Tabellen läßt sich das **Bild 4.7** erstellen. Der Modus ist aus dem Diagramm abzulesen und hat die Größe 0,0988. Der Median hat die Größe 0,111.

Bild 4.6 Histogramm mit Normalverteilung vom Merkmalswert d_F^2/S_W - Passagierflugzeuge

Bild 4.7 Histogramm mit Normalverteilung vom Merkmalswert d_F^2/S_W - Business Jets

Statistische Betrachtungen werden qualitativ hochwertiger, je größer der Stichprobenumfang ist. In diesem Fall werden nur 16 Business Jets betrachtet. Dem durch die geringe Anzahl der Stichproben auftretenden *Qualitätsverlust* wird durch das Verwenden von ausschließlich neuen Flugzeugtypen *entgegengewirkt*. Die unterschiedlichen Mittelwerte deuten darauf hin, daß diese Flugzeugkategorien auch getrennt voneinander betrachtet werden sollten. Somit ist eine Aufwertung der Qualität durch eine gemeinsame Betrachtung nicht ratsam.

Zum Schluß wird ein Vergleich der drei Flugzeugkategorien gegeben, um einen leichteren Überblick der Unterschiede zwischen den Flugzeugkategorien zu bekommen. Hierfür wird mit der Regel gebrochen, daß die Anzahl der Klassen laut **Heise 1994** gleich der Wurzel der Stichprobenanzahl sein sollte ($m = \sqrt{n}$). Alle Flugzeuge werden unter der Maximalzahl der Klassifizierung (7), die aus der Gesamtzahl der Flugzeuge resultiert, betrachtet. Die jeweilige Anzahl der Flugzeuge, die sich in einer Klasse befinden, wird nur prozentual nach der Formel $100 \cdot n_j / n$ angegeben. Wobei n_j die Anzahl der Flugzeuge in der jeweiligen Klasse ist. Würde man einfach nur die Anzahl der Flugzeuge in den jeweiligen Klassen angeben, bekäme man durch die unterschiedliche Stichprobenanzahl zwischen den Flugzeugkategorien keinen direkten Vergleich. Das Ergebnis ist in **Bild 4.8** festgehalten. Die dazugehörige Häufigkeitstabelle ist **die Tabelle A.24**.

Bild 4.8 Prozentuale Verteilung von den Stichproben des Merkmalswertes d_F^2/S_W der drei Flugzeugkategorien

In **Bild 4.8** ist bei allen drei Flugzeugkategorien bei dem Merkmalswert $0,11 < d_F^2/S_W \le 0,13$ eine maximale Anhäufung zu sehen. In diesem Bereich liegen auch die jeweiligen Mittelwerte. Weiterhin existieren lediglich bei den Business Jets bei den Merkmalswerten $0,05 < d_F^2/S_W \le 0,07$ und $0,17 < d_F^2/S_W \le 0,19$ noch Werte, sie sind also am breitesten gestreut. Außerdem fällt der ziemlich hohe prozentuale Anteil des Merkmalswertes der Passagierflugzeuge mit Strahltriebwerken bei $0,07 < d_F^2/S_W \le 0,09$ auf. Interessant dabei ist, daß alle neueren "Widebody"-Flugzeuge⁶ in diesem Bereich oder maximal etwas darüber hinaus angesiedelt sind. Von den "Narrowbody"-Flugzeugen sind es lediglich die Boeing 757 und die Tupolev 204-220, die in diese Klasse fallen. Die "Widebody"-Flugzeuge haben also eine zu ihrem Rumpfdurchmesser verhältnismäßig große Tragfläche.

4.6 Herleitung der Loftin 1980 Formel für S_{wet} / S_{W}

An dieser Stelle wird die untersuchte **Loftin 1980** Gleichung für das Verhältnis S_{wet}/S_W nach seiner Beschreibung hergeleitet, was zur Verdeutlichung der als abstrakt erscheinenden Gleichung geschieht.

Um die benetzte Fläche eines gesamten Flugzeugs zu errechnen, läßt sich die Gleichung (4.2) in folgende Form umstellen:

$$S_{wet} = \mathbf{p}d_F l_F - \mathbf{p}d_F^2 + 2S_W + 2S_H + 2S_V + S_N$$
(4.24)

Dabei ist:

- $pd_F l_F pd_F^2$ benetzte Fläche des Rumpfes
- $2S_w$ benetzte Fläche der Tragfläche
- $2S_H$ benetzte Fläche des Höhenleitwerks
- $2S_V$ benetzte Fläche des Seitenleitwerks
- S_N benetzte Fläche der Triebwerksgondeln

Loftin 1980 beschreibt die benetzte Fläche des Rumpfes folgendermaßen:

The wetted area of all aircraft, including the reference aircraft, is represented by an analytical expression in which the fuselage is simulated by a circular cylinder of constant diameter that is closed at the aft end by a cone with height of approximately twice the fuselage diameter and at the front end by a hemisphere.

 ⁶ Widebody-Flugzeuge: Flugzeuge mit zwei Gängen Narrowbody-Flugzeuge: Flugzeuge mit einem Gang

Mit diesem Satz läßt sich eine Zeichnung für die benetzte Fläche des Rumpfes erstellen (siehe **Bild 4.9**).

Als nächstes werden die einzelnen Mantelflächen berechnet, die als Gesamtes die benetzte Rumpfoberfläche ergeben.

Mantelfläche der Halbkugel:

$$M_{Halbkugel} = \frac{pd_F^2}{2}$$
(4.25)

Mantelfläche des zylindrischen Teils:

$$M_{Zylinder} = \mathbf{p}d_F l_{Zylinder} \tag{4.26}$$

Mantelfläche des Kegels:

$$M_{Kegel} = \frac{\mathbf{p}d_F s}{2} \tag{4.27}$$

mit
$$s = \sqrt{4d_F^2 + \frac{d_F^2}{4}}$$
 (4.28)

Addiert man Gleichung (4.26), Gleichung (4.27) und Gleichung (4.28), ergibt sich die Mantelfläche des Rumpfes. Darauf folgend wird die Gleichung vereinfacht:

$$S_{wet,Fuselage} = \frac{pd_{F}^{2}}{2} + pd_{F}l_{zylinder} + \frac{pd_{F}\sqrt{4d_{F}^{2} + \frac{d_{F}^{2}}{4}}}{2}$$
$$= pd_{F}\left(l_{zylinder} + \frac{d_{F}}{2} + \frac{\sqrt{4,25} \cdot d_{F}}{2}\right)$$
$$= pd_{F}\left(l_{zylinder} + 1,53d_{F}\right)$$
(4.29)

Nun muß noch $l_{Zylinder}$ durch l_F ersetzt werden. Das geschieht bei Beachtung des **Bildes 4.9** durch die Formel:

$$l_{zvlinder} = l_F - 2,5d_F \tag{4.30}$$

Folglich lautet die Gleichung für $S_{wet,Fuselage}$:

$$S_{wet,Fuselage} = \mathbf{p}d_F (l_F - 0.97d_F) \tag{4.31}$$

Vereinfacht kann gesagt werden:

$$S_{wet,Fuselage} = \boldsymbol{p}d_F (l_F - d_F) \tag{4.32}$$

Die benetzte Fläche des Rumpfteils läßt sich in die Form der **Loftin 1980** Gleichung (4.2) umwandeln.

4.7 Vergleich mit der Torenbeek 1982 Gleichung für S_{wet} / S_{W}

Letztendlich wird eine weitere aus der Literatur bekannte Gleichung für die benetzte Rumpfoberfläche als Vergleich hinzugezogen. Die Gleichung ist **Torenbeek 1982** entnommen und lautet wie folgt für Rümpfe mit Kreisquerschnitt:

$$S_{wet,Fuselage} = \mathbf{p}d_F l_F \left(1 - \frac{2}{\mathbf{l}_F}\right)^{\frac{2}{3}} \left(1 + \frac{1}{\mathbf{l}_F^2}\right)$$
(4.33)
mit $\mathbf{l}_F \ge 4.5$

Dabei ist I_F der Schlankheitsgrad $\Rightarrow I_F = l_F/d_F$

Als Vergleich werden die mit der Gleichungen (4.32) und der Gleichung (4.33) errechneten benetzten Rumpfoberflächen über dem Parameter l_F aufgetragen. Folgende Flugzeuge bleiben durch den eindeutig nicht kreisförmigen Rumpfquerschnitt unberücksichtigt:

- Boeing 747-400
- Antonov 38-100
- Fairchild Dornier 228
- Raytheon Beech 1900D

Die Ergebnisse der Gleichungen für die einzelnen Flugzeuge sind in der **Tabelle A.25** zu sehen. Die aus den Gleichungen gewonnenen Ergebnisse werden jetzt in Form eines Diagramms dargestellt (siehe **Bild 4.10**).

Bild 4.10 Benetzte Rumpfoberfläche $S_{wet,Fuselage}$ über Rumpflänge l_F

In **Bild 4.10** wird für einen Vergleich der beiden Datenpunktreihen zur Veranschaulichung eine Regression potentieller Art verwendet, da diese das höchste Bestimmtheitsmaß aufweist. Die mittlere Abweichung der beiden errechneten Datenreihen beträgt 3,8 %. Das Inkrement hat einen Maximalwert von 36 m². Welche der beiden verwendeten Gleichungen letztendlich die genauere in Bezug auf ein vorhandenes Flugzeug ist, läßt sich nicht sagen, da die benetzte Fläche eines Flugzeugs von den Herstellern nicht angegeben wird. Das Verhältnis S_{wet} / S_W wird für eine *Abschätzung* der maximalen Gleitzahl verwendet (siehe Gleichung (4.1)). Die Abweichung ist demnach als geringfügig zu betrachten.

4.8 Vergleich des Verhältnisses S_{wet} / S_w zwischen den Flugzeugkategorien

Schließlich wird die benetzte Fläche S_{wet} der Flugzeuge nach Gleichung (4.24) errechnet und in einem Diagramm (siehe **Bild 4.11**) über der Flügelfläche S_w aufgetragen. Die benetzte Fläche kann jedoch nur für Passagierflugzeuge mit Strahltriebwerken und Business Jets errechnet werden, da für die Passagierflugzeuge mit Propellerturbinen die benetzte Fläche der Triebwerksgondeln keiner generellen Gleichung unterliegt (vergleiche **Kapitel 4.2**). Die Ergebnisse sind der **Tabelle A.25** zu entnehmen. Ziel dieser Darstellung ist ein Vergleich zwischen den Business Jets und den Passagierflugzeugen mit Strahltriebwerken. Als "Nebenprodukt" wird durch die Regressionsgeraden ein Durchschnittswert für S_{wet} / S_w gebildet. Sind aber genauere Werte für die einzelnen in Gleichung (4.2) verwendeten Parameter vorhanden, so ist eine Einzelbetrachtung des Flugzeugs in jedem Fall dem Durchschnittswert (also der Steigung der Regressionsgeraden) vorzuziehen.

Bild 4.11 S_{wet} über S_w bei Passagierflugzeugen mit Strahltriebwerken und Business Jets

Bild 4.11 zeigt für die Business Jets eine minimal schwächere Steigung der Regressionsgeraden gegenüber den Passagierflugzeugen mit Strahltriebwerken an. Das bedeutet, daß die Tragfläche im Verhältnis zur benetzten Fläche bei den Business Jets größer als bei den Passagierflugzeugen mit Strahltriebwerken ist.
5 Schwerpunktlage des unbeladenen Flugzeugs und Schwerpunktbereich

5.1 JAR- und FAR-Vorschriften

Die Forderungen für den Schwerpunktbereich sind den Zulassungsvorschriften der JAR-25 und FAR-25 entnommen und können wie folgt zusammengefaßt werden:

Die Grenzen des vorderen- und hinteren Schwerpunktbereichs müssen für jeden getrennt durchführbaren Betriebszustand eingerichtet werden.

Keine dieser Grenzen darf außerhalb der Extremwerte liegen,

- innerhalb deren die Belastbarkeit der Struktur bewiesen wurde; oder
- innerhalb deren Übereinstimmung mit jeder durchführbaren Flugforderung gezeigt wurde.

Weiterhin müssen die Gewichts- und Schwerpunktgrenzen, die in Übereinstimmung mit den **JAR**-Vorschriften errichtet wurden, in dem Flughandbuch oder einem separaten Dokument mit Beladediagramm (Load & Trimm Sheet), auf das im Flughandbuch verwiesen wird, aufgeführt werden.

5.2 Das Beladediagramm

Das Beladediagramm zeigt die *maximal zulässige vordere Schwerpunktlage* und *maximal zulässige hintere Schwerpunktlage* an (siehe **Bild 5.1** unten rechts). Es wird vor jedem Start vom Piloten ausgefüllt. Das geschieht mittels Schablonen, die für den jeweiligen Flugzeugtyp vorhanden sind. Hierbei wird die Passagieranzahl der jeweiligen Reihen, die Fracht und ihre Position, und die Menge sowie die Position des Treibstoffs (Tank im Flügelkasten, Tanks in der Tragfläche oder Höhenleitwerkstank) berücksichtigt. Außerdem ist die Reihenfolge der Beladung und Betankung für den Schwerpunktbereich wichtig. So darf es nicht passieren, daß beim Beladen die vordere- oder hintere maximal zulässige Schwerpunktlage (in **Bild 5.1** unten rechts ist der zulässige Schwerpunktbereich durch zwei grüne Felder begrenzt) überschritten wird. Ein wichtiges Ergebnis des Beladediagramms ist für den Piloten die endgültige Position des Schwerpunktes bei der Abflugmasse, an der er sieht, wie er die Trimmung des Höhenleitwerks für eine stabile Fluglage einzustellen hat.

Nach der Aussage von **Klotz** wird ein solches Beladediagramm, wie es in **Bild 5.1** zu sehen ist, heute bei den renommierten Fluggesellschaften nicht mehr "von Hand" ausgefüllt. Die Fracht,

der Kraftstoff und die Passagiere werden samt ihren Positionen in den Computer eingegeben, der anhand einer "Standard-Beladung" den Weg des Schwerpunkts berechnet und als Resultat lediglich die endgültige Position des Schwerpunkts ausgibt.

Bild 5.1 Beladediagramm am Beispiel ATR 42-500 (Lufthansa 1998)

Der Schwerpunktbereich bei Leermasse m_{OE} läßt sich aus dem Beladediagramm des **Bildes 5.1** ablesen. Die maximale Leermasse der ATR 42-500 beträgt 11250 kg. Mit diesem Wert wird im Diagramm die Ordinate eingezeichnet. Die Schnittpunkte mit den Operational Limit Linien (maximal zulässiger vorderer und hinterer Schwerpunktbereich) begrenzen den Schwerpunktbereich, der sich in %MAC (Mean Aerodynamic Chord) ausdrücken läßt. Bei diesem Beispiel ist die maximal zulässige vordere Schwerpunktlage bei 17,9 %MAC und die maximal zulässige hintere Schwerpunktlage bei 29,7 %MAC erreicht. Der Schwerpunktbereich bei Leermasse umfaßt also 11,8 %MAC.

5.3 Das Flugzeug-Abwiegeprotokoll

Bei jedem Abwiegen eines Flugzeugs wird ein *Abwiegeprotokoll* (Aircraft Weighing Record) gemacht. Dabei wird jedes Rad der Fahrwerke auf eine einzelne Waage gestellt. Als Ergebnis erhält man die Masse in *kg* der einzelnen Wiegestationen (Scale Readings) auf einem Ausdruck, der in **Bild 5.2** zu sehen ist. Diese Angaben werden bei jeweils gleicher Längsachsenposition aufaddiert. Im Fall der A340-211 wird das Hauptfahrwerk in zwei Positionen, nämlich der vorderen und hinteren Radreihe (Main Gears fwd, Main Gears aft) aufgeteilt. Die dritte Position ist das Bugfahrwerk (Nose Gear). Die Gewichte der Positionen werden, unter Berücksichtigung des jeweiligen Hebelarms, in der Weight & Balance Calculation (siehe **Bild 5.3**) eingetragen. Der Hebelarm hat seinen Bezugspunkt vor dem Flugzeug.

Scale Readings

In **Bild 5.3** sind auch die beim Wiegen bei Leermasse m_{OE} (Lufthansa Empty Weight) zu berücksichtigen Punkte aufgeführt (Check Points). Hier steht zum Beispiel bei dem Punkt "Fuel tanks dry" (Kraftstofftanks trocken) ein "N" für No. Da die Kraftstofftanks für das Leermasse des Flugzeugs leer sein müssen, muß hier ein Abzug (Deduction) des im Tank verbliebenen Kraftstoffmasse samt Hebelarm durchgeführt werden. Dieser Abzug ist in **Bild 5.4** zu sehen. Es gibt außer den Abzügen auch Zusätze (Addition), die beim Wiegen nicht im Flugzeug sind, aber mit zur Leermasse gezählt werden müssen. Sie werden, ähnlich wie bei den Abzügen wieder mit ihrem Hebelarm berücksichtigt und als Ergebnis in der Weight & Balance Calculation eingetragen. In **Bild 5.5** ist ein Beispiel für einen Zusatz zu sehen.

Die in der Weight & Balance Calculation eingetragenen Momente werden aufaddiert und durch die Gesamtmasse des Flugzeugs geteilt. Das Ergebnis ist der Hebelarm, der später für die Berechnung des Schwerpunktes Verwendung findet. Am Beispiel der A340-211 **des Bildes 5.3** heißt das:

Hebelarm =
$$\frac{\text{Summe der Momente}}{\text{Summe der Einzelmass en}}$$

= $\frac{\sum M_i}{\sum m_i} = \frac{3940575kg \cdot m}{114495kg} = 34,417m$ (5.1)

Da die Länge der Tiefenlinie⁷ c_{MAC} des Tragflügelprofils und der Abstand der Vorderkante der Tiefenlinie zum Bezugspunkt bekannt sind (Verdeutlichung siehe **Bild 5.6**), läßt sich der Abstand vom LE (Leading Edge = Nasenkannte der Tragfläche) auf der Tiefenlinie (LEMAC) bis zum Schwerpunkt (CG = Center of Gravity) in %MAC wie folgt ausdrücken:

$$CG in \% MAC = \frac{(Arm + Correction) - LEMAC}{c_{MAC}} \cdot 100\%$$
(5.2)

Dabei ist:

- Arm Hebelarm vom Bezugspunkt zum Schwerpunkt des Flugzeugs
- Correction (CG-Correction due to pitch attitude) Schwerpunktkorrektur infolge des Winkels zwischen der Längsachse des Flugzeugs und der Horizontalen (Techn. Wörterbuch)

Bei dem Beispiel der A340-211 des **Bildes 5.3** wird der Schwerpunkt in %MAC wie folgt berechnet:

CG in %MAC =
$$\frac{(34,417+0,095)-32,398}{7,270} \cdot 100\% = 29,1\%$$
 MAC (5.3)

Der Schwerpunkt der A340-211 bei Leermasse liegt demnach bei 29,1 %MAC.

7

Tiefenlinie (Length of MAC): Die Verbindung des vordersten mit dem hintersten Punkt eines Profils durch eine Gerade parallel zur Rumpflängsachse (**Techn. Wörterbuch**)

Lufthansa Aircraft Weighing Record Technik AG Date : 08.07.1999 Record No. : HAM TE/L 81/97 A340-211 Aircraft Model Serial Page 1 of 4 Registration No DLH Owner : Reason for Weighing : Time Limit : GEC-PAWS Weighing Equipment Last Calibration : JUN97 refere page 4 Serial Number

Check Points (to be checked before/after weighing)

Aircraft checked against Equipment Lis Missing Equipment A/C painted and dry Fuel tanks drained Fuel tanks dry Hydraulik oil tanks Oil tanks: engines,CSD and APU Potable water tanks Toilet fluid tanks/waste tanks All access doors and cowls installed	st: N : N : Y : Y : full :full :empty :empty : Y	Stabilizer Position [0°] : Y Flaps and Spoilers retracted : Y Thrust/fan reverser retracted : Y All doors closed : Y All E.R.I. installed : Y A/C attitude (+/- = nose up/down) :-1.32° Vert. dist. of CG from main gear pivot: 4.144 [r Seating Version :F10C48M170 Mobile Crew Rest Cont removed	<u>m]</u>
--	--	--	-----------

Weight	&	Balance	Calcu	lation

	Avarage Weight [kg]	Arm [m]	Moment [m*kg]
Main Gears fwd	53323	35,379	1886497
Main Gears aft	56043	37,356	2093524
Nose Gear	10359	13,054	135226
Weight at weighing	119725	34,372	4115247
Deductions	5531		184556
Additions	301		9884
Lufthansa Empty Weight	114495	34,417	3940575
CG-Correction due to pi	tch attitude	0,095	

aa in	(Arm + Correction) - Lead	ling Edge of MAC
CG IN	*MAC = Length of MAC	100 0
aa in	(34,417 + 0,095) - 32,3	$\frac{398}{29.1 }$ * 100 % = 29.1 % MAC
CG IN	*MAC =7,270	
	114495 * (34,512 - 34,000)	+ 30 - 49 57
index	3000	+ 50 - 37,57
Place	of Weighing : München	Date of Weighing :
Calcu	latet by :	Signature :

Bild 5.3 Weight & Balance Calculation am Beispiel A340-211 (nach Lufthansa 1999)

Qty.	Item	Weight [kg]	Arm [m]	Moment [m*kg]
1	Unusable undrainable fuel	389,0	35,083	13647
2	Engine tank oil ENG1+4	36,2	35,674	1291
2	Engine tank oil ENG2+3	36,2	29,103	1054
1	Passenger seat equipment F10C48M170	5062,5	33,283	168495
ī	Flight documents cockpit	7,0	9,800	69
то	tal =	5530,9	33,368	184556

Deductions

A	d	d	i	t	i	0	n	S
				1.1.1		A194/5		

Qty.	Item	Weight [kg]	Arm [m]	Moment [m*kg]
1	Total unusable fuel 101,2 USG	301,0	32,838	9884
то	tal =	301,0	32,838	9884

Bild 5.5 Massenzusatz am Beispiel A340-211 (nach Lufthansa 1999)

Bild 5.6 Schwerpunktbemaßung

5.4 Schwerpunktlage

Die Schwerpunktbetrachtung dient der Verbesserung der Gleichung für $x_{CG,LEMAC}$ nach Scholz 98. $x_{CG,LEMAC}$ beschreibt den Abstand vom LE auf dem MAC (LEMAC) des Gesamtflugzeugs bis zum CG. Die Gleichung lautet:

$$x_{CG,LEMAC} = 0,5 \cdot c_{MAC} \tag{5.4}$$

Wobei die hier angegebene 0,5 (50 %MAC) einer näheren Betrachtung bedarf. Um diesen Wert zu verbessern, werden die Abwiegeprotokolle von 13 Flugzeugen einer näheren statisti-

schen Betrachtung unterzogen. Die Vorgehensweise wurde bereits in **Kapitel 4.5** beschrieben. Folgend sind die signifikanten Werte angegeben:

Der Mittelwert ist:

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = 0,254$$
(5.5)

Die Varianz nach Sachs 1992 ist:

$$s^{2} = \frac{n \cdot \sum x^{2} - (\sum x)^{2}}{n \cdot (n-1)} = 4,062 \cdot 10^{-3}$$
(5.6)

Die Standardabweichung nach Bolch 1968 ist:

$$\mathbf{s} = (1 + 1/(4(n-1))) \cdot \mathbf{s} = 6,503 \cdot 10^{-2}$$
(5.7)

Die Normalverteilung wird wieder nach Sachs 1992 berechnet:

$$f(x) = \frac{1}{\sqrt{2 \cdot \boldsymbol{p}} \cdot \boldsymbol{s}} \cdot \boldsymbol{e}^{-\frac{1}{2} \left(\frac{x-\boldsymbol{m}}{\boldsymbol{s}}\right)^2}$$
(5.8)

mit $\boldsymbol{m} = \overline{x}$

Mit den Werten für die Normalverteilung (siehe **Tabelle A.26**) und den Werten der Häufigkeitstabelle (siehe **Tabelle A.27**) läßt sich ein Histogramm samt Normalverteilung erstellen (siehe **Bild 5.7**).

Der Modus ist aus dem Diagramm abzulesen und hat die Größe 0,24. Der Median (50 %-Punkt der Verteilung) hat die Größe 0,257.

Nach den errechneten Werten läßt sich die Gleichung (5.4) auf folgenden Wert verbessern:

$$x_{CG,LEMAC} = 0,25 \cdot c_{MAC} \tag{5.9}$$

Bild 5.7 Histogramm und Normalverteilung des Merkmalswertes CG in MAC

5.5 Schwerpunktbereich

Der Schwerpunktbereich wird durch die vordere und hintere maximal zulässige Schwerpunktlage begrenzt. Der Bereich wird, wie in **Kapitel 5.2** erläutert, aus dem Beladediagramm bei Leermasse abgelesen.

Die aus den Beladediagrammen von sechs Passagierflugzeugen mit Strahltriebwerken und zwei Passagierflugzeugen mit Propellerturbinen abgelesenen Werte sind in der **Tabelle 5.1** verzeichnet. Die Werte für die maximale Leermasse sind der **Uni Würzburg** entnommen.

Der Mittelwert der Passagierflugzeuge mit Strahltriebwerken ist hierbei:

$$\bar{x}_{Strahl} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = 0,171$$
(5.10)

Der Mittelwert der Passagierflugzeuge mit Propellerturbinen, der hier aus lediglich zwei Werten gebildet wird, ist:

$$\bar{x}_{\Pr op} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = 0,124$$
(5.11)

Tabelle 5.1	Schwerpunktberei	ch aus den B	eladediagrammen		
	Flugzeugtyp	max. Leer- gewicht [kg]	Vorderer Schwerpunktbe- reich in MAC	hinterer Schwer- punktbereich in MAC	Schwerpunktbe- reich in MAC
Strahltriebwerke:	A300-600	89715	0,202	0,338	0,136
	A319-100	40100	0,158	0,373	0,215
	A321-100	46740	0,17	0,363	0,193
	B737-300	31561	0,082	0,235	0,153
	B737-500	30960	0,079	0,255	0,176
	B747-400	177500	0,155	0,305	0,15
Propellerturbiner	n: ATR-42-500	11250	0,179	0,297	0,118
	ATR-72	12200	0,182	0,312	0,13

Die Streuung des Schwerpunktbereichs liegt bei den Passagierflugzeugen mit Strahltriebwerken zwischen 0,136 MAC und 0,215 MAC. Eine eindeutige Aussage kann über den Schwerpunktbereich aufgrund von zu wenigen Stichproben nicht gemacht werden.

6 Rumpf und Frachtraum

In diesem Abschnitt werden bekannte Statistikgleichungen aus der Rumpfauslegung auf ihre Anwendbarkeit der verwendeten Flugzeugtypen hin überprüft. Extrem- und Mittelwerte für den Schlankheitsgrad l_F/d_F sind **Kapitel 4.4** zu entnehmen. Er wurde bereits dort behandelt, da er in der Gleichung S_{wet}/S_W vorhanden ist. Der Schlankheitsgrad wird in diesem Kapitel noch mit anderen Parametern verglichen. Eine Überschneidung läßt sich nicht vermeiden.

6.1 Schlankheitsgrad und Passagieranzahl

Ziel dieses Kapitels ist ein Vergleich des Schlankheitsgrades mit der Passagieranzahl (PAX). Der Vergleich wird in Anlehnung des **Marckwardt 1998** Diagramms durchgeführt, das in **Bild 6.1** zu sehen ist.

Der Schlankheitsgrad ist in **Bild 6.1** als d_F/l_F aufgetragen. Bei zukünftigen Betrachtungen wird er jedoch in der gängigeren Form als l_F/d_F bezeichnet.

Um ein adäquates Diagramm zu erstellen, müssen zunächst Zusammenhänge anderer Parameter betrachtet werden. Es existiert eine Gleichung nach **Scholz 1998**, die den Zusammenhang der Kabinenlänge l_{CABIN} mit der Passagieranzahl n_{PAX} geteilt durch die Sitzplätze nebeneinander n_{SA} beschreibt:

$$l_{CABIN} = k_{CABIN} \cdot \frac{n_{PAX}}{n_{SA}}$$
mit $k_{CABIN} \approx 1.0m...1.1m$
(6.1)

Die Gleichung wird anhand der vorhandenen Flugzeugtypen überprüft. Das Ergebnis ist in **Bild** 6.2 zu sehen. Die Werte sind in der **Tabelle A.28** aufgelistet. Die Steigungen der Regressionsgeraden sind im Diagramm verzeichnet und können als Abschätzung des Faktors k_F verwendet werden. Wie dem Bestimmtheitsmaß zu entnehmen ist, ist ein starker Zusammenhang der Parameter gegeben. Bei den Business Jets ist der Zusammenhang nicht ganz so stark wie bei den anderen beiden Flugzeugkategorien, was an der sehr *unterschiedlichen Raumgestaltung* der Business Jets liegt.

Bild 6.2 Kabinenlänge als Funktion der Passagierzahl geteilt durch die Sitzplätze nebeneinander

Da die Kabinenlänge proportional zu n_{PAX}/n_{SA} ist, ist anzunehmen, daß ebenfalls die Rumpflänge l_F , die für den Vergleich der Passagierzahl mit dem Schlankheitsgrad benötigt wird, proportional zu n_{PAX}/n_{SA} ist. Das wird anhand des Diagramms in **Bild 6.3** überprüft. Die Werte für das Diagramm sind ebenfalls **Tabelle A.28** zu entnehmen. Im Diagramm sind die Werte für die Passagierflugzeuge mit Strahltriebwerken und für die Passagierflugzeuge mit Propellerturbinen zusammengefaßt dargestellt, da die Regressionsgeraden, ähnlich wie in **Bild 6.2**, eine nahezu gleiche Steigung aufweisen. Die Business Jets werden hier nicht berücksichtigt, da die Rumpflänge bei dieser Flugzeugkategorie keinen Zusammenhang zu n_{PAX}/n_{SA} aufweist.

Bild 6.3 Rumpflänge als Funktion der Passagierzahl geteilt durch die Sitzplätze nebeneinander

Das Bestimmtheitsmaß deutet auf einen starken Zusammenhang hin. Die Gleichung der Regressionsgeraden kann in folgender Form dargestellt werden:

$$l_F = 1,4179 \cdot \frac{n_{PAX}}{n_{SA}}$$
(6.2)

Als nächstes wird der Rumpfdurchmesser d_F als Funktion der Sitzplätze nebeneinander n_{SA} dargestellt. Das wird getrennt für Flugzeuge mit einem Gang (Single Aisle) und Flugzeuge mit zwei Gängen (Double Aisle) durchgeführt, da bei dem Übergang von einem Gang zu zwei Gängen ein Sprung in der Zunahme des Rumpfdurchmessers zu erwarten ist. Aus diesem Grund ist für die höhere Genauigkeit der Regressionsgerade eine getrennte Betrachtung notwendig. Das Ergebnis ist in **Bild 6.4** zu sehen. Die Werte sind der **Tabelle A.28** zu entnehmen.

Bild 6.4 Rumpfdurchmesser als Funktion von den Sitzplätzen nebeneinander

In **Bild 6.4** sind die Business Jets nicht mit einbezogen. Sie haben alle zwei Sitzplätze nebeneinander, variieren jedoch in ihren Rumpfdurchmessern erheblich. Die Passagierflugzeuge mit Strahltriebwerken und die Passagierflugzeuge mit Propellerturbinen sind zusammenfassend dargestellt. Hinzuzufügen ist noch, daß Passagierflugzeuge mit Propellerturbinen nur mit einem Gang existieren.

Die Gleichung für die Flugzeuge mit einem Gang läßt sich nach der Formel der Regressionsgeraden wie folgt darstellen:

$$d_F = 0.5248n_{SA} + 0.7179 \tag{6.3}$$

Für Flugzeuge mit zwei Gängen lautet sie:

$$d_F = 0.4198n_{SA} + 2.0308 \tag{6.4}$$

Als nächstes wird die **Scholz 1998** Gleichung überprüft, die einen Zusammenhang zwischen den Sitzplätzen nebeneinander und der Passagieranzahl erstellt:

$$n_{SA} = 0.45 \cdot \sqrt{n_{PAX}} \tag{6.5}$$

Hierfür werden die Passagierflugzeuge mit Propellerturbinen und die Passagierflugzeuge mit Strahltriebwerken wieder gemeinsam betrachtet, da die Steigungen der Regressionsgeraden ähnlich sind. Die Business Jets finden wieder keine Verwendung. Bei ihnen ist, im Verhältnis zu den anderen beiden Flugzeugkategorien, eine wesentlich geringere Passagieranzahl im Bezug zum Rumpfdurchmesser vorhanden. **Bild 6.5** zeigt das Ergebnis. **Tabelle A.28** beinhaltet die Werte.

Bild 6.5 n_{SA} als Funktion von $\sqrt{n_{PAX}}$

Die Gleichung läßt sich bei starkem Zusammenhang der Parameter wie folgt darstellen:

$$n_{SA} = 0,4686 \cdot \sqrt{n_{PAX}} \tag{6.6}$$

In der Gleichung (6.6) wird ein durchschnittlicher Schlankheitsgrad verwendet. Damit auch andere Schlankheitsgrade Berücksichtigung finden, wird der Schlankheitsgrad über der Passagierzahl aufgetragen. Das Ergebnis ist **Bild 6.6** zu entnehmen. Die Werte für die Datenpunkte sind der **Tabelle A.28** zu entnehmen.

Die im Diagramm ersichtlichen Geraden bezeichnen die Sitzplätze nebeneinander n_{SA} . Die Berechnung der Geraden wird im Folgenden beschrieben.

Zunächst wird Gleichung (6.2) nach n_{PAX} umgestellt:

$$n_{PAX} = \frac{l_F \cdot n_{SA}}{1,4179}$$

(6.7)

Der Schlankheitsgrad l_F/d_F wird vorgegeben und muß darauf mit d_F multipliziert, um der Gleichung (6.7) zu entsprechen. Der Rumpfdurchmesser wird nach den Gleichungen (6.3) und (6.4) berechnet. Somit läßt sich die Passagierzahl in Abhängigkeit von der Ganganzahl darstellen.

Für einen Gang lautet die Gleichung:

$$n_{PAX} = \frac{\frac{l_F}{d_F} (0.5248n_{SA} + 0.7179)n_{SA}}{1.4179}$$
(6.8)

Für zwei Gänge lautet die Gleichung:

$$n_{PAX} = \frac{\frac{l_F}{d_F} (0.4198n_{SA} + 2.0308)n_{SA}}{1.4179}$$
(6.9)

Einige Ergebnisse der Gleichungen sind in der Tabelle A.29 verzeichnet.

Für $n_{sA} = 8$ gibt es kein Beispielflugzeug. Wobei zu sagen ist, daß die Airbus A330/A340 Reihe meist mit einer Bestuhlung von $n_{sA} = 8$ ausgestattet wird. Zu der Berechnung der Werte wurde jedoch eine "Maximal-Bestuhlung" verwendet. Diese Flugzeugtypen haben in der "Maximal-Bestuhlung" 9 Sitzplätze nebeneinander und tauchen deshalb nicht als Beispielflugzeug für $n_{sA} = 8$ auf.

Die Datenpunktreihe für 2 Sitzplätze nebeneinander weicht von ihrer Geraden in den Bereich zu weniger Passagieren (PAX) ab. Das liegt an der überwiegenden Präsenz von Business Jets in dieser Reihe. Business Jets haben im Verhältnis zu "normalen" Passagierflugzeugen eine geringere Sitzplatzanzahl, was auch der Grund war, weshalb sie für die Erstellung der Statistikgleichungen nicht mit einbezogen wurden. Man kann für die Business Jets auch keine allgemeingültige Gleichung in bezug auf das Verhältnis des Schlankheitsgrades und der Passagieranzahl finden. Die Auslegungen weichen insbesondere bei den Rumpfdurchmessern sehr voneinander ab. Hier wird von einigen Herstellern eine Stehhöhe favorisiert, die andere wiederum nicht als nötig erachten. Nach Definition von **LTH - Gewichte 1986** kann die Aussage gemacht werden, daß bei mittelstarkem Zusammenhang der Parameter der Rumpfdurchmesser bei steigender Passagierzahl ebenfalls ansteigt. Die optimale Anzahl der Sitze nebeneinander hat bei allen Herstellern von Business Jets, die hier als Stichprobenumfang vorhanden sind, einen Wert von $n_{SA} = 2$. Die Passagieranzahl der aufgenommen Stichproben variiert zwischen minimal 5 Passagieren und maximal 19 Passagieren.

Bild 6.6 Anzahl der Sitze pro Reihe als Funktion der Passagierzahl und des Schlankheitsgrades des Rumpfes

6.2 Abschätzung der Rumpflänge aus der Abflugmasse

Die maximale Abflugmasse m_{TO} wird aus dem Nutzlast-Reichweitendiagramm abgelesen und setzt sich durch Addition der Kraftstoffmasse m_F , der Betriebsleermasse m_{OE} und der Nutzlast m_{PL} zusammen. Diese Einzelanteile werden durch Abschätzgleichungen ermittelt. **Bild 6.7** verdeutlicht die Zusammensetzung in Form eines Masse-Reichweitendiagrammes. Die maximale Abflugmasse wird im Folgenden für eine Abschätzung der Rumpflänge verwendet. Zunächst wird der Zusammenhang der beiden Parameter festgestellt. Hierfür wird der Schlankheitsgrad (diesmal die reziproke Form) d_F/l_F als konstant angenommen:

$$\frac{d_F}{l_F} = \text{const.} \tag{6.10}$$

Reichweite

Bild 6.7 Masse als Funktion der Reichweite (Marckwardt 1998)

Die Abflugmasse wird als proportional zum Volumen des Rumpfes angesehen (vereinfacht durch die Zylinderformel):

$$m_{TO} \sim \frac{\boldsymbol{p} \cdot \boldsymbol{d}_F^2}{4} \boldsymbol{l}_F \tag{6.11}$$

p/4 wird als Konstante herausgenommen. Somit wird aus der Gleichung:

$$m_{TO} \sim d_F^2 \cdot l_F \tag{6.12}$$

Erweitert mit der Gleichung (6.10) wird daraus:

$$m_{TO} \sim \left(\frac{d_F}{l_F}\right)^2 \cdot l_F^3$$

(6.13)

 $(d_F/l_F)^2$ wird als konstanter Faktor aus der Gleichung genommen. Umgestellt nach l_F läßt sich die Gleichung daraufhin in folgender Form darstellen:

$$l_F \sim \sqrt[3]{m_{TO}}$$

(6.14)

Aus dieser Betrachtung kann als Resultat folgende Beziehung erstellt werden:

$$l_F = k_F \cdot \sqrt[3]{m_{TO}}$$

(6.15)

Die Gleichung wird schließlich anhand der Flugzeugtypen in **Bild 6.8** dargestellt. Der konstante Faktor k_F wird von der Regressionsgeraden gebildet. Die Werte sind der **Tabelle A.30** zu entnehmen.

Bild 6.8 Rumpflänge l_F als Funktion der Abflugmasse $\sqrt[3]{m_{TO}}$

Aus **Bild 6.8** können nun als Ergebnis mit einer starken Kohärenz (**LTH - Gewichte**) Gleichungen für die Rumpflänge der einzelnen Flugzeugkategorien erstellt werden. Für Passagierflugzeuge mit Strahltriebwerken lautet die Gleichung:

$$l_F = 0.94 \cdot \sqrt[3]{m_{TO}} \tag{6.16}$$

Für Passagierflugzeug mit Propellerturbinen lautet die Gleichung:

$$l_F = 0.89 \cdot \sqrt[3]{m_{TO}} \tag{6.17}$$

Für Business Jets lautet die Gleichung:

8

$$l_F = 0.72 \cdot \sqrt[3]{m_{TO}} \tag{6.18}$$

6.3 Berechnung des Frachtraums

Bei der Berechnung des Frachtraumvolumens wird von einer konstanten Höhe des Frachtraums wegen der Beladung mit ULD-Containern⁸ ausgegenagen. Der Frachtraumquerschnitt wird vereinfacht als Rechteck angenommen. Das Volumen des Frachtraums muß demnach proportional zum Rumpfdurchmesser und somit auch proportional zu den Sitzplätzen nebeneinander sein:

$$V_{CARGO} \sim d_F \sim n_{SA} \tag{6.19}$$

Diese Gleichung gilt nur mit Berücksichtigung der Gangzahl, da für d_F als Funktion von n_{SA} auch zwei Statistikgleichungen existieren (Gleichung (6.3) und Gleichung (6.4)).

Das Frachtraumvolumen muß bei gegebenem Rumpfdurchmesser proportional zur Rumpflänge sein, wenn man Bug und Heck als Konstante vernachlässigt

$$V_{CARGO} \sim l_F \tag{6.20}$$

ULD-Container: (Unit Load Device Container): Speziell für die einzelnen Flugzeugtypen entwickelte Container zur Frachtraumbeladung mit genormten Abmaßen. Näheres ist **Kapitel 6.4** zu entnehmen. Das Frachtraumvolumen ist bei konstanter Höhe des Frachtraums proportional zu seiner Bodenfläche:

$$V_{CARGO} \sim d_F \cdot l_F \tag{6.21}$$

Unter Berücksichtigung der erwähnten Einschränkung läßt sich für d_F die Anzahl der Sitze nebeneinander n_{SA} einsetzen.

Für l_F wird das Verhältnis n_{PAX}/n_{SA} aus Gleichung (6.2) eingesetzt. Das Frachtraumvolumen ist dann:

$$V_{CARGO} \sim n_{SA} \cdot \frac{n_{PAX}}{n_{SA}}$$

$$\sim n_{PAX}$$
(6.22)

Für das Frachtraumvolumen kann also eine Gleichung in folgender Form aufgestellt werden:

$$V_{CARGO} = k_{CARGO} \cdot n_{PAX} \tag{6.23}$$

Die Gleichung wird nun anhand der vorhanden Flugzeugtypen überprüft. Das Ergebnis ist in **Bild 6.9** zu sehen. Die Werte für das Diagramm sind der **Tabelle A.30** zu entnehmen.

Dem **Bild 6.9** sind die beiden Werte für k_{CARGO} zu entnehmen. Die Gleichung (6.23) lautet für Passagierflugzeuge mit einem Gang:

$$V_{CARGO} = 0.20 \cdot n_{PAX} \tag{6.24}$$

Für Passagierflugzeuge mit zwei Gängen lautet die Gleichung:

$$V_{CARGO} = 0.42 \cdot n_{PAX} \tag{6.25}$$

Die Business Jets werden hierbei nicht betrachtet, da sie keinen Frachtraum im Unterflurbereich haben.

Bild 6.9 Frachtraumvolumen als Funktion der Passagierzahl

6.4 Frachtraum-Container und -Paletten

In diesem Kapitel soll ein Überblick über die existierenden Frachtraum-Container (**Tabelle 6.1**), und Frachtraum-Paletten (**Tabelle 6.2**) geschaffen werden.

Laut **Gürntke** ist die Nutzung von Frachtraum-Container sehr von der jeweiligen Fluggesellschaft abhängig. Meistens wird für Gepäck der LD3- und LD1-Container benutzt. Für Fracht werden meistens die $2,24m \cdot 3,18m$ Paletten oder die $2,44m \cdot 3,18m$ Paletten benutzt.

LD1 Container wurden nach der B747 Frachtraumabmessung konstruiert. LD2 Container wurden nach der Frachtraumabmessung der B767 konstruiert und finden so gut wie keine Verwendung in anderen Flugzeugtypen. Sie sind daher eher als unüblich zu betrachten. In **Bild 6.10** ist ein LD3-Container zu sehen, der zu den gängigsten Containern gehört.

Die Palettenmaße (**Tabelle 6.2**) werden ohne Höhe angegeben. Wenn die Fracht auf der Palette positioniert ist, wird sie mit einem groben Netz, das an der Palette befestigt ist, überspannt. Die Höhe einer Einheit ist somit variabel. In **Bild 6.11** und **Bild 6.12** sind die gängigsten Paletten zu sehen.

Containertyp		Abmes	sungen	<u> </u>	Eigen- masse	Fracht- volumen	Flugzeugtypen
	Breite Unten	Breite Oben	Höhe	Tiefe			
	m	Μ	m	m	Kg	m ³	
LD1	1,53	2,34	1,63	1,53	109	4,9	B747
LD2	1,15	1,56	1,63	1,53	68	3,4	B767, B777
LD26	3,18	4,06	1,63	2,24	190	14	B747, A300, MD-11
LD3	1,56	2,01	1,63	1,53	98	4,13	B737, B747, A310, A300, A340, MD-11,
I D4	2 44	2 44	_	1 53	107	2 94	B707, A321 B767 A340
LD5	3,18	3,18	1,63	1,53	180	6,9	B737, B747, A310, A300, A340, DC8, DC10, DC-8 F
LD6	3,18	4,06	1,63	1,53	230	8,9	B747, A300, MD-11, A340
LD7	3,18	3,18	1,63	2,24	225	9,5	B737, B747, A310, A300, A340, DC8, DC10, DC-8 F
LD8	318	2,44	1,63	1,53	168	6,85	B767
LD9	3,18	3,18	1,63	2,24	200	10,6	B747, A340, A300, MD-11, B767
LD11	3.18	3.18	1.63	1.53		7.5	B747, A300, MD-11

Tabelle 6.1 Verfügbare Containertypen für den Unterflurbereich

Die Daten wurden aus den Homepages von SAS Cargo, China Airlines und Air Canada zusammengetragen. Fehlende Daten wurden aus Marckwardt 1998 entnommen.

Bild 6.10 LD3-Container (nach China Airlines)

Bild 6.11 Gängige Palettentypen (Cathay Pacific) - (1)

Bild 6.12 Gängige Palettentypen (Cathay Pacific) - (2)

Tabelle 6.2	erfügbare Palettentypen für den Unterflurbereich

Abmessungen					
Breite	Tiefe				
Μ	m				
1,39	2,24				
1,39	3,02				
2,08	3,02				
2,24	2,75				
2,24	3,02				
2,24	3,18				
2,44	3,18				
2,44	4,98				
2,44	6,06				

Die Daten wurden aus der Homepage von China Airlines und von Marckwardt 1998 zusammengetragen.

6.5 Kabine

Die in diesem Kapitel verwendeten Daten wurden aus Kabinen-Layouts⁹ (siehe **Bild 6.13**) verschiedener Fluggesellschaften abgemessen. Im **Anhang C.1** und **Anhang C.2** sind neben den Dreiseitenansichten und wichtigsten Daten der Flugzeugtypen auch in den meisten Fällen deren Layouts mit abgebildet. Die Vorgehensweise bei der Datenaufnahme ist dem **Anhang B.1** zu entnehmen. Die Layouts sind den Flugplänen der Fluggesellschaften entnommen. Ausnahme hierbei bilden die Layouts der Lufthansa, die detaillierten technischen Zeichnungen entnommen wurden. Aus diesem Grund ist der Vergleich der Daten zwischen denen der Lufthansa und denen anderer Fluggesellschaften angebracht.

Bild 6.13 Layout der Boeing 777-200 (British Airways)

Eine Abschätzung der Kabinenlänge l_{CABIN} aus der Anzahl der Sitze nebeneinander n_{SA} und der Passagieranzahl n_{PAX} ist bereits in **Kapitel 6.1** mit dem dazugehörigen **Bild 6.2** gegeben worden. In diesem Kapitel soll es um die Abmessungen der einzelnen Bestandteile (z.B.: Sitze, Gänge) einer Kabine gehen.

Zunächst werden die Sitzabstände der einzelnen Flugzeuge der Fluggesellschaften untersucht und in der **Tabelle 6.3** als ein Mittelwert angegeben. Die Mittelwerte der einzelnen Reichweitenklassifikation (nach **Kreuzer 1999**) werden mit denen der genauen Daten der Lufthansa verglichen. Mehrfachnennungen sind bei der Reichweitenklassifizierung möglich. So gibt es Flugzeuge, wie beispielsweise die A319, die in allen drei Kategorien (Kurz- "Mittel- und Langstrecke) einsetzbar sind. Die einzelnen Werte für diese Betrachtung sind der **Tabelle A.31** zu entnehmen. Um einen Überblick über den Bereich der Daten zu bekommen, sind Minimal- und Maximalwerte angegeben.

Auffällig in **Tabelle 6.3** ist, daß lediglich die Langstrecke der untersuchten Flugzeuge eine Drei-Klassen-Bestuhlung aufweist. Die Mittelstreckenflugzeuge haben maximal eine Business-Klasse (BC) und eine Touristen-Klasse (YC), hier fehlt die Erste Klasse (FC). Die Kurzstrekkenflugzeuge weisen nur die Touristen-Klasse auf.

⁹ Ein Layout ist die im Flugzeug verwendete Anordnung der Bestuhlung, Küchen, Toiletten und eventueller Gepäckaufbewahrung innerhalb der Fahrgastkabine.

			ingen i terenni	
Sitzabstand	Mittelwert \overline{x}	Mittelwert \overline{x}	Minimalwert	Maximalwert
	Alle Fluggesellschaften	Nur Lufthansa		
Reichweiten-				
klassifikation	m	m	т	т
Kurzstrecke	YC = 0,771	YC = 0,843	YC = 0,6	YC = 0,88
Mittelstrecke	YC = 0,802	YC = 0,827	YC = 0,73	YC = 0,91
	BC = 0,922	BC = 0,955	BC = 0,85	BC = 1,02
Langstrecke	YC = 0,771	YC = 0,793	YC = 0,68	YC = 0,83
	BC = 1,11	BC = 1,22	BC = 0,86	BC = 1,32
	FC = 2,03	FC = 2,23	FC = 1,5	FC = 2,29

Tabelle 6.3 Sitzabstände als Mittelwerte der jeweiligen Reichweitenklassifizierung

Es gibt für die Kurzstreckenflugzeuge auch Beispiele, bei denen es möglich ist, eine variable Trennung zwischen der Business-Klasse und der Touristen-Klasse vorzunehmen. Hierbei wird dann eine Trennwand verschoben, die die Klasse kennzeichnet. Da dadurch keine Qualitätsverbesserung, was den Sitzplatzkomfort betrifft, erreicht wird, sind diese Flugzeuge als reine Touristen-Klasse gewertet worden.

Bei der Sitzanordnung sind die Notausgänge zu beachten. Bei ihnen muß ausreichend Platz für einen Zugang vorhanden sein, es sind also größere Sitzabstände einzukalkulieren. Die Notausgänge, und der damit verbundene größere Sitzabstand, sind bei der Datenaufnahme nicht berücksichtigt worden.

Tabelle 6.3 sind weiterhin größere Mittelwerte bei den Sitzabstände der Lufthansa als bei der Gesamtbetrachtung zu entnehmen. Wenn ein solcher Fall auftritt, liegt es nicht an der fehlerhaften Datenaufnahme (da die Lufthansa-Werte in genauerer Form vorlagen), sondern vielmehr an dem höheren Sitzplatzkomfort der Lufthansa.

Als nächstes wird die Sitzbreite untersucht. Es wird hierbei wieder der Bereich der Werte festgehalten (Minimal- und Maximalwerte). Das Ergebnis ist in Tabelle 6.4 ersichtlich. Die Einzelwerte sind der Tabelle A.32 entnommen.

Tabelle 6.4	Sitzbreite als Mittelwerte der jeweiligen Reichweitenklassifizierung			
Sitzbreite	Mittelwert \overline{x}	Mittelwert \overline{x}	Minimalwert	Maximalwert
	Alle Fluggesellschaften	Nur Lufthansa		
Reichweiten-				
klassifikation	m	m	т	т
Kurzstrecke	YC = 0,497	YC = 0,497	YC = 0,46	YC = 0,53
Mittelstrecke	YC = 0,511	YC = 0,515	YC = 0,46	YC = 0,57
	BC = 0,639	BC = 0,67	BC = 0,59	BC = 0,73
Langstrecke	YC = 0,518	YC = 0,527	YC = 0,46	YC = 0,56
	BC = 0,659	BC = 0,685	BC = 0,59	BC = 0,72
	FC = 0,843	FC = 0,965	FC = 0,72	FC = 1,03

Sitze existieren als Einzelsitz mit Lehne, 2-er Bank mit Lehne und 3-er Bank mit Lehne. Bei der Datenaufnahme der Sitzbreite werden die Lehnen wie folgt berücksichtigt: Ist beispielsweise eine 3-er Bank mit Lehne vorhanden, wird die Gesamtbreite gemessen und durch drei geteilt.

Der Gangbreite (Tabelle 6.5) liegt das gleiche Schema wie bei Tabelle 6.3 und Tabelle 6.4 zugrunde. Die Mittel- und Extremwerte sind den Daten der Tabelle A.33 entnommen. Die Minimalwerte der Gangbreiten müssen beachtet werden. Sie hängen von der Anzahl der Sitze ab und sind den JAR-Vorschriften zu entnehmen. Zusätzlich muß beachtet werden, daß ein Essenswagen (Trolley) durch den Gang passen muß. Scholz 1998 gibt eine Breite von etwa 12 inch (30,5 cm) für einen Essenswagen an.

Außerdem müssen folgende Jar-Vorschriften für die Gänge beachtet werden:

$n_{SA} \leq 6$:	ein Gang
$6 < n_{SA} \le 12$:	zwei Gänge

Tabelle 6.5	Gangbreite als Mittel	wert der jeweilig	en Reichweite	nklassifizierung
Gangbreite	Mittelwert \overline{x}	Mittelwert \overline{x}	Minimalwert	Maximalwert
	Alle Fluggesellschaften	Nur Lufthansa		
Reichweiten-				
klassifikation	m	т	m	т
Kurzstrecke	YC = 0,476	YC = 0,41	YC = 0,35	YC = 0,66
Mittelstrecke	YC = 0,485	YC = 0,433	YC = 0,4	YC = 0,66
	BC = 0,57	BC = 0,605	BC = 0,42	BC = 0,87
Langstrecke	YC = 0,45	YC = 0,44	YC = 0,3	YC = 0,66
	BC = 0,543	BC = 0,59	BC = 0,32	BC = 0,87
	FC = 0,523	FC = 0,54	FC = 0,36	FC = 0,65

g

Des weiteren wird untersucht, wie viele Passagiere in der jeweiligen Klasse und Reichweitenklassifizierung sich eine Toilette "teilen" müssen. Das Ergebnis ist in Tabelle 6.6 verzeichnet. Die Einzeldaten sind der Tabelle A.34 entnommen.

Tabelle 6.6	Mittelwerte der Passagiere pro Toilette		
Toiletten	Mittelwert \overline{x}	Mittelwert \overline{x}	
	Alle Fluggesellschaften	Nur Lufthansa	
Reichweiten-	n_{PAX}	n _{PAX}	
киаззіјтаноп	Toiletten	Toiletten	
Kurzstrecke	YC = 44,8	YC = 44,8	
Mittelstrecke	YC = 48,3	YC = 50,3	
	BC = 29,1	BC = 20,4	
Langstrecke	YC = 43,9	YC = 49,7	
	BC = 19,3	BC = 16	
	FC = 4,3	FC = 4	

Um auf den Mittelwert der Bodenfläche der Toiletten zu kommen, muß die Gesamtbodenfläche der Toiletten pro Flugzeug durch die Anzahl der Toiletten geteilt werden. Das wird bei jedem Flugzeug durchgeführt. Aus den Ergebnissen werden die Mittelwert gebildet, wobei jedoch eine für jedes Flugzeug getrennte Betrachtung durchgeführt werden muß. Die erste Kategorie sind die Flugzeuge, die *nur* in der Kurzstrecke eingesetzt werden. Die zweite Kategorie sind die Flugzeuge, die auch oder nur in anderen Reichweitenklassifkationen eingesetzt werden. Das Ergebnis des Mittelwertes der Bodenfläche der Toilette lautet für die erste Kategorie $S_{Toilette} = 0.83m^2$. Für die zweite Kategorie lautet das Ergebnis $S_{Toilette} = 1.04m^2$. Die Ergebnisse der einzelnen Flugzeuge sind der **Tabelle A.34** zu entnehmen.

Als nächstes wird die Bodenfläche der Küchen (Galleys) betrachtet. Hierbei entfällt die Betrachtung der einzelnen Klassen, da Küchen meist so angeordnet werden, daß sie für zwei Klassen verwendet werden können. **Tabelle 6.7** gibt den Mittelwert der Bodenfläche der Küchen pro Sitzplatz an.

Tabelle 6.7	Mittelwert der Bodenfläche der Küchen pro Sitzplatz		
Küchen	Mittelwert \overline{x}	Mittelwert \overline{x}	
	Alle Fluggesellschaften	Nur Lufthansa	
Reichweiten-	m^2	m^2	
klassifikation	Sitzplatz	Sitzplatz	
Kurzstrecke	0,0332	0,0407	
Mittelstrecke	0,0352	0,0381	
Langstrecke	0,0486	0,0492	

Die Einzelwerte der Flugzeuge sind der Tabelle A.35 zu entnehmen.

Bei der Datenaufnahme für die Bodenfläche der Küche wird nur die Stellfläche der Küche berücksichtigt. Zu beachten ist die Notwendigkeit eines "freien" Raumes vor jeder Küche, um an die entsprechenden Utensilien zu kommen. Die Aufgabe beim Erstellen eines Kabinen-Layouts ist es, die Freiräume, die nicht für Sitzplätze genutzt werden können, möglichst klein zu halten. Das wird im Falle der Küchen meist gelöst, indem sie in der Nähe von Ausgängen plaziert werden. Der Vorteil dadurch ist die *Doppelnutzung* der Bodenfläche vor einer Küche als Arbeitsfläche für die Flugbegleiter und notwendigem Freiraum vor den Ausgängen.

Die Bodenfläche vor den Ausgängen wird ebenfalls bei der Datenaufnahme festgehalten. Sie ist für die betrachteten Flugzeuge in der **Tabelle A.35** in Form einer Quadratmeteranzahl pro Sitzplatz angegeben. Die Bildung des Mittelwertes ergibt bei Betrachtung aller Fluggesellschaften einen Wert von Ausgänge $[m^2]/Sitzplatz = 0,0503$. Bei der Lufthansa hat der Mittelwert die Größe Ausgänge $[m^2]/Sitzplatz = 0,0533$

Aus den gesammelten Werten läßt sich nun der Platzverbrauch der Toiletten, Küchen und Ausgängen als Funktion der Kabinenfläche aufzeichnen. Die Kabinenfläche wird hierbei vereinfacht als Kabinenlänge l_{CABIN} multipliziert mit dem Rumpfdurchmesser d_F angenommen. Das Ergebnis dieser Betrachtung ist **Bild 6.14** zu entnehmen. Die Datenwerte sind in der **Tabelle A.36** ersichtlich.

Das Diagramm des **Bildes 6.14** beweist durch die Qualität der Regressionsgeraden (Bestimmtheitsmaß) einen linearen Anstieg der Bodenflächen bei Vergrößerung der Kabinenfläche. Der Platzverbrauch der einzelnen Bodenflächen läßt sich durch die im Diagramm dargestellten Gleichungen abschätzen, wenn Kabinenlänge und Rumpfdurchmesser vorhanden sind. Die Gleichung für die Abschätzung der Bodenfläche der Toiletten lautet:

$$S_{Toiletten} = 0,030 \cdot l_{CABIN} \cdot d_F \tag{6.26}$$

Für die Bodenfläche der Küchen ist folgende Gleichung vorhanden:

$$S_{K "uchen} = 0.050 \cdot l_{CABIN} \cdot d_F \tag{6.27}$$

Für die Bodenfläche der Ausgänge lautet sie:

$$S_{Ausgänge} = 0,069 \cdot l_{CABIN} \cdot d_F \tag{6.28}$$

Bild 6.14 Bodenfläche der Toiletten, Küchen und Ausgänge als Funktion der Kabinenfläche

Werden alle Flächen aufaddiert, ergibt sich die Gleichung in folgender Form:

$$S_{Toiletten+Küchen+Ausgänge} = 0,15 \cdot l_{CABIN} \cdot d_F$$
(6.29)

Rund 15 % der Kabinenfläche sind also nicht für Sitzplätze nutzbar. Dieser Wert ist als ein Minimum anzusehen, da der Kabinenboden sich *erstens* unterhalb des Mittelpunktes des Rumpfes befindet (**Scholz 1998** gibt als Absenkung des Kabinenbodens gegenüber der Mittellinie einen Mittelwert von 0,6 m an), *zweitens* ist bei der Berechnung der Kabinenfläche der Rumpfdurchmesser außen d_F verwendet worden. Für den Rumpfdurchmesser innen sind je nach Flugzeuggröße etwa 10-40 cm abzuziehen. *Drittens* ist die Verjüngung der Kabine am Heck nicht mit einkalkuliert, und *viertens* müssen größere Sitzabstände für die Notausgänge mit eingerechnet werden.

Letztlich wird in **Tabelle 6.8** ein Vergleich der Sitzplätze nebeneinander mit den Reichweitenklassifikationen dargestellt. Da der Rumpfdurchmesser stark von der Anzahl der Sitze nebeneinander abhängt (vergleiche **Bild 6.4**) und die Reichweitenklassifikation nach der Forderung des Nutzlast-Reichweitendiagramms feststeht, kann aus der **Tabelle 6.8** und den Gleichungen (6.3) und (6.4) eine erste Abschätzung des Bereiches des Rumpfdurchmessers vorgenommen werden.

Sitzplätze - nebeneinander	Kurzstrecke	Mittelstrecke	Langstrecke
n _{sa}	n _{sa}	n _{sA}	n _{sA}
Bereich	3-6	5-8	6-10
Mittelwert \overline{x}	4,6	6,1	8,2

 Tabelle 6.8
 Vergleich der Sitzplätze nebeneinander mit der Reichweitenklassifikation

7 Zusammenfassung

In dieser Diplomarbeit wurde eine Überprüfung aus der Literatur bekannter statistischer Zusammenhänge vorgenommen. Im Ergebnis konnten einige Gleichungen bestätigt werden, andere mußten geändert werden, indem ein Faktor in der Gleichung modifiziert wurde. Für statistische Werte, bei denen kein Zusammenhang zu anderen Parametern bestand, wurde ein Histogramm erstellt, um so die Häufigkeitsverteilung des Parameterwertes darstellen zu können. Neue Zusammenhänge sind insbesondere bei der Rumpf- und Frachtraumauslegung gefunden worden. Für das Volumen des Frachtraums ist eine Gleichung in Abhängigkeit der Passagieranzahl erstellt worden, wobei auch die Ganganzahl berücksichtigt wurde. Der Schlankheitsgrad des Flugzeuges wurde als Funktion der Passagieranzahl und der Anzahl der Sitzplätze nebeneinander beschrieben. Die gegenseitigen Abhängigkeiten der Parameter wurden in Diagrammen veranschaulicht und durch Regressionsgeraden beschrieben.

Da in dieser Diplomarbeit statistische Zusammenhänge beschrieben wurden, kann nicht von einem Ergebnis gesprochen werden, das für immer seine Gültigkeit beibehält. Das würde dem in der Einleitung erwähnten Punkt über das *Alter der Daten* widersprechen. Die Aktualität von Daten ist ein Qualitätsmerkmal eines statistischen Zusammenhangs. So kann es passieren, daß eine im Moment qualitativ hochwertige statistische Gleichung im Verlauf der Zeit ihre Gültigkeit verliert. Im "günstigsten" Fall kann dann durch eine Neubetrachtung ein Faktor geändert werden, um die Statistik-Gleichung wieder zu aktualisieren. Im "ungünstigsten" Fall ist der statistische Zusammenhang aufgrund einer neuen Technologie nicht mehr zu gebrauchen.

Literaturverzeichnis

Air Canada	URL: http://www.aircanada.ca/cargo/english/service-guide/pallet-tes1.html (1999-08-03)
Air France	SOCIÉTÉ AIR FRANCE: Air France Flugplan Weltweit Nr.8 - 28. März 1999 - 30. Oktober 1999. Paris : RC Bobigny, 1999
Alitalia	DIREZIONE SVILUPPO (Hrsg.): Alitalia Easytimetable Worldwide 28 March / 30 October 1999. Rom : Branding e Servizi, 1999
Austrian Airlines	AUSTRIAN AIRLINES (Hrsg.): Austrian Airlines Group Flug- plan/Timetable 28 Mar-30 Oct 1999. Wien : Weitzer & Partner GmbH, 1999
Boeing	URL: http://www.boeing.com/commercial/ (1999-06-22)
Bolch 1968	BOLCH, B.W.: <i>More on unbiased estimation of the standard deviation</i> . The American Statistician 22, 1968
DIN 1505	DEUTSCHES INSTITUT FÜR NORMUNG: DIN 1505: Titelangaben von Dokumenten. Teil 2: Zitierregeln. Berlin : Beuth, 1984
British Airways	BRITISH AIRWAYS MARKETING & OPERATIONS (Hrsg.): British Air- ways Worldwide Timetable 28 March - 30 October 1999. London : OAG Worldwide, 1999
Cathay Pacific	URL: <u>http://www.cathaypacific.com/cargo/cgo_index.html</u> (1999-09-05)
China Airlines	URL: http://usa.china-airlines.com/ccgos/ccgould.htm (1999-08-03)
Condor	CONDOR FLUGDIENST GMBH: Condor Flugplan Sommer 1999 April- Oktober. Kelsterbach, 1998
Crossair	CROSSAIR: Crossair Flugplan 28 Mar 99 - 30 Oct 99. Basel : Basler Zeitung, 1999
Daimler-Chrysler (1)	DAIMLER-CHRYSLER: Airbus A319 - Pressemitteilung. Hamburg : Daimler-Chrysler, 1997

Daimler-Chrysler (2)	DAIMLER-CHRYSLER: A340-500/-600 Lower Deck Flexibility Configu- ration Conditions. Hamburg : Daimler-Chrysler - Abt. ESD1, 1998
Endres 1998	ENDRES, Günter: <i>Das grosse Buch der Passagier-flugzeuge</i> .Stuttgart : Motorbuch Verlag, 1998 ISBN 3-7276-7080-0
FAR 25	U.S. DEPARTMENT FOR TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION: Federal Aviation Regulations. Part 25 : Transport Category Airplanes
Gürntke	GÜRNTKE, Norbert: ULD-Container : E-mail. Telair International GmbH, 1999-07-22
Hapag-Lloyd	HAPAG-LLOYD FLUGGESELLSCHAFT MBH: Hapag-Lloyd Flugplan Sommer '99. Hannover, 1999
Hartening	HARTENING: Anfluggeschwindigkeiten : Telefonische Auskunft. Deut- sche Flugsicherung GmbH - Hamburg, 1999-05-28
Heise 1994	HEISE, Burkhard: <i>Computerunterstützte Statistik</i> . Bonn : Addison - Wesley, 1994 ISBN 3-89319-623-4
ICAO	ICAO: <i>Aircraft Operations</i> . Volume 1 : <i>Flight Procedures</i> . Montreal : ICAO, 1993 Amendment 9 to the procedures for Air Navigation Services, Doc 8168-OPS/611
Jane´s 1992/1993	JANE, Frederick Thomas (Hrsg.): <i>Jane's all the World's Aircraft</i> . Couldsen : Jane's Information Group Limited, 1992
Jane´s 1996/1997	JANE, Frederick Thomas (Hrsg.): <i>Jane's all the World's Aircraft</i> . Couldsen : Jane's Information Group Limited, 1996
JAR 25	JOINT AVIATION AUTHORITIES: Joint Aviation Requirements. JAR-25 : Large Aeroplanes
KLM	KLM: KLM World timetable March 28, 1999 - October 30, 1999. Amsterdam, 1999
Klotz	KLOTZ, Peter: Beladediagramm : Pers. Gespräch. Hamburg, Flugkapi- tän Abt. FRA/OZ, 1999-08-26

Kreuzer 1999	KREUZER, Helmut: Am Start - Moderne Verkehrsflugzeuge & Business Jets. Erding : Air Gallery Edition, 1999 ISBN 3-9805934-0-1
Lauda Air	AUSTRIAN AIRLINES (Hrsg.): Austrian Airlines Group Flug- plan/Timetable 28 Mar-30 Oct 1999. Wien : Weitzer & Partner GmbH, 1999
Loftin 1980	LOFTIN, L.K.: Subsonic Aircraft: Evolution and the Matching of size to Performance. NASA Reference Publication 1060, 1980
LOT	LOT POLISH AIRLINES: LOT Polish Airlines timetable Summer 28 Mar 99 / 30 Oct 99. Warschau, 1999
LTU	LTU INTERNATIONAL AIRWAYS: LTU Flugplan Sommer 1999. Düsseldorf, 1998
Lufthansa	DEUTSCHE LUFTHANSA AG (Hrsg.): Lufthansa Flugplan 28 Mar_30 Jun 99. München : R. Oldenbourg, 1999
Lufthansa 1998	LUFTHANSA: <i>Load & Trim Sheet 30841; ATR 42-500 (AT5).</i> Hamburg : Lufthansa Technik AG - Abt. HAM TE/L, 1998 (FORM 30841-98) Vertrieb: Lufthansa Technik AG, Weg beim Jäger 193, 22335 Hamburg
Lufthansa 1999	LUFTHANSA: <i>Aircraft Weighing Record</i> . Hamburg : Lufthansa Technik AG - Abt. HAM TE/L, 1999 Vertrieb: Lufthansa Technik AG, Weg beim Jäger 193, 22335 Hamburg
LTH - Gewichte 1986	ARBEITSKREIS GEWICHTE (AGE): Luftfahrttechnisches Hand- buch. Band : Gewichte. Ottobrunn : Industrieanlagen- Betriebsgesellschaft (IABG), 1986
Malev	MALEV HUNGARIAN AIRLINES: <i>Malev Hungarian Airlines Timetable</i> 2. <i>Edition 15 Jun 99 - 30 Oct 99</i> . London : OAG Worldwide, 1999
Marckwardt 1997	MARCKWARDT, K.: Unterlagen zur Vorlesung Flugzeugentwurf. Ham- burg, Fachhochschule Hamburg, Fachbereich Fahrzeugtechnik, Vorle- sungsskript, 1997

Meyers Lexikon	BIBLIOGRAPHISCHES INSTITUT & F. A. BROCKHAUS AG: <i>Statistik</i> , 1999 URL: <u>http://www.iicm.edu/m10/ref.m10.S/ref.m10.S.71/0x811</u> <u>bc8340x00033d98</u> (1999-09-13)
Moon	MOON, Stuart: Anfluggeschwindigkeiten, Sicherheitslandestrecken : E-mail. Galaxy Aerospace, 1999-07-27
Rockel	ROCKEL: Anfluggeschwindigkeiten : Telefonische Auskunft. Deutsche Flugsicherung GmbH - Frankfurt, 1999-05-25
Roskam III	ROSKAM, Jan: Airplane Design. Bd. 3 : Layout Design of Cockpit, Fuselage, Wing and Empennage: Cutaways and Inboard Profiles. Ottawa, Kansas, 1989
Roskam VI	ROSKAM, Jan: Airplane Design. Bd. 6 : Preliminary Calculation of Aerodynamic, Thrust and Power Characteristics. Ottawa, Kansas, 1990
Sabena	SABENA: Sabena Swissair Flugplan Deutschland 28 Mar - 30 Oct 1999. Wien : Weitzer & Partner GmbH, 1999
Sachs 1992	SACHS, Lothar: Angewandte Statistik. Berlin : Springer-Verlag, 1992 ISBN 3-540-52085-6
Sadowy 1970	SADOWY, Miroslav: Industrielle Statistik mit Qualitätskontrolle. Würzburg : Vogel-Verlag, 1970
SAS Cargo	URL: http://www.sascargo.com/aircraft/ulds.htm (1999-08-03)
Scholz 1998	SCHOLZ, Dieter: <i>Skript zur Vorlesung Flugzeugentwurf</i> . Hamburg, Fachhochschule Hamburg, Fachbereich Fahrzeugtechnik, Vorlesungsskript, 1998
Scholz 1999	SCHOLZ, Dieter: Normgerechtes Verfassen von Diplomarbeiten mit Hilfe einer Word-Musterdatei. Hamburg, Fachhochschule Hamburg, Fachbereich Fahrzeugtechnik, Dokument, 1999
Swissair	SWISSAIR: Sabena Swissair Flugplan Deutschland 28 Mar - 30 Oct 1999. Wien : Weitzer & Partner GmbH, 1999

- Techn. WörterbuchLUFTHANSA:Techn.Wörterbuch113Deutsch-Englisch,114 Englisch-Deutsch.Hamburg :LufthansaTechnischeSchulungAbt.HAM IS. -Vertrieb:LufthansaTechnikAG,Weg beim Jä-ger 193, 22335Hamburg. -Bestell Nr.: 0011302und 0011402
- Torenbeek 1982TORENBEEK, Egbert: Synthesis of Subsonic Airplane Design. Delft :
Delft University Press, 1982. ISBN 90-247-2724-3
- Turkish AirlinesTURKISH AIRLINES: Turhish Airlines Flugplan Sommer 28/03/1999 -
30/10/1999. Türkei : Nurol Matbaacilik, 1999
- **Tyrolean Airways** AUSTRIAN AIRLINES (Hrsg.): Austrian Airlines Group Flugplan/Timetable 28 Mar-30 Oct 1999. Wien : Weitzer & Partner GmbH, 1999
- Uni Würzburg URL: <u>http://cip.physik.uni-wuerzburg.de/~pschirus/flugzeug/</u> (1999-07-23)

Anhang A

Tabellen

Verwendete Flugzeugtypen (Loftin 1980) Tabelle A.1 Boeing 707* Boeing 727* Boeing 737 Boeing 747* McDonnell Douglas DC-8* McDonnell Douglas DC-9* McDonnell Douglas DC-10* Lockheed L-1011 Lockheed C-5A Lockheed JetStar Airbus A-300 British Aircraft Corporation VC-10* British Aircraft Corporation BAC 1-11 Dassault Mercure Illushyn Ill-62 Tupelov Tu-134 Tupelov Tu-154 Yakovlev Yak-40 Hawker Siddeley HS-125 Hawker Siddeley HS-146 Hawker Siddeley Trident Fokker-VFW F28 VFW-Pokker VFW 614 Grumman Gulfstream II MBB HFB 320 Hansa Dassault-Breguet Falcon Rockwell International Sabreliner IAI Commodore Jet Cessna Citation Gates Learjet

*More than one version considered.
Flugzeugtyp	Triebwer-	$m_{_{ML}}$	m_{ML}	v_A	v_A
	ke Anzahl	S_W	$\sqrt{S_w}$	km	т
	, <u>2</u>	kg		\overline{h}	s
		<u></u>	$\frac{kg}{kg}$		
		m-	m^2		
A 300-600	2	531	23,04343724	249	69,16666667
A 310	2	562	23,70653918	250	69,4444444
A 318	2	498	22,3159136	250	69,4444444
A 319	2	498	22,3159136	250	69,4444444
A 320	2	527	22,95648057	255	70,83333333
A 321	2	600	24,49489743	260	72,22222222
A 330	2	487	22,06807649	260	72,22222222
A 340-300	4	512	22,627417	260	72,22222222
A 340-600	4	581	24,10394159	265	73,61111111
B 717-200	2	537	23,17326045	250	69,4444444
B 737-300	2	491	22,15851981	250	69,4444444
B 737-400	2	521	22,82542442	257	71,38888889
B 737-500	2	473	21,74856317	237	65,83333333
B 737-600	2	437	20,90454496	233	64,72222222
B 737-700	2	465	21,56385865	241	66,9444444
B 737-800	2	523	22,86919325	257	71,38888889
B 747-400	4	496	22,27105745	270	75
B 757-200	2	485	22,02271555	245	68,05555556
B 767-200	2	432	20,78460969	252	70
B 767-300	2	480	21,9089023	261	72,5
B 777-200	2	472	21,72556098	256	71,11111111
B 777-300	2	556	23,57965225	278	77,22222222
BAC-Airstar 2500	2	426	20,63976744	237	65,83333333
BAe 146-300	4	496	22,27105745	195	54,16666667
Canadair Regional Jet	2	372	19,28730152	210	58,33333333
EMB-145	2	365	19,10497317	220	61,11111111
Fairchild Dornier 328Jet	2	331	18,1934054	200	55,55555556
Fokker 100	2	415	20,37154879	237	65,83333333
Fokker 70	2	364	19,07878403	220	61,11111111
Ilyushin IL-96-300	4	447	21,14237451	260	72,22222222
MD 87	2	504	22,44994432		·
MD 82	2	512	22,627417		
MD 83	2	550	23,4520788	265	73,61111111
MD 90-30	2	560	23,66431913	260	72,22222222
MD 90-50/55	2	619	24,87971061		
MD-11	3	576	24	260	72,22222222
Tu-204-220	2	491	22,15851981	250	69,4444444
Yak-142	3	340	18,43908891	210	58,33333333

 Tabelle A.2
 Werte f
 ür das Diagramm in Bild 2.4 - Passagierflugzeuge mit Strahltriebwerken

• Die Triebwerksanzahl und die Flächenbelastung sind **Jane's** entnommen.

Elugzougtyp	Trich)	
Flugzeugtyp	med-	m_{ML}	$m_{_{ML}}$	v_A	v_A
	Anzahl	${S}_{\scriptscriptstyle W}$	$\sqrt{S_W}$	<u>km</u>	\underline{m}
		kg	$\frac{1}{ka}$	h	S
		$\overline{m^2}$	$\sqrt{\frac{\kappa_s}{m^2}}$		
Airtech CN-235	2	252	15,87450787	203	56,38888889
Antonov An-140	2			190	52,7777778
Antonov An-38-100	2	217	14,73091986	130	36,11111111
ATR 42	2	301	17,34935157	195	54,16666667
ATR 72	2	350	18,70828693	200	55,55555556
Bae ATP/Jetstream 61	2	284	16,85229955	190	52,77777778
Bae Jetstream 41	2	310	17,60681686	190	52,77777778
DHC-8 100/200	2	285	16,88194302	180	50
DHC-8 400	2	424	20,59126028	190	52,77777778
EMB-120ER	2	297	17,23368794	190	52,77777778
Fairchild Dornier 228	2	191	13,82027496	140	38,88888889
Fairchild Dornier 328	2	331	18,1934054	185	51,38888889
Fairchild METRO 23	2	248	15,74801575	190	52,77777778
Fokker 50	2	279	16,70329309	195	54,16666667
Ilyushin IL-114	2	283	16,82260384	190	52,77777778
IPTN N-250	2	335	18,30300522	190	52,77777778
LET L-610	2	254	15,93737745	175	48,61111111
Raytheon Beech 1900D	2	262	16,18641406	175	48,61111111
Saab 2000	2	395	19,87460691	200	55,55555556
Saab 340B	2	309	17,57839583	190	52,7777778

 Tabelle A.3
 Werte f
 ür das Diagramm in Bild 2.5 - Passagierflugzeuge mit Propellerturbinen

• Die Triebwerksanzahl und die Flächenbelastung sind **Jane's** entnommen.

Flugzeugtyp	Trieb- werk	$\frac{m_{ML}}{c}$		V _A	\mathcal{V}_A
	Anzahl	S_W	$V S_W$	<u></u>	\underline{m}
		$\frac{kg}{m^2}$	$\frac{kg}{kg}$	h	S
		т	m^2		
Astra SPX	2	319	17,8605711	240	66,66666667
Bombardier Global Express	2	386	19,6468827	235	65,27777778
Bombardier/Canadair Challenger	2	357	18,89444363	220	61,11111111
Bombardier/Learjet 45	2	331	18,1934054	220	61,11111111
Bombardier/Learjet 60	2	360	18,97366596	235	65,27777778
Cessna 560 Citation Excel	2	230	15,16575089	195	54,16666667
Cessna 650 Citation VII	2	313	17,69180601	205	56,9444444
Cessna 750 Citation X	2	295	17,17556404	220	61,11111111
Dassault Falcon 2000	2	305	17,4642492	210	58,33333333
Dassault Falcon 50EX	3	346	18,60107524	220	61,11111111
Dassault Falcon 900B	3	389	19,72308292	200	55,55555556
Galaxy Aerospace "Galaxy"	2	364	19,07878403	252	70
Gulfstream V	2	309	17,57839583	235	65,27777778
Raytheon Hawker 1000	2	326	18,05547009	220	61,11111111
Sino-Swearingen SJ30-2	2	346	18,60107524	200	55,55555556

 Tabelle A.4
 Werte f
 ür das Diagramm in Bild 2.6 - Business Jets

|--|

- Die Triebwerksanzahl und die Flächenbelastung sind **Jane's** entnommen.
- Die Anfluggeschwindigkeit ist Kreuzer 1999 entnommen.

Flugzeugtyp	$m_{_{ML}}$	S _{LFL}	V _A	v_A	$\sqrt{S_{IEI}}$	$C_{A,\max,A}$	$C_{A,\max,L}$	$C_{A,\max,L} \cdot S_{LFL}$
	$\overline{S_w}$	т	km	т	\sqrt{m}			т
	kg		h	s	\sqrt{m}			
	$\frac{n_8}{m^2}$							
A 200 600	m² 521	1526	240	60.17	20.10	1 70	2 00	1611 69
A 300-600	531	1000	249	69,17	39,19	1,70	3,00	4014,00
A 310 A 319	102	1400	250	60.44	30,47	1,07	2,10	4000,43
A 310 A 210	490	1256	250	60.44	၁၉ ၀၁	1,00	2,00	2700-21
A 319 A 320	490	1300	200	70 02	20,0Z	1,00	2,00	3790,21
A 320 A 321	600	1470	200	70,03	20.94	1,00	2,04	4179,29
A 321 A 320	497	1007	200	72,22	39,04 42.60	1,04	2,11	4941,24
A 330 A 340 300	407	1010	200	72,22	42,00	1,50	2,00	4000,04
A 340-500 A 340-600	581	1000	200	72,22	43,07	1,07	2,00	4920,50
R 717 200	527	1460	200	60.44	20.22	1,72	2,90	
B 7 17-200 B 727 200	401	1409	250	60 44	27.95	1,70	2,01	4427,02
B 737-300 B 737 400	491 521	1400	250	71 20	20,00	1,03	2,70	1259 59
B 737-400 B 737 500	472	1359	207	65.92	39,23	1,04	2,11	4250,50
B 737-500 B 737 600	473	1350	201	64 72	25 61	1,75	2,90	4005,70
B 737-000 B 737 700	437	1200	200	66.04	26.92	1,07	2,02	3000,00
B 737-700	400 500	1600	241	71 20	30,0Z	1,00	2,01	3000,32
B 737-800 B 747 400	106	2072	207	71,39	40,00	1,04	2,10	4444,37
B 747-400 B 757 200	490	2072	270	68.06	29.65	1,41	2,39	4940,07
B 757-200 B 767 200	400	1494	240	70.00	30,05	1,00	2,00	4234,02
B 767-200 B 767 200	432	1400	202	70,00	40.57	1,41	2,39	4068.60
B 707-300 B 777 200	400	1040	201	72,50	40,07	1,40	2,47	4000,00
B 777 200	47Z	2260	200	71,11	57 10	1,49	2,00	4290,02
$BAC_Airstar 2500$	426	1/6/	270	65.83	38.26	1,49	2,52	3805.01
Bao 146-300	420	1404	105	54 17	35,20	2 71	2,00	5610.08
Canadair Regional let	372	1/220	210	58 33	37 72	1 75	2 96	4210 70
EMB-145	365	1200	210	61 11	35.02	1,75	2,30	3/12 65
Earchild Dornier 328 let	331	1186*	220	55 56	55,52	1,37	2,00	5412,05
Fokker 100	/15	1320	200	65.83	36 33	1,72	2,30	3/121-21
Fokker 70	364	1215	201	61 11	34.86	1,55	2,55	3205 /3
Ilvushin II -96-300	447	1080	220	72 22	<i>11</i> 50	1,30	2,04	1502 83
	504	1/51	200	12,22	38.00	1,57	2,52	4092,00
MD 82	512	1463	•	•	38.25	•	•	
MD 83	550	1540	265	73.61	39.24	1 63	2 75	4231.03
MD 90-30	560	1509	200	72 22	38.85	1,00	2,75	4385 16
MD 90-50/55	619	1628	200	12,22	40.35	1,72	2,01	4000,10
MD-11	576	1966	260	72 22	44 34	1 77	2 99	5876 43
Tu-204-220	491	2000	250	69 44	44 72	1 63	2,00	5511 71
Yak-142	340	1800	210	58,33	42,43	1,60	2,70	4868,19

Tabelle A.5	Werte für das Diagramm	in Bild 3.3 - Pa	issagierflugzeuge n	nit Strahltriebwerken
	Worte für das Diagramm		loougionnugzougo n	

• Die Flächenbelastung sind **Jane´s** entnommen.

- 112
- Die Sicherheitslandestrecke ist **Jane's** entnommen. Ausnahmen sind die mit "*" gekennzeichneten Sicherheitslandestrecken, die der **Uni Würzburg** entnommen sind.
- Die *c*_A-Werte sind berechnete Werte. Der Rechengang ist dem Kapitel zu entnehmen, in dem auch das Diagramm dargestellt wird.

Flugzeugtyp	m_{ML}	S _{LFL}	v_A	v_A	$\sqrt{S_{LFL}}$	$\mathcal{C}_{A,\max,A}$	$C_{A,\max,L}$	$C_{A,\max,L} \cdot S_{LFL}$
	S_{W}	т	km	т	\sqrt{m}			т
	kg		h	S	VIII.			
	$\overline{m^2}$							
Airtech CN-235	252	1276	203	56,39	35,72	1,27	2,15	2737,25
Antonov An-140			190	52,78				
Antonov An-38-100	217	270	130	36,11	16,43	2,67	4,50	1216,16
ATR 42	301	1034	195	54,17	32,16	1,64	2,78	2871,26
ATR 72	350	1210	200	55,56	34,79	1,82	3,07	3714,05
Bae ATP/Jetstream 61	284	1128	190	52,78	33,59	1,63	2,76	3112,97
Bae Jetstream 41	310	1250	190	52,78	35,36	1,78	3,01	3765,47
DHC-8 100/200	285	780	180	50,00	27,93	1,83	3,09	2406,85
DHC-8 400	424	1293	190	52,78	35,96	2,44	4,12	5327,36
EMB-120ER	297	1390	190	52,78	37,28	1,71	2,89	4011,61
Fairchild Dornier 228	191	450	140	38,89	21,21	2,02	3,42	1538,31
Fairchild Dornier 328	331	1165	185	51,39	34,13	2,01	3,39	3952,44
Fairchild METRO 23	248	1273	190	52,78	35,68	1,43	2,41	3067,80
Fokker 50	279	1020	195	54,17	31,94	1,52	2,57	2625,37
Ilyushin IL-114	283	1300	190	52,78	36,06	1,63	2,75	3575,01
IPTN N-250	335	1220	190	52,78	34,93	1,93	3,26	3971,48
LET L-610	254	645	175	48,61	25,40	1,72	2,91	1876,60
Raytheon Beech 1900D	262	844	175	48,61	29,05	1,78	3,00	2532,92
Saab 2000	395	1280	200	55,56	35,78	2,05	3,46	4434,06
Saab 340B	309	1065	190	52.78	32.63	1.78	3.00	3197.83

 Tabelle A.6
 Werte f
 ür das Diagramm in Bild 3.4 und Bild 3.5 - Passagierflugzeuge mit Propellerturbinen

• Die Sicherheitslandestrecke und die Flächenbelastung sind Jane's entnommen.

• Die Anfluggeschwindigkeit ist **Kreuzer 1999** entnommen.

• Die *c*_A-Werte sind berechnete Werte. Der Rechengang ist dem Kapitel zu entnehmen, in dem auch das Diagramm dargestellt wird.

Flugzeugtyp	$\frac{m_{_{ML}}}{S_w}$ $\frac{kg}{m^2}$	s _{LFL} m	$\frac{v_A}{km}$	$\frac{v_A}{m}$	$\sqrt{s_{LFL}} \sqrt{m}$	$\mathcal{C}_{A,\max,A}$	$\mathcal{C}_{A,\max,L}$	$c_{A,\max,L} \cdot s_{LFL}$ m
Astra SPX	319	732	240	66,67	27,06	1,15	1,94	1422,11
Bombardier Global Express	386	779	235	65,28	27,91	1,45	2,45	1910,05
Bombardier/Can. Challenger	357	846	220	61,11	29,09	1,53	2,59	2189,01
Bombardier/Learjet 45	331	911	220	61,11	30,18	1,42	2,40	2185,52
Bombardier/Learjet 60	360	1582	235	65,28	39,77	1,35	2,29	3617,66
Cessna 560 Citation Excel	230	1010	195	54,17	31,78	1,26	2,12	2143,06
Cessna 650 Citation VII	313	881	205	56,94	29,68	1,55	2,61	2301,80
Cessna 750 Citation X	295	1067	220	61,11	32,66	1,27	2,14	2281,37
Dassault Falcon 2000	305	1588	210	58,33	39,85	1,44	2,43	3852,71
Dassault Falcon 50EX	346	1483	220	61,11	38,51	1,48	2,51	3719,00
Dassault Falcon 900B	389	1783	200	55,56	42,23	2,02	3,41	6082,69
Galaxy Aerospace "Galaxy"	364		252	70,00		1,19	2,01	
Gulfstream V	309	900	235	65,28	30,00	1,16	1,96	1766,53
Raytheon Hawker 1000	326	1280	220	61,11	35,78	1,40	2,36	3024,38
Sino-Swearingen SJ30-2	346	942	200	55,56	30,69	1,80	3,03	2858,39
VisionAire VA-10 Vantage	155	760	175	48,61	27,57	1,05	1,78	1349,35

Tabelle A.7Werte für das Diagramm in **Bild 3.6** - Business Jets

• Die Sicherheitslandestrecke und die Flächenbelastung sind **Jane's** entnommen.

• Die Anfluggeschwindigkeit ist Kreuzer 1999 entnommen.

• Die *c*_A-Werte sind berechnete Werte. Der Rechengang ist dem Kapitel zu entnehmen, in dem auch das Diagramm dargestellt wird.

liedwerke						
Flugzeugtyp	$m_{_{ML}}$	S _{LFL}	v_A	$C_{A,\max,A}$	$C_{A, \max, L}$	m_{ML}
	S_{W}	т	km			S_{W}
	kg		h			$\boldsymbol{r} \cdot \boldsymbol{c}_{A,\max}$
	m^2					m
A 300-600	531	1536	249	1,78	3,00	144,28
A 310	562	1480	250	1,87	3,15	145,44
A 318	498		250	1,65	2,80	145,44
A 319	498	1356	250	1,65	2,80	
A 320	527	1470	255	1,68	2,84	151,32
A 321	600	1587	260	1,84	3,11	157,31
A 330	487	1815	260	1,50	2,53	157,31
A 340-300	512	1855	260	1,57	2,66	157,31
A 340-600	581		265	1,72	2,90	163,42
B 717-200	537	1469	250	1,78	3,01	145,44
B 737-300	491	1433	250	1,63	2,76	145,44
B 737-400	521	1539	257	1,64	2,77	153,70
B 737-500	473	1356	237	1,75	2,95	130,71
B 737-600	437	1268	233	1,67	2,82	126,33
B 737-700	465	1356	241	1,66	2,81	135,16
B 737-800	523	1600	257	1,64	2,78	153,70

 Tabelle A.8
 Werte f
 ür das Diagramm in Bild 3.9 und Bild 3.10 - Passagierflugzeuge mit Strahltriebwerken

B 747-400	496	2072	270	1,41	2,39	169,64
B 757-200	485	1494	245	1,68	2,83	139,68
B 767-200	432	1450	252	1,41	2,39	147,78
B 767-300	480	1646	261	1,46	2,47	158,52
B 777-200	472	1700	256	1,49	2,53	152,51
B 777-300	556	3260	278	1,49	2,52	179,85
BAC-Airstar 2500	426	1464	237	1,57	2,66	130,71
Bae 146-300	496	1228	195	2,71	4,58	88,49
Canadair Regional Jet	372	1423	210	1,75	2,96	102,62
EMB-145	365	1290	220	1,57	2,65	112,63
Fairchild Dornier 328Jet	331	1186	200	1,72	2,90	93,08
Fokker 100	415	1320	237	1,53	2,59	130,71
Fokker 70	364	1215	220	1,56	2,64	112,63
Ilyushin IL-96-300	447	1980	260	1,37	2,32	157,31
MD 87	504	1451				
MD 82	512	1463				
MD 83	550	1540	265	1,63	2,75	163,42
MD 90-30	560	1509	260	1,72	2,91	157,31
MD 90-50/55	619	1628				
MD-11	576	1966	260	1,77	2,99	157,31
Tu-204-220	491	2000	250	1,63	2,76	145,44
Yak-142	340	1800	210	1,60	2,70	102,62

• Die Sicherheitslandestrecke und die Flächenbelastung sind Jane's entnommen.

- Die *c*_A-Werte sind berechnete Werte. Der Rechengang ist dem Kapitel zu entnehmen, in dem auch das Diagramm dargestellt wird.
- Der $(m_{ML}/S_W)/(\mathbf{r} \cdot c_{A,\max})$ -Wert ist ein berechneter Wert, dessen Rechengang wieder dem Kapitel zu entnehmen ist.

Flugzeugtyp	m_{ML}	S _{LFL}	v_A	$C_{A,\max,A}$	$C_{A,\max,L}$	$m_{_{ML}}$
	S_{W}	т	<u>km</u>			S_{W}
	kg		h			$\mathbf{r} \cdot c_{A,\max}$
	m ²					m
Airtech CN-235	252	1276	203	1,27	2,15	95,90
Antonov An-140		-	190			
Antonov An-38-100	217	270	130	2,67	4,50	39,33
ATR 42	301	1034	195	1,64	2,78	88,49
ATR 72	350	1210	200	1,82	3,07	93,08
BAe ATP/Jetstream 61	284	1128	190	1,63	2,76	84,01
BAe Jetstream 41	310	1250	190	1,78	3,01	84,01
DHC-8 100/200	285	780	180	1,83	3,09	75,40
DHC-8 400	424	1293	190	2,44	4,12	84,01
EMB-120ER	297	1390	190	1,71	2,89	84,01
Fairchild Dornier 228	191	450	140	2,02	3,42	45,61
Fairchild Dornier 328	331	1165	185	2,01	3,39	79,64
Fairchild METRO 23	248	1273	190	1,43	2,41	84,01

 Tabelle A.9
 Werte f
 ür das Diagramm in Bild 3.9 und Bild 3.10 - Passagierflugzeuge mit Propellerturbinen

Fokker 50	279	1020	195	1,52	2,57	88,49
Ilyushin IL-114	283	1300	190	1,63	2,75	84,01
IPTN N-250	335	1220	190	1,93	3,26	84,01
LET L-610	254	645	175	1,72	2,91	71,27
Raytheon Beech 1900D	262	844	175	1,78	3,00	71,27
Saab 2000	395	1280	200	2,05	3,46	93,08
Saab 340B	309	1065	190	1,78	3,00	84,01

• Die Sicherheitslandestrecke und die Flächenbelastung sind Jane's entnommen.

- Die Anfluggeschwindigkeit ist Kreuzer 1999 entnommen.
- Die *c*_A-Werte sind berechnete Werte. Der Rechengang ist dem Kapitel zu entnehmen, in dem auch das Diagramm dargestellt wird.
- Der $(m_{ML}/S_W)/(\mathbf{r} \cdot c_{A,\max})$ -Wert ist ein berechneter Wert, dessen Rechengang wieder dem Kapitel zu entnehmen ist.

Flugzeugtyp	$m_{_{ML}}$	S _{LFL}	v_A	$C_{A, \max, A}$	$C_{A,\max,L}$	m_{ML}
	S_W	т	<u>km</u>			S_{W}
	kg		h			$\boldsymbol{r} \cdot \boldsymbol{c}_{A,\max}$
	m^2					m
Astra SPX	319	732	240	1,15	1,94	134,04
Bombardier Global Express	386	779	235	1,45	2,45	128,51
Bombardier/Canadair Challenger	357	846	220	1,53	2,59	112,63
Bombardier/Learjet 45	331	911	220	1,42	2,40	112,63
Bombardier/Learjet 60	360	1582	235	1,35	2,29	128,51
Cessna 560 Citation Excel	230	1010	195	1,26	2,12	88,49
Cessna 650 Citation VII	313	881	205	1,55	2,61	97,80
Cessna 750 Citation X	295	1067	220	1,27	2,14	112,63
Dassault Falcon 2000	305	1588	210	1,44	2,43	102,62
Dassault Falcon 50EX	346	1483	220	1,48	2,51	112,63
Dassault Falcon 900B	389	1783	200	2,02	3,41	93,08
Galaxy Aerospace "Galaxy"	364		252	1,19	2,01	147,78
Gulfstream V	309	900	235	1,16	1,96	128,51
Raytheon Hawker 1000	326	1280	220	1,40	2,36	112,63
Sino-Swearingen SJ30-2	346	942	200	1,80	3,03	93,08
VisionAire VA-10 Vantage	155	760	175	1,05	1,78	71,27

 Tabelle A.10
 Werte f
 ür das Diagramm in Bild 3.9 und Bild 3.10 - Business Jets

- Die Sicherheitslandestrecke und die Flächenbelastung sind Jane's entnommen.
- Die Anfluggeschwindigkeit ist Kreuzer 1999 entnommen.
- Die *c*_A-Werte sind berechnete Werte. Der Rechengang ist dem Kapitel zu entnehmen, in dem auch das Diagramm dargestellt wird.
- Der $(m_{ML}/S_W)/(\mathbf{r} \cdot c_{A,\max})$ -Wert ist ein berechneter Wert, dessen Rechengang wieder dem Kapitel zu entnehmen ist.

Flugzeugtyp	Einsatzklas-	$m_{_{MTO}}$	$m_{_{ML}}$	m _{ML}
	sifikation	ka	kg	 m
		5	U	<i>MTO</i>
A 300-600	MR/LR	165000	138000	0,84
A 310	LR	150000	123000	0,82
A 318	SR/MR	61500	61000	0,99
A 319	SR/MR/LR	64000	61000	0,95
A 320	MR/LR	73500	64500	0,88
A 321	MR	83000	73500	0,89
A 330	MR/LR	230000	177000	0,77
A 340-300	LR	257000	186000	0,72
A 340-600	LR	365000	254000	0,70
B 717-200	SR/MR	54886	49896	0,91
B 737-300	SR/MR	56470	51720	0,92
B 737-400	SR/MR	62820	54885	0,87
B 737-500	SR/MR	52390	49895	0,95
B 737-600	SR/MR	65090	54657	0,84
B 737-700	SR/MR	69399	58059	0,84
B 737-800	MR	78244	65317	0,83
B 747-400	LR	385555	260360	0,68
B 757-200	MR/LR	104325	89810	0,86
B 767-200	MR/LR	136080	122470	0,90
B 767-300	LR	156490	136080	0,87
B 777-200	LR	233600	201850	0,86
B 777-300	LR	299370	237682	0,79
BAC-Airstar 2500	SR/MR	47400	40823	0,86
BAe 146-300	SR/MR	44225	38328	0,87
Canadair Regional Jet	SR	23133	20275	0,88
EMB-145	SR	19200	18700	0,97
Fairchild Dornier 328Jet	SR	14990	13730	0,92
Fokker 100	SR/MR	44450	38780	0,87
Fokker 70	SR/MR	36740	34020	0,93
Ilyushin IL-96-300	LR	216000	175000	0,81
MD 87	MR	63505	58060	0,91
MD 82	MR	67810	58967	0,87
MD 83	MR	72575	63276	0,87
MD 90-30	MR	70760	64410	0,91
MD 90-50/55	MR	78245	71210	0,91
MD-11	LR	273289	195040	0,71
Tu-204-220	MR	110750	89500	0,81
Yak-142	SR/MR	57000	51000	0,89

 Tabelle A.11
 Werte f
 ür die Tabelle 3.1 - Passagierflugzeuge mit Strahltriebwerken

• Die Einsatzklassifikation ist **Kreuzer 1999** entnommen und hat folgende Bedeutung:

- SR (Short Range) Kurzstrecke
- MR (Medium Range) Mittelstrecke
- LR (Long Range) Langstrecke

• Die maximale- Landemasse und Startmasse ist **Jane's** entnommen

Flugzeugtyp	Einsatz- klassifikation	т _{мто} kg	m _{ML} kg	$rac{m_{_{ML}}}{m_{_{MTO}}}$	
Airtech CN-235	Regional	15100	14900	0,99	
Antonov An-140	Regional	22000			
Antonov An-38-100	Regional	8800	8600	0,98	
ATR 42	Regional	16700	16400	0,98	
ATR 72	Regional	21500	21350	0,99	
BAe ATP/Jetstream 61	Regional	22930	22250	0,97	
BAe Jetstream 41	Regional	10433	10115	0,97	
DHC-8 100/200	Regional	16465	15513	0,94	
DHC-8 400	Regional	26989	26762	0,99	
EMB-120ER	Regional	11990	11700	0,98	
Fairchild Dornier 228	Regional	6400	6100	0,95	
Fairchild Dornier 328	Regional	13990	13230	0,95	
Fairchild METRO 23	Regional	7484	7110	0,95	
Fokker 50	Regional	19950	19500	0,98	
Ilyushin IL-114	Regional	23500	21500	0,91	
IPTN N-250	Regional	22000	21800	0,99	
LET L-610	Regional	14500	14200	0,98	
Raytheon Beech 1900D	Regional	7688	7530	0,98	
Saab 2000	Regional	22800	22000	0,96	
Saab 340B	Regional	13155	12930	0,98	

 Tabelle A.12
 Werte f
 ür den Mittelwert der Passagierflugzeuge mit Propellerturbinen

• Die Einsatzklassifikation ist **Kreuzer 1999** entnommen und hat folgende Bedeutung:

- Regional Regionalstrecke (ca. 500km bis 2000km)
- Die maximale- Landemasse und Startmasse ist **Jane's** entnommen

Flugzeugtyp	Einsatz- klassifikation	m _{MTO}	m _{ML}	m _{ML}
		ny	Ng	m _{MTO}
Astra SPX	MR/LR	11181	9389	0,84
Bombardier Global Express	LR	42412	36653	0,86
Bombardier/Canadair Challenger	LR	21591	17236	0,80
Bombardier/Learjet 45	MR	8845	8709	0,98
Bombardier/Learjet 60	MR/LR	10319	8845	0,86
Cessna 560 Citation Excel	MR	8482	7892	0,93
Cessna 650 Citation VII	MR/LR	10183	9072	0,89
Cessna 750 Citation X	LR	16011	14424	0,90
Dassault Falcon 2000	LR	16238	14970	0,92
Dassault Falcon 50EX	LR	18007	16200	0,90
Dassault Falcon 900B	LR	20640	19050	0,92
Galaxy Aerospace "Galaxy"	LR	15173	12474	0,82
Gulfstream V	LR	40370	32659	0,81
Raytheon Hawker 1000	LR	14060	11340	0,81
Sino-Swearingen SJ30-2	SR/MR	5579	5303	0,95
VisionAire VA-10 Vantage	SR	3538	3175	0,90

Tabelle A.13 Werte für die Tabelle 3.2 - Business Jets

• Die Einsatzklassifikation ist **Kreuzer 1999** entnommen und hat folgende Bedeutung:

- SR (Short Range) Kurzstrecke
- MR (Medium Range) Mittelstrecke
- LR (Long Range) Langstrecke
- Die maximale- Landemasse und Startmasse ist Jane's entnommen

Flugzeugkate-	Flugzeugtyp	Triebwerke	Anzahl der	Standschub
qorie	0 0 0 0		Triebwerke	pro Triebwerk
5				kN
Passagierflug-	A 300-600	CF6-80C2A1/A5 oder	2	275
zeuge mit Strahl-		PW4156/4158		
triebwerken			_	
	A 310	CF6-80C2A2 oder	2	250-264
	A 040	PW4152s	0	05.00
	A 318		2	85-90
	A 319	IAE V2500-A6	2	98-104
	A 320	CFM56-5A1 oder V2500-A5	2	110-119
	A 321	CFM56-5B2 oder	2	138
	A 330	GE90/PW4000 oder	2	300-317
		R/R Trent 700	-	000 011
	A 340-300	CFM56-5C4	4	151
	A 340-600	R/R Trent 556	4	249
	B 717-200	BMW/R/R BR.715	2	95
	B 737-300	CFM56-3C-1	2	89-98
	B 737-400	CFM56-3C-1	2	98-104.5
	B 737-500	CFM56-3C-1	2	82-89
	B 737-600	CFM56-7B	2	98
	B 737-700	CFM56-7B	2	106,8
	B 737-800	CFM56-7B	2	116,5
	B 747-400	R/R RB211-524G	4	260
	B 757-200	R/R 535C	2	166,4
	B 767-200	CF6-80A	2	222-276
	B 767-300	CF6-80C2B2	2	234
	B 777-200	PW4077 oder GE90-76B	2	329-342
		oder RR Trent 877		
	B 777-300	R/R Trent 884 oder	2	374-400
		PW 4090		
	BAC-Airstar 2500	R/R Tay Mk 650-14	2	67,2
	BAe 146-300	Avco Lycoming ALF502R-5	4	29
	Canadair Regional Jet	GE CF34-3B1	2	41
	EMB-145	Allisson AE 3007A	2	31,3
	Fairchild Dornier 328Jet	PW306B	2	26,9
	Fokker 100	R/R Tay Mk 620	2	61,1
	Fokker 70	R/R Tay Mk 620	2	61,6
	liyushin IL-96-300	Aviadvigatel PS-90A	4	156,9
	MD 87	J18D-217Cs	2	89
	MD 82	J18D-21/s	2	89
		JI8D-219S	2	93,4
	MD 90-30	IAE V2525-D5	2	111,2
	MD 90-50/55	IAE V2528-D5	2	124,5
	MD-11	PW4460 oder PW4462	3	267-276

 Tabelle A.14
 Verwendete Triebwerke der Flugzeugtypen der drei Kategorien (Jane's)

		oder CF6-80C2D1F		
	Tu-204-220	R/R RB211-535E4	2	191.7
	Yak-142	ZMKB Progress D-36	3	63.74
Passagierflug-	Airtech CN-235	GE CT7-9C	2	1.305
zeuge mit Pro-				,
pellerturbinen				
	Antonov An-140	Klimov TV3-117VMA-SB2	2	1,59
	Antonov An-38-100	Omsk MKB 'Mars' TVD-20	2	1,029
	ATR 42	Pratt & Whitney PW120	2	1,342
	ATR 72	Pratt & Whitney PW124B	2	1,79
	BAe ATP/Jetstream 61	Pratt & Whitney PW127D	2	2,0512
	BAe Jetstream 41	AlliedSignal TPE331-14GR/HR	2	1,23
	DHC-8 100/200	Pratt & Whitney PW123C	2	1.603
	DHC-8 400	Pratt & Whitney PW150	2	3 602
	EMB-120ER	Pratt & Whitney PW118	2	1 342
	Eairchild Dornier 228	AlliedSignal	2	0.579
		TPE331-5-252D	-	0,010
	Fairchild Dornier 328	Pratt & Whitney PW119B	2	1,625
	Fairchild METRO 23	AlliedSignal	2	0,746
		TPE331-11U-620G		
	Fokker 50	Pratt & Whitney PW125B	2	1,864
	Ilyushin IL-114	Klimov TV7-117	2	1,839
	IPTN N-250	Allison AE 2100C	2	2,386
	LET L-610	GE CT7-9D	2	1,305
	Raytheon Beech 1900D	Pratt & Whitney PT6A-67D	2	0,954
	Saab 2000	Allison AE 2100A	2	3,096
	Saab 340B	GE CT7-9B	2	1,305
Business Jets	Astra SPX	AlliedSignal TFE731-3C-200G	2	16,46
	Bombardier Glo-	BMW R/R BR710-48-C2	2	65,3
	bal Express			
	Bombardier/Canadair Challenger	GE CF34-3B1	2	41
	Bombardier/Learjet 45	AlliedSignal TFE731-20	2	15,57
	Bombardier/Learjet 60	Pratt & Whitney PW305	2	20,46
	Cessna	Pratt & Whitney PW545A	2	16,19
	560 Citation Excel			,
	Cessna 650 Citation VII	AlliedSignal TFE731-4R-2S	2	18,15
	Cessna 750 Citation X	Allisson AE 3007C	2	28,47
	Dassault Falcon 2000	GE/AlliedSignal CFE738	2	26,7
	Dassault Falcon 50EX	AlliedSignal TFE731-40	3	16,46
	Dassault Falcon 900B	AlliedSignal	3	21,13
	Galaxy Aerospace	Pratt & Whitney PW306A	2	25,4
		BMW/ R/R BR710-48	2	65 G
	Raytheon Hawker 1000	Dratt & Whitney DW/2058	∠ 2	00,00
	Sino-Swearingen S 120 2	Williame-Rolle F 144-20	∠ 2	20,10 10.02
	VisionAire VA-10 Vantage	• PW .IT15D-5	<u>ح</u> 1	12 0
	I violoni ino vi vi no vantage		1	12,3

Bei Passagierflugzeugen mit Propellerturbinen ist die Angabe des Standschubes pro Triebwerk in kW zu verstehen.

Flugzeugtyp	D_n	D_h	$D_{e\!f}$	l_n	$\boldsymbol{b} \cdot \boldsymbol{l}_n$	D_{g}	D_{eg}	l_{g}	D_p	l_p	S_N
	т	т	т	т	т	т	т	т	т	т	m²
A 300-600	2,63	2,17	2,37	4,07	1,97	1,97	0,99	2,17	0,79	0,66	45,06
A 310	2,54	2,08	2,19	4,39	1,96	1,91	0,87	2,14	-	-	44,28
A 318											
A 319	2,18	1,5	1,63	3,27	1,45	1,27	1,13	0,64	0,68	1	24,52
A 320	2,34	1,57	1,86	3,48	1,24	1,43	0,95	[′] 1	0,33	0,2	27,95
A 321	2,17	1,57	1,84	3,25	1,19	1,41	0,65	1,68	-	-	27,15
A 330	2,68	2,28	2,21	4,18	1,5	1,73	1,18	1,81	0,71	1,26	44,30
A 340-300	2,22	1,75	1,35	4,92	1,75	-	-	-	-	-	30,58
A 340-600											
B 717-200	1,75	1,29	0,96	6,52	3,08	-	-	-	-	-	31,68
B 737-300	1,86	1,32	1,42	3,13	1,32	1,22	0,88	0,63	0,44	0,98	20,11
B 737-400	1,86	1,32	1,42	3,13	1,32	1,22	0,88	0,63	0,44	0,98	20,11
B 737-500	1,86	1,32	1,42	3,13	1,32	1,22	0,88	0,63	0,44	0,98	20,11
B 737-600	2,03	1,65	1,65	3,95	1,54	1,1	0,6	0,71	0,27	0,49	26,25
B 737-700	2,03	1,65	1,65	3,95	1,54	1,1	0,6	0,71	0,27	0,49	26,25
B 737-800	2,03	1,65	1,65	3,95	1,54	1,1	0,6	0,71	0,27	0,49	26,25
B 747-400	2.83	2.21	2.39	3.45	1.51	1.86	1.33	2.39	<i>.</i> -	-	41.82
B 757-200	2.61	[′] 2	1.88	4.24	1.64	1.33	0.79	0.97	-	-	35.55
B 767-200	2.78	2.38	2.25	3,44	1.26	1.72	1.06	2.85	-	-	41.98
B 767-300	3.02	2.57	2.57	3.91	1.51	1.95	1.15	3.28	-	-	52.96
B 777-200	3.95	3.04	3.19	4.87	2.13	2.28	1.44	1.44	1	1.14	68.69
B 777-300		• • •	-, -				<i>,</i>	<i>.</i>		,	,
BAC	1.85	1.03	0.91	5.13	1.7	-	-	-	-	-	25.07
Airstar 2500	,	,	- , -	- , -	,						-,-
BAe 146-300	1,5	0,93	1	2,35	0,89	0,73	0,42	0,58	0,31	0,12	11,13
Canadair	1,48	0,9	1,16	2,39	0,97	0,97	0,48	1,52	-	-	14,09
Regional Jet											
EMB-145	1,64	1	0,85	4,02	1,47	-	-	-	-	-	17,70
Fairchild Dornier											
328Jet	. –			_							
Fokker 100	1,7	1,18	0,96	5	1,7	-	-	-	-	-	23,26
Fokker 70	1,7	1,18	0,96	5	1,7	-	-	-	-	-	23,26
Ilyushin	2,24	2	1,52	6,17	2,24	-	-	-	-	-	39,85
IL-96-300	1 00	4 00	0.00	c 20	2.05						22.20
	1,88	1,22	0,89	0,30	3,05	-	-	-	-	-	32,38
MD 82	2	1,41	0,96	6,36	2,66	-	-	-	-	-	34,39
MD 83	2	1,41	0,96	6,36	2,66	-	-	-	-	-	34,39
MD 90-30	2,63	1,//	1,39	5,95	2,25	-	-	-	-	-	42,47
IVID 90-50/55	2,63	1,//	1,39	5,95	2,25	-	-	-	-	-	42,47
MD-11 T 004 000	2,93	2,14	2,45	4,27	2,14	1,74	1,03	1,9	0,63	1,34	47,93
Tu-204-220	2,41	1,79	1,29	5,71	2,01	-	-	-	-	-	37,58
Yak-142	2,02	1,45	1,71	3,02	1,31	1,18	0,83	1,67	0,26	0,88	24,15

 Tabelle A.15
 Werte f
 ür die Gleichungen (4.6) bis (4.8) und f
 ür das Bild 4.2 - Passagierflugzeuge mit Strahltriebwerken

Die Werte sind aus Dreiseitenansichten abgelesen.

Flugzeugtyp	D_n	D_{h}	$D_{e\!f}$	l_n	$\boldsymbol{b} \cdot \boldsymbol{l}_n$	S_N
	т	т	т	т	т	m²
Astra SPX	0,91	0,74	0,48	3,11	1	7,74
Bombardier Global Express	1,97	1,28	1	5,3	2,16	28,19
Bombardier/Canadair Challenger						
Bombardier/Learjet 45	0,71	0,61	0,47	2,91	1,57	6,01
Bombardier/Learjet 60	1,07	0,75	0,68	3,16	2	9,62
Cessna 560 Citation Excel						
Cessna 650 Citation VII	1,02	0,68	0,51	2,76	0,93	7,54
Cessna 750 Citation X	1,3	0,82	0,82	4,8	2,34	17,40
Dassault Falcon 2000	1,26	0,88	0,77	3,63	1,2	12,67
Dassault Falcon 50EX	1	0,68	0,51	2,57	0,75	6,88
Dassault Falcon 900B	1,08	0,73	0,63	3	0,95	8,88
Galaxy Aerospace "Galaxy"	1,31	0,98	0,67	3,59	1,31	12,79
Gulfstream V	1,63	1,15	0,9	5,07	1,73	22,56
Raytheon Hawker 1000	1	0,68	0,6	2,84	1,38	7,92
Sino-Swearingen SJ30-2	0,85	0,5	0,45	2,34	0,87	5,35
VisionAire VA-10 Vantage	-	-	-	-	-	-

 Tabelle A.16
 Werte f

 Gleichungen (4.6) bis (4.8) und f

 Gleichungen (4.6) bis (4.8) und f

Die Werte sind aus Dreiseitenansichten abgelesen.

Flugzeugkategorie	Flugzeugtyp	S_{W}	S_{H}	$\overline{S_V}$	\overline{d}_{F}	l_F	$\overline{l_F}$	$S_H + S_V$
		<i>m</i> ²	m²	m²	т	т	$\overline{d_F}$	S_W
Passagierflugzeuge	A 300-600	260	52,9	46	5,64	53,3	9,45	0,38
	A 310	219	52.9	46	5 64	45 13	8 00	0 45
	A 318	122.6	02,0	10	3.95	31 45*	7,96	0,10
	A 319	122.4	31*	21.5*	3.95	33.8*	8.56	0.43
	A 320	122.4	31*	21.5*	3.95	37.57*	9.51	0.43
	A 321	122.4	31*	21.5*	3.95	44.51*	11.27	0.43
	A 330	363.1	61.8	50.7	5.64	62.9*	11.15	0.31
	A 340-300	363,1	61,8	50,7	5,64	62,9*	11,15	0,31
	A 340-600	437	61,8	50,7	5,64	74,4*	13,19	0,26
	B 717-200	92,97	30,6*	21,5*	3,61	34,2*	9,47	0,56
	B 737-300	105,4	31,31	20,1	3,75	32,2*	8,59	0,49
	B 737-400	105,4	31,31	20,1	3,75	35,2*	9,39	0,49
	B 737-500	105,4	31,31	20,1	3,75	29,8*	7,95	0,49
	B 737-600	125	28,8*	28,8*	3,75	30*	8,00	0,46
	B 737-700	125	28,8*	28,8*	3,75	32,4*	8,64	0,46
	B 737-800	125	28,8*	28,8*	3,75	38,2*	10,19	0,46
	B 747-400	524,9	112,2*	86*	6,5	68,63	10,56	0,38
	B 757-200	185,25	42,4*	37,6*	3,75	46,96	12,52	0,43
	B 767-200	283,3	67,9*	53,5*	5,03	47,24	9,39	0,43
	B 767-300	283,3	67,9*	53,5*	5,03	53,67	10,67	0,43
	B 777-200	427,8	101,26	53,23	6,2	62,78	10,13	0,36
	B 777-300	427,8	101,26	53,23	6,2	72,91	11,76	0,36
	BAC-Airstar 2500	95,78	17,43	11,7	3,4	29,67	8,73	0,30

 Tabelle A.17
 Werte der Flugzeugtypen für die Tabelle 4.1 und für das Bild 4.3 der drei Flugzeugkategorien

	BAe 146-300	77,3	15,61	21,8	3,56	28,9*	8,12	0,48
	Canadair Regio-	54.54	9.44	8.9	2.69	24.38	9.06	0.34
	nal Jet	- ,-	-)	- , -	,	,	-,	- , -
	EMB-145	51,18	10,4*	9,1*	2,28	27,93	12,25	0,38
	Fairchild Dornier	41,5	9,03	31,1	2,42	20,92	8,64	0,97
	328Jet							
	Fokker 100	93,5	17,76	13,8	3,3	32,5	9,85	0,34
	Fokker 70	93,5	17,76	13,8	3,3	27,88	8,45	0,34
	Ilyushin IL-96-300	391,6	96,5	61	6,08	51,15	8,41	0,40
	MD 87	115,1	30,4	22,4	3,61	36,3	10,06	0,46
	MD 82	115,1	29,17	22,4	3,61	41,3	11,44	0,45
	MD 83	115,1	29,17	22,4	3,61	41,3	11,44	0,45
	MD 90-30	112,3	28,5*	22,1*	3,61	43,03	11,92	0,45
	MD 90-50/55	112,3	28,5*	22,1*	3,61	43,03	11,92	0,45
	MD-11	338,9	85,47	56,21	6,02	58,65	9,74	0,42
	Tu-204-220	182,4	35,2*	31,7*	3,95	44,5*	11,27	0,37
	Yak-142	150	27,6	23,29	3,8	32,9*	8,66	0,34
Passagierflugzeuge	Airtech CN-235	59,1	25,4	11,38	2,76	21,2*	7,68	0,62
mit Propellerturbinen		,	,	,	,	,	,	,
	Antonov An-140	55						
	Antonov	39,7	6,9*	9*	2,05	14,3*		0,40
	An-38-100							
	ATR 42	54,5	11,73	14	2,865	22,67*	7,91	0,47
	ATR 72	61	11,73	14	2,865	27,17*	9,48	0,42
	Bae	78,32	21*	13,1*	2,6	25,7*		0,44
	ATP/Jetstream 61							
	BAe Jetstream 41	32,59	8,58	7,6*	1,98	18,1*	9,14	0,50
	DHC-8 100/200	54,35	8,97	9,81	2,69	21*	7,81	0,35
	DHC-8 400	63,08	14,12	13,93	2,69	31*	11,52	0,44
	EMB-120ER	39,43	6,1	5,74	2,28	18,73	8,21	0,30
	Fairchild Dornier	32	8,33	4,5	2,04	15,9*	7,79	0,40
	Fairchild Dornier	40	9.03	31.1	2.42	20.92	8.64	1.00
	Do 328				_,			.,
	Fairchild METRO 23	28,71	5,08	4,3	1,51	17,5*	11,59	0,33
	Fokker 50	70	17 4*	16.3*	27	25 25*	9 35	0 48
	Ilvushin II -114	76	17.9*	15.8*	2.86	26.2	9 16	0 44
	IPTN N-250	65	16 31	14 72	2.00	25 25	8 71	0.48
	I FT I -610	56	8.07	8 46	2,3	20,20	7 60	0,40
	Ravtheon	28.8	6 32	4 86	1 01	16.5*	8 64	0,00
	Beech 1900D	20,0	0,52	4,00	1,31	10,5	0,04	0,55
	Saab 2000	55.74	18.35	13.01	2.31	27.28*	11.81	0.56
	Saab 340B	41 81	11 28	9.8	2 31	19 73*	8 54	0,50
Business Jets	Astra SPX	29.4	6.7*	5*	1 74	16.3*	9.37	0.40
	Bombardier	94 95	21 4*	13.4*	2 92	26.2*	8 97	0,10
	Global Express	01,00	21,1	10,1	2,02	20,2	0,01	0,07
	Bombardier/Can.	48,31	6,45	5,8	2,69	18*	6,69	0,25
	Challenger							
	Bombardier	26,3	6,1	5,6	1,61	16,6*	10,31	0,44
	Bombardier	24.55	5.1	6.7	1.92	17.02	8.86	0.48
	Learjet 60	,	- , -	- , -	,	,	-,	, . ··
	Cessna	34,35	7,88	4,73	1,95	15,24	7,82	0,37
	Cessna	28.99	6.26	6.04	18	14.9*	8.28	0 42
	650 Citation VII	_0,00	0,20	5,54	.,0	,0	0,20	J,7Z

Cessna	48,96	11,15	10,31	2,23	17,8*	7,98	0,44
750 Citation X							
Dassault	49,02	12,7	9,5	2,5	19,7*	7,88	0,45
Falcon 2000							
Dassault	46,83	13,35	9,82	2,11	17,66	8,37	0,49
Falcon 50EX							
Dassault	49	13,35	9,82	2,5	19,3*	7,72	0,47
Falcon 900B							
Galaxy Aerospace	34,28	6,8*	5,5*	2	18,6*	9,30	0,36
"Galaxy"							
Gulfstream V	105,63	23,3	12,9	2,4	26,3*	10,96	0,34
Raytheon	34,75	9,29	6,5	1,93	14,4*	7,46	0,45
Hawker 1000							
Sino-Swearingen	15,33	3,41	4	1,65	12,7*	7,70	0,48
SJ30-2							
VisionAire	20,55	5	4,52	1,71	11,3*	6,61	0,46
VA-10 Vantage							

Alle Daten sind **Jane's** entnommen. Ausnahme sind die mit einem "*" gekennzeichneten Daten, die aus Dreiseitenansichten abgelesen wurden.

$\frac{d_F^2}{S_W}$	$f\left(\frac{d_F^2}{S_W} \mid \boldsymbol{m}, \boldsymbol{S}\right)$
0,07	3,696604406
0,075	5,1817537
0,08	6,957559791
0,085	8,948361487
0,09	11,02393095
0,095	13,00875818
0,1	14,70420634
0,105	15,92039094
0,11	16,5109575
0,115	16,40201416
0,12	15,60732584
0,125	14,22545623
0,13	12,41967702
0,135	10,38629831
0,14	8,319891707
0,145	6,383824613
0,15	4,691920144
0,155	3,303137623
0,16	2,227455914
0,165	1,438791811

 Tabelle A.18
 Werte f
 ür die Normalverteilung der Passagierflugzeuge mit Strahltriebwerken

	I = I = W				
Nr. der Klasse j	Klasse d_F^2	Besetzungszahl n _j Anzahl	Aufsummierte Beset- zungszahl B_j	$100 \cdot \frac{n_j}{n} = h_j$	Häufigkeits- summe H_j
	S_{W}		Anzahl	%	%
1	0,07 <x<=0,09< td=""><td>7</td><td>7</td><td>28</td><td>28</td></x<=0,09<>	7	7	28	28
2	0,09 <x<=0,11< td=""><td>4</td><td>11</td><td>16</td><td>44</td></x<=0,11<>	4	11	16	44
3	0,11 <x<=0,13< td=""><td>8</td><td>19</td><td>32</td><td>76</td></x<=0,13<>	8	19	32	76
4	0,13 <x<=0,15< td=""><td>5</td><td>24</td><td>20</td><td>96</td></x<=0,15<>	5	24	20	96
5	0,15 <x<=0,17< td=""><td>1</td><td>25</td><td>4</td><td>100</td></x<=0,17<>	1	25	4	100
Insgesar	nt	25	Х	100	Х

Tabelle A.19Häufigkeitstabelle der Passagierflugzeuge mit Strahltriebwerken - Merkmalswert d_F^2/S_W

 Tabelle A.20
 Werte f
 ür die Normalverteilung der Passagierflugzeuge mit Propellerturbinen

$\frac{d_F^2}{S_W}$	$f\left(\frac{d_F^2}{S_W}\mid \boldsymbol{m}, \boldsymbol{S}\right)$
0,07	0,682706792
0,075	1,303487067
0,08	2,325554669
0,085	3,876981278
0,09	6,039600019
0,095	8,791641602
0,1	11,95856578
0,105	15,19971838
0,11	18,05258132
0,115	20,03504868
0,12	20,77728598
0,125	20,13420827
0,13	18,23171904
0,135	15,4265214
0,14	12,19707561
0,145	9,011368501
0,15	6,221184866
0,155	4,013310743
0,16	2,419244665
0,165	1,362712125

	I = I = V				
Nr. der	Klasse	Besetzungszahl	Aufsummierte Beset-	$100.\frac{n_j}{k} - h$	Häufigkeits-
Klasse j	d_F^2	n_{j}	zungszahl B_j	$\frac{100}{n} - n_j$	summe H_{j}
	S_{W}	Anzahl	Anzahl	%	%
1	0,07 <x<=0,09< td=""><td>2</td><td>2</td><td>10,52631579</td><td>10,52631579</td></x<=0,09<>	2	2	10,52631579	10,52631579
2	0,09 <x<=0,11< td=""><td>4</td><td>6</td><td>21,05263158</td><td>31,57894737</td></x<=0,11<>	4	6	21,05263158	31,57894737
3	0,11 <x<=0,13< td=""><td>6</td><td>12</td><td>31,57894737</td><td>63,15789474</td></x<=0,13<>	6	12	31,57894737	63,15789474
4	0,13 <x<=0,15< td=""><td>6</td><td>18</td><td>31,57894737</td><td>94,73684211</td></x<=0,15<>	6	18	31,57894737	94,73684211
5	0,15 <x<=0,17< td=""><td>1</td><td>19</td><td>5,263157895</td><td>100</td></x<=0,17<>	1	19	5,263157895	100
Insgesar	mt	19	X	100	X
-					

Tabelle A.21Häufigkeitstabelle der Passagierflugzeuge mit Propellerturbinen - Merkmalswert d_F^2/S_W

Tabelle A.22 Werte für die Normalverteilung der Business Jets

$\frac{d_F^2}{S_W}$	$f\left(\frac{d_F^2}{S_W}\mid m, s\right)$
0,05	1,052328125
0,0565	1,69303241
0,063	2,593885899
0,0695	3,784495269
0,076	5,258193537
0,0825	6,957234941
0,089	8,766137408
0,0955	10,51844112
0,102	12,01893506
0,1085	13,07832421
0,115	13,55219717
0,1215	13,37330736
0,128	12,5672265
0,1345	11,24634912
0,141	9,584184855
0,1475	7,778042361
0,154	6,011141187
0,1605	4,423999357
0,167	3,100592439
0,1735	2,069406526

Tabelle A.23Häufigkeitstabelle der Business Jets - Merkmalswert d_F^2/S_W

Nr. der Klasse j	Klasse d_F^2	Besetzungszahl n _j Anzahl	Aufsummierte Beset- zungszahl B_j	100 nj/n= hj %	Häufigkeits- summe H_j
	S_{W}		Anzahl		%
1	0,05 <x<=0,0825< td=""><td>1</td><td>1</td><td>6,25</td><td>6,25</td></x<=0,0825<>	1	1	6,25	6,25
2	0,0825 <x<=0,115< td=""><td>8</td><td>9</td><td>50</td><td>56,25</td></x<=0,115<>	8	9	50	56,25
3	0,115 <x<=0,1475< td=""><td>4</td><td>13</td><td>25</td><td>81,25</td></x<=0,1475<>	4	13	25	81,25
4	0,1475 <x<=0,18< td=""><td>3</td><td>16</td><td>18,75</td><td>100</td></x<=0,18<>	3	16	18,75	100
Insgesam	t	16	Х	100	х

Nr. der Klasse j	Klasse $\frac{d_F^2}{S_W}$	Besetzungszahl n _j Anzahl	Aufsummierte Beset- zungszahl B _j Anzahl	$100 \cdot \frac{n_j}{n} = h_j$ %	Häufigkeits- summe H _j %
1	0,05 <x<=0,07< td=""><td>1</td><td>1</td><td>1,67</td><td>1,67</td></x<=0,07<>	1	1	1,67	1,67
2	0,07 <x<=0,09< td=""><td>10</td><td>11</td><td>16,67</td><td>18,33</td></x<=0,09<>	10	11	16,67	18,33
3	0,09 <x<=0,11< td=""><td>13</td><td>24</td><td>21,67</td><td>40,00</td></x<=0,11<>	13	24	21,67	40,00
4	0,11 <x<=0,13< td=""><td>19</td><td>43</td><td>31,67</td><td>71,67</td></x<=0,13<>	19	43	31,67	71,67
5	0,13 <x<=0,15< td=""><td>13</td><td>56</td><td>21,67</td><td>93,33</td></x<=0,15<>	13	56	21,67	93,33
6	0,15 <x<=0,17< td=""><td>3</td><td>59</td><td>5,00</td><td>98,33</td></x<=0,17<>	3	59	5,00	98,33
7	0,17 <x<=0,19< td=""><td>1</td><td>60</td><td>1,67</td><td>100,00</td></x<=0,19<>	1	60	1,67	100,00
Insgesam	nt	60	Х	100,00	х

Tabelle A.24Häufigkeitstabelle für alle Flugzeuge- Merkmalswert d_F^2/S_W

 Tabelle A.25
 Werte der Flugzeugtypen f
 ür Bild 4.10 und Bild 4.11 der drei Kategorien

Flugzeugkategorie	Flugzeugtyp	S_{W}	l_F	$S_{\scriptscriptstyle wet, Torenbeek}$	$S_{\scriptscriptstyle wet, Loftin}$	$S_{\scriptscriptstyle wet, Loftin}$
		т²	т	Rumpf	Rumpf	<i>m</i> ²
				101		
Passagierflugzeuge mit Strahltriebwerken	A 300-600	260	53,3	814,97	844,47	1652,38
	A 310	219	45,13	670,43	699,71	1424,07
	A 318	122,6	31,45*	326,90	341,26	
	A 319	122,4	33,8*	356,02	370,42	769,26
	A 320	122,4	37,57*	402,73	417,20	822,90
	A 321	122,4	44,51*	488,70	503,32	907,41
	A 330	363,1	62,9*	984,77	1014,57	2054,36
	A 340-300	363,1	62,9*	984,77	1014,57	2088,07
	A 340-600	437	74,4*	1188,19	1218,33	
	B 717-200	92,97	34,2*	334,84	346,93	700,43
	B 737-300	105,4	32,2*	322,19	335,17	689,01
	B 737-400	105,4	35,2*	357,48	370,51	724,36
	B 737-500	105,4	29,8*	293,95	306,89	660,74
	B 737-600	125	30*	296,31	309,25	726,95
	B 737-700	125	32,4*	324,54	337,52	755,22
	B 737-800	125	38,2*	392,76	405,85	823,55
	B 747-400	524,9	68,63	х	Х	Х
	B 757-200	185,25	46,96	495,78	509,06	1110,65
	B 767-200	283,3	47,24	643,56	667,01	1560,36
	B 767-300	283,3	53,67	744,99	768,62	1683,95
	B 777-200	427,8	62,78	1066,27	1102,06	2404,03
	B 777-300	427,8	72,91	1263,24	1299,37	
	BAC-Airstar 2500	95,78	29,67	269,93	280,60	580,56
	BAe 146-300	77,3	28,9*	271,73	283,40	557,35
	Canadair Regional Jet	54,54	24,38	176,61	183,30	357,24
	EMB-145	51,18	27,93	178,83	183,73	360,48
	Fairchild Dornier 328Jet	41,5	20,92	135,24	140,65	
	Fokker 100	93,5	32,5	292,60	302,72	599,36
	Fokker 70	93,5	27,88	244,78	254,83	551,47
	Ilyushin IL-96-300	391,6	51,15	826,79	860,88	2118,48
	MD 87	115,1	36,3	358,62	370,74	771,30

	MD 82	115,1	41,3	415,22	427,45	829,56
	MD 83	115,1	41,3	415,22	427,45	829,56
	MD 90-30	112,3	43,03	434,81	447,07	857,80
	MD 90-50/55	112,3	43,03	434,81	447,07	857,80
	MD-11	338,9	58,65	961,70	995,36	2100,31
	Tu-204-220	182,4	44,5*	488,57	503,20	1076,97
	Yak-142	150	32,9*	334,07	347,40	821,64
Passagierflugzeuge	Airtech CN-235	59,1	21,2*	152,89	159,89	
mit Propellerturbinen						
	Antonov An-140	55				
	Antonov An-38-100	39,7	14,3*	Х	Х	
	ATR 42	54,5	22,67*	170,71	178,26	
	ATR 72	61	27,17*	211,15	218,76	
	BAe ATP/Jetstream 61	78,32	25,7*			
	BAe Jetstream 41	32,59	18,1*	96,64	100,27	
	DHC-8 100/200	54,35	21*	148,08	154,74	
	DHC-8 400	63,08	31*	232,45	239,24	
	EMB-120ER	39,43	18,73	113,04	117,83	
	Fairchild Dornier 228	32	15,9*	х	Х	
	Fairchild Dornier 328	40	20,92	135,24	140,65	
	Fairchild METRO 23	28,71	17,5*	73,71	75,85	
	Fokker 50	70	25,25*	184,52	191,28	
	Ilyushin IL-114	76	26,2	202,14	209,71	
	IPTN N-250	65	25,25	195,86	203,62	
	LET L-610	56	20,53	144,54	151,24	
	Raytheon Beech 1900D	28,8	16,5*	x	X	
	Saab 2000	55,74	27,28*	176,19	181,21	
	Saab 340B	41,81	19,73*	121,50	126,42	
Business Jets	Astra SPX	29,4	16,3*	76,78	79,59	177,26
	Bombardier	94,95	26,2*	205,67	213,56	529,45
	Global Express		-		-	
	Bombardier/Canadair	48,31	18*	122,73	129,38	
	Challenger	26.2	16.6*	72.40	75.00	162.04
	Bombardier/Learjet 45	20,3	10,0	73,40	10,02	100,04
		24,00	17,02	07,07	91,00	103,02
	560 Citation Excel	34,35	15,24	11,92	01,42	•
	Cessna 650 Citation VII	28 99	14 9*	71 09	74 08	171 74
	Cessna 750 Citation X	48.96	17.8*	104 50	109.08	284 72
	Dassault Falcon 2000	49.02	19.7*	129 34	135.00	302.88
	Dassault Falcon 50EX	46.83	17 66	98.97	103.08	263 71
	Dassault Falcon 900B	40,00 40	10.3*	126.20	131 95	302.02
	Galaxy Aerospace	34 28	18.6*	100.60	101,00	223 04
	"Galaxy"	54,20	10,0	100,00	104,50	220,04
	Gulfstream V	105,63	26,3*	174,81	180,20	508,99
	Raytheon Hawker 1000	34,75	14,4*	72,19	75,61	192,53
	Sino-Swearingen	15,33	12,7*	54,78	57,28	113,45
	VisionAire	20,55	11,3*	48,83	51,52	
	VA-10 Vantage					

• S_w und l_F sind **Jane's** entnommen. Ausnahmen bilden die mit einem "*" gekennzeichneten Werte, die aus Dreiseitenansichten abgelesen wurden.

• Die benetzten Flächen werden nach Gleichungen berechnet, die dem Kapitel zu entnehmen sind.

CG	f(CG m , s)
0,14	1,333421591
0,15	1,723901034
0,16	2,176644137
0,17	2,684063501
0,18	3,232424541
0,19	3,801843699
0,2	4,367072229
0,21	4,899104978
0,22	5,367516278
0,23	5,743283423
0,24	6,001742812
0,25	6,125263375
0,26	6,105235311
0,27	5,943062554
0,28	5,650000021
0,29	5,245861875
0,3	4,737138472
0,31	4,212543677
0,32	3,643372537
0,33	3,077464118
0,34	2,538707519
0,35	2,045326261
0,36	1,609321353
0,37	1,236668238
0,38	0,928098122
0,39	0,68024418
0,4	0,486929436
0,41	0,340406213

 Tabelle A.26
 Werte der Normalverteilung für Bild 5.7 - Schwerpunktlage

Tabelle A.27 Häufigkeitstabelle für Bild 5.7 - Merkmalswert CG

Nr. der Klasse j	Klasse CG MAC	Klasse Besetzungszahl Aufsum CG n _j setzung		$100 \cdot \frac{n_j}{n} = h_j$	Häufigkeits- summe H_{j}	
	MAC	Anzahl	Anzahl Anzahl		%	
1	0,15 <x<=0,21< td=""><td>3</td><td>3</td><td>23,08</td><td>23,08</td></x<=0,21<>	3	3	23,08	23,08	
2	0,21 <x<=0,27< td=""><td>5</td><td>8</td><td>38,46</td><td>61,54</td></x<=0,27<>	5	8	38,46	61,54	
3	0,27 <x<=0,33< td=""><td>4</td><td>12</td><td>30,76</td><td>92,31</td></x<=0,33<>	4	12	30,76	92,31	
4	0,33 <x<=0,39< td=""><td>1</td><td>13</td><td>7,69</td><td>100</td></x<=0,39<>	1	13	7,69	100	
Insgesar	nt	13	Х	100	х	

Flugzeugkategorie	Flugzeugtyp	n _{PAX}	d_{F}	l _{cabin}	n _{sa}	l_F	n _{PAX}	l_F	$\sqrt{n_{PAX}}$
			т	т		т	$\overline{n_{SA}}$	$\overline{d_F}$	V IIII
Passagierflugzeuge	A 300-600	308	5,64	40,21	9	53,3	34,22	9,45	17,55
mit Strahltriebwer-									
Kell	A 310	260	5.64	33.24	9	45.13	28.89	8.00	16.12
	A 318	117	3.95	21.4	6	31.45*	19.50	7.96	10.82
	A 319	142	3.95	23.78	6	33.8*	23.67	8.56	11.92
	A 320	179	3.95	27.38	6	37.57*	29.83	9.51	13.38
	A 321	212	3.95	34.39	6	44.51*	35.33	11.27	14.56
	A 330	412	5.64	45.5	9	62.9*	45.78	11.15	20.30
	A 340-300	420	5,64	45,5	9	62,9*	46,67	11,15	20,49
	A 340-600	382	5.64	-,-	9	74.4*	42.44	13,19	19.54
	B 717-200	106	3.61		5	34.2*	21.20	9.47	10.30
	B 737-300	149	3.75	24.18	6	32.2*	24.83	8.59	12.21
	B 737-400	149	3.75	27.6	6	35.2*	24.83	9.39	12.21
	B 737-500	132	3.75	21.79	6	29.8*	22.00	7.95	11.49
	B 737-600	132	3.75	21.79	6	30*	22.00	8.00	11.49
	B 737-700	149	3.75	24.18	6	32.4*	24.83	8.64	12.21
	B 737-800	189	3.75	21.79	6	38.2*	31.50	10.19	13.75
	B 747-400	496	6.5	57	10	68.63	x	10.56	22.27
	B 757-200	239	3.75	36.09	6	46.96	39.83	12.52	15.46
	B 767-200	255	5.03	33.93	7	47.24	36.43	9.39	15.97
	B 767-300	316	5.03	40.36	7	53.67	45.14	10.67	17.78
	B 777-200	375	62	48.97	10	62 78	37 50	10 13	19.36
	B 777-300	478	6.2	60.02	10	72.91	47 80	11 76	21.86
	BAC-Airstar 2500	115	3.4	21 44	5	29.67	23.00	8 73	10 72
	BAe 146-300	122	3 56	20.2	6	28.9*	20.33	8 12	11 05
	Canadair		2 69	14 76	4	24.38	12 50	9.06	7 07
	Regional Jet	00	2,00	,. 0	•	21,00	.2,00	0,00	1,01
	EMB-145	50	2,28	16,49	3	27,93	16,67	12,25	7,07
	Fairchild Dornier 328Jet	34	2,42	10,27	3	20,92	11,33	8,64	5,83
	Fokker 100	109	3,3	21,19	5	32,5	21,80	9,85	10,44
	Fokker 70	79	3,3	16,57	5	27,88	15,80	8,45	8,89
	Ilyushin IL-96-300	270	6,08		9	51,15	30,00	8,41	16,43
	MD 87	130	3,61	30,78	5	36,3	26,00	10,06	11,40
	MD 82	138	3,61	37,35	5	41,3	27,60	11,44	11,75
	MD 83	172	3,61	37,35	5	41,3	34,40	11,44	13,11
	MD 90-30	178	3,61		5	43,03	35,60	11,92	13,34
	MD 90-50/55	178	3,61		5	43,03	35,60	11,92	13,34
	MD-11	398	6,02	46,51	9	58,65	44,22	9,74	19,95
	Tu-204-220	214	3,95	30,18	6	44,5*	35,67	11,27	14,63
	Yak-142	120	3,8	19,89	6	32,9*	20,00	8,66	10,95
Passagierflugzeuge mit Propellerturbi-	Airtech CN-235	44	2,76	9,98	4	21,2*	11,00	7,68	6,63
nen	Antonov Ap 140	EC			٨		14.00		7 40
	Antonov	0C 7C	205	•	4 ?	110*	0.00	•	1,40 5 00
	An-38-100	21	2,05	•	3	14,3	9,00	•	5,20
	ATR 42	50	2.865	14.66	4	22.67*	12.50	7.91	7.07
	ATR 72	72	2,865	19,21	4	27,17*	18,00	9,48	8,49

 Tabelle A.28
 Werte der Flugzeugtypen f
 f
 in Bild 6.2 bis Bild 6.6 der drei Kategorien

	Bae	71	2,6		4	25,7*	17,75		8,43
	ATP/Jetstream 61								
	BAe Jetstream 41	30	1,98	9,55	3	18,1*	10,00	9,14	5,48
	DHC-8 100/200	39	2,69	9,14	4	21*	9,75	7,81	6,24
	DHC-8 400	78	2,69	22,22	4	31*	19,50	11,52	8,83
	EMB-120ER	30	2,28	9,38	3	18,73	10,00	8,21	5,48
	Fairchild Dornier Do 228	19	2,04	7,08	2	15,9*	9,50	7,79	4,36
	Fairchild Dornier Do 328	33	2,42	10,27	3	20,92	11,00	8,64	5,74
	Fairchild METRO 23	19	1,51	7,75	2	17,5*	9,50	11,59	4,36
	Fokker 50	58	2,7	15,96	4	25,25*	14,50	9,35	7,62
	Ilvushin IL-114	64	2.86	20.24	4	26.2	16.00	9.16	8.00
	IPTN N-250	68	2.9	13.23	4	25.25	17.00	8.71	8,25
	LET L-610	40	27	11 1	4	20.53	10.00	7 60	6.32
	Raytheon	10	1 01	10.53	2	16.5*	9.50	8.64	1 36
	Reech 1900D	13	1,31	10,55	2	10,5	3,50	0,04	4,50
	Saab 2000	50	2 31	16.7	3	27 28*	16 67	11 81	7 07
	Saab 340B	33	2 31	10 39	3	19 73*	11 00	8 54	5 74
Rusiness lets	Astra SPX	6	1 7/	5 23	2	16.3*	3.00	0,07	2 /5
Dusiness Jets	Rombardiar	10	202	1462	2	26.2*	0,00	9,57	2, 4 3 1 21
	Global Express	10	2,92	14,05	2	20,2	9,00	0,97	4,24
	Bombardier/Can.	12	2,69	8,63	2	18*	6,00	6,69	3,46
	Bombardier	10	1,61	6,02	2	16,6*	5,00	10,31	3,16
	Bombardier	9	1,92	5,54	2	17,02	4,50	8,86	3,00
	Learjet 60 Cessna	10	1,95	5,74	2	15,24	5,00	7,82	3,16
	Cessna	9	1,8	5,7	2	14,9*	4,50	8,28	3,00
	Cessna	12	2,23	7,14	2	17,8*	6,00	7,98	3,46
	750 Citation X Dassault	9	2,5	7,98	2	19,7*	4,50	7,88	3,00
	Falcon 2000 Dassault	8	2,11	7,16	2	17,66	4,00	8,37	2,83
	Falcon 50EX Dassault	19	2,5	11,9	2	19,3*	9,50	7,72	4,36
	Falcon 900B Galaxy Aerospace	10	2		2	18,6*	5,00	9,30	3,16
	Gulfstream V	14	24	15.26	2	26 3*	7 00	10 96	3 74
	Raytheon	15	1,93	7,44	2	20,0 14,4*	7,50	7,46	3,87
	Sino-Swearingen	7	1,65	3,81	2	12,7*	3,50	7,70	2,65
	VisionAire VA-10 Vantage	5	1,71	3,8	2	11,3*	2,50	6,61	2,24

• Die Werte für die Passagieranzahl sind **Kreuzer 1999** entnommen und sind jeweils die Maximalwerte.

• Die übrigen Werte sind **Jane's** entnommen. Eine Ausnahme bilden die mit "*" gekennzeichneten Werte, die aus den Dreiseitenansichten abgelesen wurden.

n _{sA}	d_{F}	Ganganzahl		$\frac{l_F}{1} = 16,7$	$\frac{l_F}{l_F} = 14,3$	$\frac{l_F}{l_F} = 11,1$	$\frac{l_F}{l_F} = 8,3$	$\frac{l_F}{l_F} = 6,7$	$\frac{l_F}{l_F} = 6,3$	$\frac{l_F}{l_F} = 0,1$
				d_F	d_F	d_F	d_F	d_F	d_F	d_F
2	1,7675	single aisle	PAX	42	36	28	21	17	16	0
3	2,2923			81	69	54	40	32	30	0
4	2,8171			132	114	88	66	53	50	1
5	3,3419			196	168	131	98	79	74	1
6	3,8667			273	234	182	136	109	102	2
7	4,9694	double aisle		409	350	273	204	164	153	2
8	5,3892			507	434	338	253	203	190	3
9	5,809			615	527	410	307	246	230	4
10	6,2288			732	628	488	366	293	275	4

 Tabelle A.29
 Werte f
 ür die Passagieranzahl aus den Gleichungen (6.8) und (6.9)

 d_F nach Gleichung (6.3) und Gleichung (6.4)

Tabelle A.30	Werte für das	s Bild 6.8 und Bild 6.9
--------------	---------------	-------------------------

Flugzeugkategorie	Flugzeugtyp	n _{PAX}	V _{CARGO}	m _{TO}	$m_{_{ML}}$	$\sqrt[3]{m_{TO}}$	l_F
			т³	kg	kg	$3\sqrt{1}$	т
						√kg	
Passagierflugzeuge mit Strahltriebwerken	A 300-600	308	147,4	165000	138000	54,85	53,3
	A 310	260	102,1	150000	123000	53,13	45,13
	A 318	117		61500	61000	39,47	31,45*
	A 319	142		64000	61000	40,00	33,8*
	A 320	179	38,76	73500	64500	41,89	37,57*
	A 321	212	52,04	83000	73500	43,62	44,51*
	A 330	412	161,4*	230000	177000	61,27	62,9*
	A 340-300	420	161,4*	257000	186000	63,58	62,9*
	A 340-600	382		365000	254000	71,47	74,4*
	B 717-200	106	26,76	54886	49896	38,00	34,2*
	B 737-300	149	30,2	56470	51720	38,37	32,2*
	B 737-400	149	38,88	62820	54885	39,75	35,2*
	B 737-500	132	23,27	52390	49895	37,42	29,8*
	B 737-600	132	21,41	65090	54657	40,23	30*
	B 737-700	149	28,37	69399	58059	41,09	32,4*
	B 737-800	189	45,05	78244	65317	42,77	38,2*
	B 747-400	496	172*	385555	260360	72,78	68,63
	B 757-200	239	50,69	104325	89810	47,08	46,96
	B 767-200	255	111,3	136080	122470	51,44	47,24
	B 767-300	316	147	156490	136080	53,89	53,67
	B 777-200	375	160,16	233600	201850	61,59	62,78
	B 777-300	478	200,48	299370	237682	66,90	72,91
	BAC-Airstar 2500	115	19,45	47400	40823	36,19	29,67
	BAe 146-300	122	22,99	44225	38328	35,36	28,9*
	Canadair Regional Jet	50	13,64	23133	20275	28,49	24,38
	EMB-145	50	14,75	19200	18700	26,78	27,93
	Fairchild Dornier 328Jet	34	6,3	14990	13730	24,66	20,92
	Fokker 100	109	19,72	44450	38780	35,42	32,5
	Fokker 70	79	17,8	36740	34020	33,24	27,88
	Ilyushin IL-96-300	270	115,9	216000	175000	60,00	51,15
	MD 87	130	26,56	63505	58060	39,90	36,3
	MD 82	138	35,48	67810	58967	40,78	41,3

	MD 83	172	35,48*	72575	63276	41,71	41,3
	MD 90-30	178	36,8	70760	64410	41,36	43,03
	MD 90-50/55	178	23.3	78245	71210	42.77	43.03
	MD-11	398	194	273289	195040	64.89	58.65
	Tu-204-220	214	31.8	110750	89500	48.02	44.5*
	Yak-142	120	29.3	57000	51000	38.49	32.9*
Passagierflugzeuge	Airtech CN-235	44	5,3	15100	14900	24,72	21,2*
	Antonov An-140	56		22000		28.02	
	Antonov An-38-100	27	•	8800	0038	20,02	1/1 2*
		50	8/	16700	16400	20,05	22 67*
		72	0,4 6.4	21500	21350	23,30	22,07
	RIN 72 RAA ATD/ latatroom 61	74	0,4	21000	21330	27,01	21,11
	DAE ATF/Jeisirean 01	20	6 1 6	22930	22230	20,41	20,7
	BAe Jetstream 41	30	0,10	10433	10115	21,85 05.44	18,1
	DHC-8 100/200	39	8,5	16465	15513	25,44	21"
	DHC-8 400	78	15,46	26989	26762	30,00	31^
	EMB-120ER	30	6,4	11990	11700	22,89	18,73
	Fairchild Dornier 228	19	3,49	6400	6100	18,57	15,9*
	Fairchild Dornier 328	33	6,3	13990	13230	24,10	20,92
	Fairchild METRO 23	19	2,74	7484	7110	19,56	17,5*
	Fokker 50	58	8,2	19950	19500	27,12	25,25*
	Ilyushin IL-114	64		23500	21500	28,64	26,2
	IPTN N-250	68	11,65	22000	21800	28,02	25,25
	LET L-610	40	7,5	14500	14200	24,38	20,53
	Raytheon	19	5,43	7688	7530	19,74	16,5*
	Beech 1900D						
	Saab 2000	50	10,2	22800	22000	28,36	27,28*
	Saab 340B	33	8,3	13155	12930	23,61	19,73*
Business Jets	Astra SPX	6	1,56	11181	9389	22,36	16,3*
	Bombardier	18		42412	36653	34,87	26,2*
	Global Express						
	Bombardier/Canadair Challenger	12		21591	17236	27,85	18*
	Bombardier Learjet 45	10	1,42	8845	8709	20,68	16,6*
	Bombardier Learjet 60	9		10319	8845	21,77	17,02
	Cessna 560 Citation Excel	10	2,26	8482	7892	20,39	15,24
	Cessna 650 Citation VII	9	1,44	10183	9072	21,67	14,9*
	Cessna 750 Citation X	12	2,04	16011	14424	25,20	17,8*
	Dassault Falcon 2000	9	4	16238	14970	25.32	19.7*
	Dassault Falcon 50EX	8	33	18007	16200	26.21	17.66
	Dassault Falcon 900B	19	3.6	20640	19050	27 43	19.3*
	Galaxy Aerospace	10	0,0	15173	12474	24 76	18.6*
	"Galaxy"	10		40070	00050	21,70	00.0*
	Guitstream V	14	6,4	40370	32659	34,30	26,3*
	Raytheon	15	1,61	14060	11340	24,14	14,4*
	Hawker 1000 Sino-Swearingen	7	1,84	5579	5303	17,74	12,7*
	VisionAire VA-10 Vantage	5	1,18	3538	3175	15,24	11,3*

• Die Werte für die Passagieranzahl sind **Kreuzer 1999** entnommen und sind jeweils die Maximalwerte. • Alle anderen Werte sind **Jane's** entnommen. Eine Ausnahme bilden die mit "*" gekennzeichneten Werte, die der **Uni Würzburg** entnommen wurden.

Flugge-	Flugzeug-	Reich-	n_{PAX}	n_{PAX}	n_{PAX}	n_{PAX}	n_{SA}	n _{SA}	n _{SA}	Sitzab-	Sitzab-	Sitzab-
sellschaft	typ	weiten-		FC	BC	YC	FC	BC	YC	stand	stand	stand
		klassifi-								FC m	DC m	rC m
	_	kation								111	111	m
Air France	B777-200	LR	275	12	56	207	6	7	9	2,15	1,12	0,75
	A320	MR	159	-	-	159	-	-	6	-	-	0,8
	A340-300	LR	252	6	42	204	6	6	8	1,5	1,32	0,81
Alitalia	MD11	LR	283	-	30	253	-	6	9	-	1,16	0,68
	ATR-42	SR	44	-	-	44	-	-	4	-	-	0,68
	ATR-72	SR	66	-	-	66	-	-	4	-	-	0,71
	Dornier 328	SR	44	-	-	44	-	-	3	-	-	0,75
Austrian Airlines	MD87	MR	111	-	-	111	-	-	5	-	-	0,91
	MD82/83	MR	161	-	-	161	-	-	5	-	-	0,79
British Airways	B777-200	LR	380	-	28	352	-	7	10	-	0,89	0,82
	B767- 300ER	LR	216	-	30	186	-	6	7	-	1,22	0,83
Condor	B767- 300ER	LR	269	-	24	245	-	6	7	-	0,9	0,75
Crossair	Saab2000	SR	50	-	-	50	-	-	3	-	-	0,74
	Saab340B	SR	33	-	-	33	-	-	3	-	-	0,79
KLM	B747-400	LR	438	-	54	384	-	4	10	-	1,2	0,77
	B737-400	SR/MR	129	-	58	71	-	5	6	-	0,85	0,8
	Fokker 50	SR	50	-	-	50	-	-	4	-	-	0,78
	Fokker 70	SR	85	-	-	85	-	-	5	-	-	0,79
Lauda-air	B737-800	MR	184	-	-	184	-	-	6	-	-	0,73
	CRJ100	SR	50	-	-	50	-	-	4	-	-	0,6
LTU	757-200ER	MR/LR	210	-	-	210	-	-	6	-	-	0,74
	A330-300	MR/LR	387	-	-	387	-	-	8	-	-	0,73
Lufthansa	A320	MR	140	-	14	126	-	4	6	-	0,99	0,81
	A310	LR	249	-	-	249	-	-	8	-	-	0,76
	A300-600	MR	244	-	53	191	-	5	8	-	0,95	0,81
	A321	MR	151	-	38	113	-	4	6	-	1,02	0,81
	A340-200	LR	224	8	30	186	4	6	8	2,17	1,22	0,81
	B737-300	SR/MR	132	-	-	132	-	-	6	-	-	0,81
	B737-400	SR/MR	141	-	-	141	-	-	6	-	-	0,86
	B737-500	SR/MR	99	-	12	87	-	5	6	-	0,86	0,86
	B747-200	LR	381	8	51	322	4	7	10	2,29	1,22	0,81
Malev	Fokker 70	SR	67	-	32	35	-	4	5	-	0,76	0,74
Sabena	DHC 8-300	SR	46	-	-	46	-	-	4	-	-	0,88
Swissair	A321-111	MR	178	-	32	146	-	5	6	-	0,86	0,76
	A319-112	SR/MR/ LR	118	-	35	83	-	5	6	-	0,86	0,76
Turkish Airlines	RJ-100	SR/MR	99	-	-	99	-	-	5	-	-	0,79

 Tabelle A.31
 Werte der Sitzabstände für Tabelle 6.3

• Die Reichweitenklassifikation ist Kreuzer 1999 entnommen.

• Die übrigen Werte wurden aus den Layouts der Flugpläne abgelesen. Bis auf die Werte der **Lufthansa**, die detaillierten technischen Zeichnungen entnommen wurden.

Fluggesellschaft	Flugzeugtyp	Reichwei-	n_{PAY}	n_{PAY}	n_{PAY}	n_{PAY}	n_{s_A}	n _s	n_{sA}	Sitz-	Sitz-	Sitz-
		tenklassifi-	IAA	FC	BC	YC	FC	BC	YC	breite	breite	breite
		kation		10	20	10		20	10	FC	BC	YC
										т	т	т
Air France	B777-200	LR	275	12	56	207	6	7	9	0,72	0,62	0,49
	A320	MR	159	-	-	159	-	-	6	-	-	0,52
	A340-300	LR	252	6	42	204	6	6	8	0,72	0,72	0,51
Alitalia	MD11	LR	283	-	30	253	-	6	9	-	0,64	0,54
	ATR-42	SR	44	-	-	44	-	-	4	-	-	0,49
	ATR-72	SR	66	-	-	66	-	-	4	-	-	0,49
	Dornier 328	SR	44	-	-	44	-	-	3	-	-	0,46
Austrian Airlines	MD87	MR	111	-	-	111	-	-	5	-	-	0,57
	MD82/83	MR	161	-	-	161	-	-	5	-	-	0,55
British Airways	B777-200	LR	380	-	28	352	-	7	10	-	0,64	0,5
	B767-300ER	LR	216	-	30	186	-	6	7	-	0,64	0,55
Condor	B767-300ER	LR	269	-	24	245	-	6	7	-	0,65	0,56
Crossair	Saab2000	SR	50	-	-	50	-	-	3	-	-	0,48
	Saab340B	SR	33	-	-	33	-	-	3	-	-	0,51
KLM	B747-400	LR	438	-	54	384	-	4	10	-	0,72	0,54
	B737-400	SR/MR	129	-	58	71	-	5	6	-	0,61	0,51
	Fokker 50	SR	50	-	-	50	-	-	4	-	-	0,5
	Fokker 70	SR	85	-	-	85	-	-	5	-	-	0,53
Lauda-air	B737-800	MR	184	-	-	184	-	-	6	-	-	0,47
	CRJ100	SR	50	-	-	50	-	-	4	-	-	0,5
LTU	757-200ER	MR/LR	210	-	-	210	-	-	6	-	-	0,46
	A330-300	MR/LR	387	-		387	-	-	8	-		0,5
Lufthansa	A320	MR	140	-	14	126	-	4	6	-	0,73	0,53
	A310	LR	249	-	-	249	-	-	8	-	-	0,53
	A300-600	MR	244	-	53	191	-	5	8	-	0,59	0,53
	A321	MR	151	-	38	113	-	4	6	-	0,68	0,54
	A340-200	LR	224	8	30	186	4	6	8	1,03	0,68	0,52
	B737-300	SR/MR	132	-	-	132	-	-	6	-	-	0,5
	B737-400	SR/MR	141	-	-	141	-	-	6	-	-	0,49
	B737-500	SR/MR	99	-	12	87	-	5	6	-	0,68	0,5
	B747-200	LR	381	8	51	322	4	7	10	0,9	0,69	0,53
Malev	Fokker 70	SR	67	-	32	35	-	4	5	-	0,6	0,5
Sabena	DHC 8- 300	SR	46	-	-	46	-	-	4	-	-	0,49
Swissair	A321-111	MR	178	-	32	146	-	5	6	-	0,59	0,5
	A319-112	SR/MR/ LR	118	-	35	83	-	5	6	-	0,59	0,5
Turkish Airlines	RJ-100	SR/MR	99	-	-	99	-	-	5	-	-	0,5

Tabelle A.32	Werte der Sitzbreite für Tabelle 6.4
--------------	--------------------------------------

• Die Reichweitenklassifikation ist Kreuzer 1999 entnommen.

Fluggesell-	Flugzeugtyp	Reichwei-	n_{PAX}	n_{PAX}	n_{PAX}	nPAX	n _{sa}	n_{SA}	n _{sa}	Gang-	Gang-	Gang-
schaft		tenklassifi-	1111	FC	BC	YC	FC	BC	YC	breite	breite	breite
		kation								FC	BC	YC
										т	т	т
Air France	B777-200	LR	275	12	56	207	6	7	9	0,65	0,56	0,53
	A320	MR	159	-		159	-	-	6	-	-	0,46
	A340-300	LR	252	6	42	204	6	6	8	0,36	0,36	0,39
Alitalia	MD11	LR	283	-	30	253	-	6	9	-	0,87	0,42
	ATR-42	SR	44	-	-	44	-	-	4	-	-	0,66
	ATR-72	SR	66	-	-	66	-	-	4	-	-	0,66
	Dornier 328	SR	44	-	-	44	-	-	3	-	-	0,63
Austrian Airli- nes	MD87	MR	111	-	-	111	-	-	5	-	-	0,55
	MD82/83	MR	161	-	-	161	-	-	5	-	-	0,46
British Airways	B777-200	LR	380	-	28	352	-	7	10	-	0,53	0,3
	B767- 300ER	LR	216	-	30	186	-	6	7	-	0,41	0,41
Condor	B767- 300ER	LR	269	-	24	245	-	6	7	-	0,32	0,4
Crossair	Saab2000	SR	50	-	-	50	-	-	3	-	-	0,46
	Saab340B	SR	33	-	-	33	-	-	3	-	-	0,35
KLM	B747-400	LR	438	-	54	384	-	4	10	-	0,65	0,41
	B737-400	SR/MR	129	-	58	71	-	5	6	-	0,47	0,44
	Fokker 50	SR	50	-	-	50	-	-	4	-	-	0,39
	Fokker 70	SR	85	-	-	85	-	-	5	-	-	0,4
Lauda-air	B737-800	MR	184	-	-	184	-	-	6	-	-	0,48
	CRJ100	SR	50	-	-	50	-	-	4	-	-	0,39
LTU	757-200ER	MR/LR	210	-	-	210	-	-	6	-	-	0,66
	A330-300	MR/LR	387	-	-	387	-	-	8	-	-	0,45
Lufthansa	A320	MR	140	-	14	126	-	4	6	-	0,65	0,44
	A310	LR	249	-		249	-	-	8	-	-	0,47
	A300-600	MR	244	-	53	191	-	5	8	-	0,48	0,48
	A321	MR	151	-	38	113	-	4	6	-	0,87	0,45
	A340-200	LR	224	8	30	186	4	6	8	0,64	0,52	0,46
	B737-300	SR/MR	132	-	-	132	-	-	6	-	-	0,4
	B737-400	SR/MR	141	-	-	141	-	-	6	-	-	0,41
	B737-500	SR/MR	99	-	12	87	-	5	6	-	0,42	0,42
	B747-200	LR	381	8	51	322	4	7	10	0,44	0,66	0,39
Malev	Fokker 70	SR	67	-	32	35	-	4	5	-	0,59	0,41
Sabena	DHC 8-300	SR	46	-		46	-	-	4	-	-	0,4
Swissair	A321-111	MR	178	-	32	146	-	5	6	-	0,55	0,5
	A319-112	SR/MR/LR	118	-	35	83	-	5	6	-	0,55	0,5
Turkish Airlines	RJ-100	SR/MR	99	-	-	99	-	-	5	-	-	0,66

Tabelle A.33Werte der Gangbreiten für Tabelle 6.5

• Die Reichweitenklassifikation ist Kreuzer 1999 entnommen.

Fluggesell-	Flugzeugtyp	Reich-	Boden-	Toi-	Toi-	Toi-	Toi-	nnav	nnav	nnav
schaft	0 077	weiten-	fläche-	letten	letten	letten	letten	Toiletten	Toiletten	Toiletten
		klassifika-	Toi-		FC	BC	YC	ronetten	ronetten	ronetten
		tion	letten	An-	An-	An-	An-	FC	BC	YC
			m²	zahl	zahl	zahl	zahl			
Air France	B777-200	LR	9,79	10	2	3	5	6	18,67	41,40
	A320	MR	3,35	3	-	-	3	-	-	53,00
	A340-300	LR	10,09	9	2	2	5	3	21,00	40,80
Alitalia	MD11	LR	8,27	9	-	2	7	-	15,00	36,14
	ATR-42	SR	0,45	1	-	-	1	-	-	44,00
	ATR-72	SR	0,58	1	-	-	1	-	-	66,00
	Dornier 328	SR	0,92	1	-	-	1	-	-	44,00
Austrian Airlines	MD87	MR	3,75	3	-	-	3	-	-	37,00
	MD82/83	MR	3,64	3	-	-	3	-	-	53,67
British Airways	B777-200	LR	8,6	10	-	2	8		14,00	44,00
-	B767- 300ER	LR	6,39	6	-	2	4	-	15,00	46,50
Condor	B767- 300ER	LR	5,61	6	-	1	5	-	24,00	49,00
Crossair	Saab2000	SR	0,79	1	-	-	1	-	-	50,00
	Saab340B	SR	0,45	1	-	-	1	-	-	33,00
KLM	B747-400	LR	15,33	15	-	3	12	-	18,00	32,00
	B737-400	SR/MR	3	3	-	1	2	-	58,00	35,50
	Fokker 50	SR	0,94	1	-	-	1	-	-	50,00
	Fokker 70	SR	2,06	2	-	-	2	-	-	42,50
Lauda-air	B737-800	MR	2,7	3	-	-	3	-	-	61,33
	CRJ100	SR	1,17	1	-	-	1	-	-	50,00
LTU	757-200ER	MR/LR	3,72	5	-	-	5	-	-	42,00
	A330-300	MR/LR	7,91	8	-	-	8	-	-	48,38
Lufthansa	A320	MR	3,25	3	-	1	2	-	14,00	63,00
	A310	LR	3,92	4	-	-	4	-	-	62,25
	A300-600	MR	6,68	7	-	3	4	-	17,67	47,75
	A321	MR	3,48	3	-	1	2	-	38,00	56,50
	A340-200	LR	9,36	8	2	2	4	4	15,00	46,50
	B737-300	SR/MR	3,09	3	-	-	3	-	-	44,00
	B737-400	SR/MR	3,12	3	-	-	3	-	-	47,00
	B737-500	SR/MR	3,12	3	-	1	2	-	12,00	43,50
	B747-200	LR	13,04	13	2	3	8	4	17,00	40,25
Malev	Fokker 70	SR	2,14	2	-	1	1	-	32,00	35,00
Sabena	DHC 8-300	SR	0,91	1	-	-	1	-		46,00
Swissair	A321-111	MR	4,47	4	-	1	3	-	32,00	48,67
	A319-112	SR/MR/ LR	3,54	3	-	1	2	-	35,00	41,50
Turkish Airlines	RJ-100	SR/MR	2,23	2	-	-	2	-	-	49,50

 Tabelle A.34
 Werte der Toiletten f
 f
 ir Tabelle 6.6

• Die Reichweitenklassifikation ist **Kreuzer 1999** entnommen.

Fluggesell-	Flugzeug-	Reich-	n _{PAX}	Boden-	Stau-	Aus-	Aus-	Küche $[m^2]$	Ausgang $[m^2]$
schaft	typ	weiten-		fläche	raum	gänge	gänge	Sitzplatz	Sitzplatz
		klassifi-		Kucne	1002	1 22	Anzohl		
		kation		m-	m-	m-	Anzani		
Air France	B777-200	LR	275	18,61	-	22,78	8	0,0677	0,0828
	A320	MR	159	3,7	1,23	7,6	4	0,0233	0,0478
	A340-300	LR	252	20,23	-	20,26	8	0,0803	0,0804
Alitalia	MD11	LR	283	14,76	-	19,68	7	0,0522	0,0695
	ATR-42	SR	44	1,24	6,16	2,08	2	0,0282	0,0473
	ATR-72	SR	66	1,18	6,44	1,81	2	0,0179	0,0274
	Dornier 328	SR	44	0,45	4,89	0,99	1	0,0102	0,0225
Austrian Airlines	MD87	MR	111	5,31	-	5,03	3	0,0478	0,0453
	MD82/83	MR	161	6,47	-	4,29	3	0,0402	0,0266
British Airways	B777-200	LR	380	11,61	-	21,36	6	0,0306	0,0562
	B767-300ER	LR	216	13,67	-	17,64	6	0,0633	0,0817
Condor	B767-300ER	LR	269	7,48	-	8,24	4	0,0278	0,0306
Crossair	Saab2000	SR	50	1,8	5,27	2,15	2	0,0360	0,0430
	Saab340B	SR	33	0,98	4,69	1,49	2	0,0297	0,0452
KLM	B747-400	LR	438	28,5	-	29,3	10	0,0651	0,0669
	B737-400	SR/MR	129	3,5	-	6.07	4	0,0271	0,0471
	Fokker 50	SR	50	1,28	4,65	3,16	4	0,0256	0,0632
	Fokker 70	SR	85	4,46	-	2,66	2	0,0525	0,0313
Lauda-air	B737-800	MR	184	5,77	-	5,93	4	0,0314	0,0322
	CRJ100	SR	50	1,29	5,14	2,24	2	0,0258	0,0448
LTU	757-200ER	MR/LR	210	5,13	-	13,36	8	0,0244	0,0636
	A330-300	MR/LR	387	13,53	-	20,33	8	0,0350	0,0525
Lufthansa	A320	MR	140	5,36	0,94	6,8	4	0,0383	0,0486
	A310	LR	249	6,25	2,35	10,29	4	0,0251	0,0413
	A300-600	MR	244	7,57	-	18	6	0,0310	0,0738
	A321	MR	151	5,63	-	6,73	4	0,0373	0,0446
	A340-200	LR	224	15	-	13,28	6	0,0670	0,0593
	B737-300	SR/MR	132	4,94	-	5,5	4	0,0374	0,0417
	B737-400	SR/MR	141	4,91	-	5,36	4	0,0348	0,0380
	B737-500	SR/MR	99	4,93	-	5,51	4	0,0498	0,0557
	B747-200	LR	381	21,15	-	29,3	10	0,0555	0,0769
Malev	Fokker 70	SR	67	2,69	-	2,17	2	0,0401	0,0324
Sabena	DHC 8-300	SR	46	2,37	4,97	2,21	2	0,0515	0,0480
Swissair	A321-111	MR	178	7,28	-	5,54	4	0,0409	0,0311
	A319-112	SR/MR/L	118	4,61	-	5,48	4	0,0391	0,0464
		R							
Turkish Airlines	RJ-100	SR/MR	99	2,51	-	6,27	4	0,0254	0,0633

 Tabelle A.35
 Werte der Küchen und Ausgänge für Tabelle 6.7

• Die Reichweitenklassifikation ist Kreuzer 1999 entnommen.

Fluggesellschaft	Flugzeugtyp	Reich-	<u>K</u> üche	<u>T</u> oi-	<u>A</u> us-	K+T+A	d_F	l_{CABIN}	$l_{CABIN} \cdot d_F$
	• • • • •	weiten-		letten	gänge				
		klassifika-	-	-					
		tion	m^2	m^2	m^2	m^2	т	т	m^2
Air France	B777-200	LR	18,61	9,79	22,78	51,18	6,2	48,97	303,61
	A320	MR	3,7	3,35	7,6	14,65	3,95	27,38	108,15
	A340-300	LR	20,23	10,09	20,26	50,58	5,64	45,5*	256,62
Alitalia	MD11	LR	14,76	8,27	19,68	42,71	6,02	46,51	279,99
	ATR-42	SR	1,24	0,45	2,08	3,77	2,865	14,66	42,00
	ATR-72	SR	1,18	0,58	1,81	3,57	2,865	19,21	55,04
	Dornier 328	SR	0,45	0,92	0,99	2,36	2,42	10,27	24,85
Austrian Airlines	MD87	MR	5,31	3,75	5,03	14,09	3,61	30,78	111,12
	MD82/83	MR	6,47	3,64	4,29	14,4	3,61	37,35	134,83
British Airways	B777-200	LR	11,61	8,6	21,36	41,57	6,2	48,97	303,61
	B767-300ER	LR	13,67	6,39	17,64	37,7	5,03	40,36	203,01
Condor	B767-300ER	LR	7,48	5,61	8,24	21,33	5,03	40,36	203,01
Crossair	Saab2000	SR	1,8	0,79	2,15	4,74	2,31	16,7	38,58
	Saab340B	SR	0,98	0,45	1,49	2,92	2,31	10,39	24,00
KLM	B747-400	LR	28,5	15,33	29,3	73,13	6,5	х	Х
	B737-400	SR/MR	3,5	3	6,07	12,57	3,75	27,6	103,50
	Fokker 50	SR	1,28	0,94	3,16	5,38	2,7	15,96	43,09
	Fokker 70	SR	4,46	2,06	2,66	9,18	3,3	16,57	54,68
Lauda-air	B737-800	MR	5,77	2,7	5,93	14,4	3,75	21,79	81,71
	CRJ100	SR	1,29	1,17	2,24	4,7	2,69	14,76	39,70
LTU	757-200ER	MR/LR	5,13	3,72	13,36	22,21	3,75	36,09	135,34
	A330-300	MR/LR	13,53	7,91	20,33	41,77	5,64	45,5*	256,62
Lufthansa	A320	MR	5,36	3,25	6,8	15,41	3,95	27,38	108,15
	A310	LR	6,25	3,92	10,29	20,46	5,64	33,24	187,47
	A300-600	MR	7,57	6,68	18	32,25	5,64	40,21	226,78
	A321	MR	5,63	3,48	6,73	15,84	3,95	34,39	135,84
	A340-200	LR	15	9,36	13,28	37,64	5,64		
	B737-300	SR/MR	4,94	3,09	5,5	13,53	3,75	24,18	90,68
	B737-400	SR/MR	4,91	3,12	5,36	13,39	3,75	27,6	103,50
	B737-500	SR/MR	4,93	3,12	5,51	13,56	3,75	21,79	81,71
	B747-200	LR	21,15	13,04	29,3	63,49	6,5	х	Х
Malev	Fokker 70	SR	2,69	2,14	2,17	7	3,3	16,57	54,68
Sabena	DHC 8-300	SR	2,37	0,91	2,21	5,49	2,69	12,54	33,73
Swissair	A321-111	MR	7,28	4,47	5,54	17,29	3,95	34,39	135,84
	A319-112	SR/MR/LR	4,61	3,54	5,48	13,63	3,95	23,78*	93,93
Turkish Airlines	RJ-100	SR/MR	2,51	2,23	6,27	11,01	3,56	20,2	71,91

Tabelle A.36 Werte der Kabinenlänge, Küchen, Toiletten und Ausgänge für das Bild 6.14

 Die Werte f
ür l_{CABIN} sind Jane's entnommen. Ausnahmen sind die mit einem "*" gekennzeichneten Werte, die der Uni W
ürzbug entnommen wurden.

• Die Werte für d_F sind ebenfalls **Jane's** entnommen.

• Die Reichweitenklassifikation ist Kreuzer 1999 entnommen.

Anhang B

Grundlagen

In diesem Anhang wird die grundsätzliche Reihenfolge bei der Datenaufnahme beschrieben (**Kapitel B.1**). In **Kapitel B.2** wird die Häufigkeitstabelle und ihre Darstellungsform als Histogramm erklärt. Ferner werden die verwendeten Begriffe aus der Statistik erklärt und deren Rechenregeln in Allgemeinform dargestellt (**Kapitel B.3**).

B.1 Vorgehen bei der Datenaufnahme

In diesem Kapitel wird das allgemeine Vorgehen beim Zusammentragen der Daten festgehalten. Das Zustandekommen der Datensammlung soll dadurch in etwa überschaubar bleiben. Etwaige Abweichungen beim Vergleich der Daten lassen sich auf die nicht exakte Übereinstimmung der einzelnen Parameter bei Verwendung einer anderen Datenquelle zurückführen.

Beispiel: Sicherheitslandestrecke des Business Jets "ASTRA SPX" - Galaxy Aerospace

Jane's 1996/1997 gibt für $s_{LFL} = 829m$ an.

Moon von Galaxy Aerospace gibt für $s_{LFL} = 732m$ als ein aus dem Handbuch entnommenen Wert an.

Meine maximal gemessene Abweichung zweier Datenwerte eines Parameters zwischen zwei Quellen betrug 16 %, was jedoch eine Ausnahme darstellt. Üblich sind Abweichungen < 3 %.

Die Verwendung verschiedener Datenquellen läßt sich aufgrund von fehlenden Daten meistens nicht vermeiden. Es wurde darauf geachtet, für einen bestimmten Parameter auch möglichst nur eine Datenquelle zu benutzen. Unter den eingefügten Tabellen stehen die Bezugsquellen der Daten für jeden einzelnen Parameter.

Rangordnung beim Zusammentragen der Daten:

- 1. Schriftliche Aussagen & Homepages von Herstellern
- 2. Jane's 1996/1997
- 3. Jane's 1992/1993
- 4. Kreuzer 1999 & Endres 1998

Jetzt noch fehlende Daten wurden ergänzt durch die Homepage der **Uni Würzburg** und aus technischen Zeichnungen abgelesene Werte.

Vorgehen beim ablesen von Werten aus technischen Zeichnungen und Layouts:

- 1. Technische Zeichnung oder Layout mit 600 dpi¹⁰ einscannen.
- 2. Bezugsmaß wählen:

Bei Drei- Seitenansichten ist das Bezugsmaß die reale Gesamtlänge des Flugzeugs.

Bei Layouts ist das Bezugsmaß der Durchmesser des Flugzeugs, da hier die Gesamtlänge nicht auf der Zeichnung dargestellt ist.

3. Das Bezugsmaß wird durch die Mauszeigerpositionen der Gesamtlänge (Drei- Seitenansicht) des maßstabsgetreuen Bildes geteilt. Der somit entstandene Multiplikator wird für alle folgenden Mauszeigerpositionen verwendet.

B.2 Häufigkeitstabelle und Histogramm

Die im folgenden erläuterte statistische Behandlung der Daten wurde lediglich bei Parametern durchgeführt, bei denen keine Kohärenz zu anderen Parametern festgestellt werden konnte (z.B.: d_F^2/S_W). Sie stehen sozusagen ohne erkennbarem Zusammenhang da und bedürfen einer näheren statistischen Betrachtung um eventuelle Anhäufungen an bestimmten Werten zu erkennen.

Die für die Statistik verwendeten Daten werden zunächst in einer Häufigkeitstabelle (siehe **Tabelle B.1**) festgehalten.

	Deispiel e	aner haungkensta	Delle		
Nr. der	Klasse	Besetzungszahl	Aufsummierte Be-	$100 \cdot n (n = h)$	Häufigkeitssumme
Klasse j	Merkmalswert	n_{i}	setzungszahl	%	H_{i}
		Anzahl	B_{j}	70	%
			Anzahl		
[1]	[2]	[3]	[4]	[5]	[6]
1	0,55 <x<=0,65< td=""><td>1</td><td>1</td><td>6,25</td><td>6,25</td></x<=0,65<>	1	1	6,25	6,25
2	0,65 <x<=0,75< td=""><td>5</td><td>6</td><td>31,25</td><td>37,5</td></x<=0,75<>	5	6	31,25	37,5
3	0,75 <x<=0,85< td=""><td>7</td><td>13</td><td>43,75</td><td>81,25</td></x<=0,85<>	7	13	43,75	81,25
4	0,85 <x<=0,95< td=""><td>3</td><td>16</td><td>18,75</td><td>100</td></x<=0,95<>	3	16	18,75	100
Insgesam	t	16	х	100	Х

 Tabelle B.1
 Beispiel einer Häufigkeitstabelle

¹⁰ dpi: Bei Druckern und Scannern wird die Auflösung in der englischen Maßeinheit "dots per inch" (auf deutsch: "Punkte pro Zoll") angegeben. Je höher die Auflösung ist, desto feiner ist das Scan-Ergebnis.

- Zu Spalte 1: Sie zeigt die Nummer der Klasse an. Die Anzahl der Klassen hängt davon ab, wie groß ein Intervall ist und wo der Maximal- und der Minimalwert, also die Begrenzung gesetzt wird.
- Zu Spalte 2: Sie zeigt die Aufteilung der Intervalle an. Die Erläuterung ist **Heise 1994** entnommen:

Handelt es sich bei den Daten um Stichprobendaten, so hängt die Zahl der zu wählenden Intervalle stark von der Stichprobengröße n ab. Je größer n ist, desto feiner kann die Intervalleinteilung erfolgen. Wählt man jedoch bei kleiner Stichprobengröße zu viele Intervalle, erhält man starke Schwankungen der Histogrammsäulen, die bei einer weiteren Stichprobe aus der gleichen Grundgesamtheit völlig anders ausfallen können. Um zu erreichen, daß sich die Gestalt des Histogramms nicht zu stark von Stichprobe zu Stichprobe unterscheidet, je nachdem welche Elemente zufällig ausgewählt wurden, darf die Zahl der Intervalle nicht zu groß sein. Anderseits wird die Darstellung durch Reduktion der Intervalle immer gröber.

Heise 1994 gibt hierbei eine grobe Faustformel an:

$$m = \sqrt{n}$$

(B.1)

m Zahl der Intervalle

n Stichprobengröße

- Zu Spalte 3: Sie zeigt die Anzahl der Beobachtungen an, die in die j-te Klasse fallen. Diese Anzahl wird absolute Häufigkeit oder auch Besetzungszahl der jeweiligen Klasse genannt.
- Zu Spalte 4: Sie zeigt die Anzahl der Beobachtungen an, die nicht größer sind als die obere Klassengrenze der j-ten Klasse. Sie entsteht durch schrittweises aufsummieren der Besetzungszahlen und wird absolute Summenhäufigkeit oder auch aufsummierte Besetzungszahl genannt.
- Zu Spalte 5: Sie zeigt die relative Besetzungszahl der jeweiligen Klasse an und wird in Prozenten ausgedrückt.
- Zu Spalte 6: Sie zeigt den prozentualen Anteil der Beobachtungen an, die höchstens so groß sind wie die obere Klassengrenze der j-ten Klasse.

Die in der **Tabelle B.1** gesammelten und aufbereiteten Daten können nun in einem Histogramm (siehe **Bild B.1**) dargestellt werden. An der Abszisse werden die Intervallgrenzen abgetragen. Über jedem Intervall wird jetzt ein Rechteck eingezeichnet, dessen Fläche der absoluten Häufigkeit dieses Intervalls entspricht. Die Breite des Rechtecks ist gleich der Intervallbreite.

An der Ordinate wird hier jeweils bei der Rechteckhöhe die absolute Häufigkeit aufgetragen. Es ist aber auch durchaus üblich, daß man bei der Ordinate die Häufigkeit dividiert durch die Intervallbreite aufträgt. Da es möglich ist, Daten in unterschiedlich breiten Intervallen aufzuteilen (z.B. durch Zusammenfassung von einzelnen Intervallen), würde ein Auftragen der absoluten Häufigkeit bei veränderter Intervalleinteilung zu einem völlig anderen optischen Eindruck der gleichen Daten führen. Breite Intervalle würden gegenüber schmalen Intervallen zu stark gewichtet. Bei den Histogrammen dieser Diplomarbeit war das Dividieren durch die Intervallbreite nicht nötig, da bei dem jeweiligem Histogramm immer die gleiche Intervallbreite gewählt wurde.

Histogamm & Normalverteilung

Bild B.1 Beispiel eines Histogramm mit Normalverteilung

B.3 Rechenregeln und Begriffe der Statistikverfahren

Mittelwerte:

• arithmetisches Mittel Es wird oft einfach als Durchschnittswert der Daten bezeichnet.

Berechnet wird dieser, indem man die Merkmalsausprägung aller Elemente durch die Gesamtzahl der Elemente dividiert.

$$\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \tag{B.2}$$

 Modus Er wird ermittelt als die Intervallmitte des Intervalls mit höchster Histogrammsäule (bei gruppierten Daten).Existieren zwei Histogrammsäulen gleicher Höhe, ist der Modus nicht definiert.

• Median Heise 1994 erklärt den Median folgendermaßen:

Der Median ist in der der Größe nach geordneten Reihe der Merkmalsausprägung der mittlere Wert bei ungerader Gesamtzahl n von Daten. Bei gerader Gesamtzahl n von Daten ist er das arithmetische Mittel aus den beiden mittleren Werten.

Er wird auch 50 % - Punkt der Verteilung genannt, da 50 % der Merkmalsausprägung kleiner oder gleich dem Median und 50 % der Merkmalsausprägung größer oder gleich dem Median sind.

Varianz:Die Varianz stellt die durchschnittliche quadratische Abweichung
der Merkmalsausprägung x_i zum arithmetischen Mittel \overline{x} dar.
Sie wird wie folgt nach Sachs 1992 berechnet:

$$s^{2} = \frac{n \sum x^{2} - (\sum x)^{2}}{n(n-1)}$$
(B.3)

Die Formel ist hierbei zur Berechnung der Varianz von unklassierten Daten vorgesehen. Das bedeutet, daß die Klassen, in die die Daten eingeteilt wurden, zunächst nicht berücksichtigt werden, um die Streuung der Daten innerhalb der Klassen nicht zu vernachlässigen.

Standardabweichungen: Die Standardabweichung leitet sich direkt von der Varianz ab. Sie wird wie folgt für nach **Bolch 1968** berechnet:

$$\boldsymbol{s} = \left[1 + \frac{1}{4(n-1)}\right] \cdot s \tag{B.4}$$

Je größer der Stichprobenumfang n ist, desto mehr nähert sich die Standardabweichung also der Varianz.

Sachs 1992 gibt für die Normalverteilung folgende Erklärung an:

Die zentrale Bedeutung der Normalverteilung besteht darin, daß eine SUMME von vielen unabhängigen, beliebig verteilten Zufallsvariablen gleicher Größenordnung ANGENÄHERT normalverteilt ist, und zwar um so besser angenähert, je größer ihre Anzahl ist (Zentraler Grenzwertsatz).

Sie wird unter Verwendung der Funktion von **Sachs 1992** berechnet:

> $y = f(x \mid \mathbf{m}, \mathbf{s}) = \frac{1}{\mathbf{s}\sqrt{2\mathbf{p}}} e^{-1/2[(x-\mathbf{m})/\mathbf{s}]^2}$ (B.5) mit $\mathbf{m} = \overline{x}$

Regressionsgerade: Sadowy 1970 beschreibt die Regressionsgerade wie folgt:

Die Regressionsrechnung strebt eine optimale Anpassung der Ausgleichsgeraden an vorgegebene Diagrammwerte an. Die Anpassung erfolgt nach dem Prinzip der kleinsten Quadrate. Danach ist die Ausgleichsgerade so zu legen, daß für alle Punkte des Diagramms ihre Abweichungen von den entsprechenden Punkten der Ausgleichsgerade quadriert und aufsummiert ein Minimum ergeben.

Sie wird laut LTH - Gewichte 1986 wie folgt berechnet:

Regressionssatz: $y = a + b \cdot x$

Rechenschema:

$$Sx = \sum_{i=1}^{n} x_i$$
; $Sy = \sum_{i=1}^{n} y_i$; $Sx_2 = \sum_{i=1}^{n} x_i^2$; $Sy_2 = \sum_{i=1}^{n} y_i^2$

Normalverteilung:
$$Sxy = \sum_{i=1}^{n} x_i \cdot y_i$$

$$Sx\overline{x} = Sx_2 - \frac{Sx^2}{n}; \qquad S1y = Sxy - \frac{Sx \cdot Sy}{n}$$

$$Sy\overline{y} = Sy_2 - \frac{Sy^2}{n}$$

$$b = \frac{S1y}{Sx\overline{x}} \qquad \overline{x} = \frac{Sx}{n} \qquad \overline{y} = \frac{Sy}{n} \qquad a = \overline{y} - b \cdot \overline{x}$$

Bestimmtheitsmaß:

Das Bestimmtheitsmaß gibt über die Güte der linearen Regression Auskunft und liefert das Quadrat des Pearsonschen Korrelationskoeffizienten r.

Heise 1994 erläutert das Bestimmtheitsmaß folgendermaßen:

Die abhängige Variable y ist eine Zufallsvariable mit einer Stichprobenvarianz, die angibt, wie stark die y-Werte um den Stichprobenmittelwert von y streuen. Ein Teil dieser Variation wird vom Regressionsmodell erklärt, ein Teil bleibt als zufällige Abweichung vom Modell übrig. Den Anteil an der Gesamtvarianz von y, der durch de Regression erklärt wird, mißt das sogenannte Bestimmtheitsmaß R². Dieses Bestimmtheitsmaß liegt, da es ein Anteil ist, immer zwischen Null und Eins. Werden alle y-Werte vom Modell erklärt, d.h., alle Resi-

duale sind gleich Null, so ist das Bestimmtheitsmaß gleich Eins.

Der r-Wert einer Regressionskurve wird gemäß folgender Formel berechnet:

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{\left[n\sum x^2 - (\sum x)^2\right]\left[n\sum y^2 - (\sum y)^2\right]}}$$

(B.6)

LTH - Gewichte 1986 macht über die Qualität des Korrelationskoeffizienten folgende Aussage:

Korre	lationskoeffizient	Zusammenhang
	0 - 0,2	praktisch nicht gegeben
0,2	- 0,5	schwach
0,5	- 0,75	mittelstark
0,75	- 0,95	stark
0,95	- 1	direkt bzw. indirekt linear

Beispiel: Regressionsgerade mit Bestimmtheitswert

In diesem Beispiel soll eine Regressionsgerade durch 5 Datenpunkte gelegt werden. Daraufhin soll das Bestimmtheitsmaß berechnet werden.

Zunächst wird eine Tabelle mit den Datenpunkten angelegt (siehe Tabelle B.2).

1	<i>x</i> _{<i>i</i>}	${\mathcal{Y}}_i$	x_i^2	y_i^2	$x_i y_i$
1	3	4	9	16	12
2	7	9	49	81	63
3	12	14	144	196	168
4	15	25	225	625	375
5	18	30	324	900	540
Summe	55	82	751	1818	1158
Summe	55	82	751	1818	1158

 Tabelle B.2
 Datenpunkttabelle f
 ür das Beispiel

Jetzt wird das Rechenschema von LTH - Gewichte 1986 durchgeführt:

$$Sx = \sum_{i=1}^{n} x_i = 55; \qquad Sy = \sum_{i=1}^{n} y_i = 82; \qquad Sx_2 = \sum_{i=1}^{n} x_i^2 = 751; \qquad Sy_2 = \sum_{i=1}^{n} y_i^2 = 1818$$
$$Sxy = \sum_{i=1}^{n} x_i \cdot y_i = 1158$$
$$Sx\overline{x} = Sx_2 - \frac{Sx^2}{n} = 751 - \frac{55^2}{5} = 146; \qquad S1y = Sxy - \frac{Sx \cdot Sy}{n} = 1158 - \frac{55 \cdot 82}{5} = 256$$
$$Sy\overline{y} = Sy_2 - \frac{Sy^2}{n} = 1818 - \frac{82^2}{5} = 473.2$$

$$b = \frac{S1y}{Sx\overline{x}} = \frac{256}{146} = 1,753; \qquad \overline{x} = \frac{Sx}{n} = \frac{55}{5} = 11; \qquad \overline{y} = \frac{Sy}{n} = \frac{82}{5} = 16,4$$

 $a = \overline{y} - b \cdot \overline{x} = 16, 4 - 1,753 \cdot 11 = -2,883$

Somit lautet die Regressionsgerade:

$$y = a + b \cdot x = -2,883 + 1,753 \cdot x$$

Berechnung des Bestimmtheitsmaßes:

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}} = \frac{5 \cdot 1158 - 55 \cdot 82}{\sqrt{[5 \cdot 751 - 55^2][5 \cdot 1818 - 82^2]}} = 0,974$$

R² = 0,974²=0,949

Nach der Qualitätsaussage von LTH - Gewichte 1986 ist bei einem Korrelationskoeffizienten von r = 0,974 eine direkte lineare Abhängigkeit erreicht worden.

Das Ergebnis kann jetzt in einem Diagramm dargestellt werden (siehe Bild B.2).

Bild B.2 y als Funktion von x - Darstellung der Werte des Beispiels

Die von der Beispielrechnung minimal differierende Funktion im Diagramm ist auf eine genauere Berechnung des Excel-Programms zurückzuführen.

Anhang C

Verwendete Flugzeugtypen

In diesem Anhang werden die bei der statistischen Auswertung verwendeten Flugzeugtypen mit den wichtigsten Daten aufgelistet. Anhang C.1 beinhaltet die Passagierflugzeuge mit Strahltriebwerken. In Anhang C.2 sind die Passagierflugzeuge mit Propellerturbinen aufgelistet und in Anhang C.3 sind die Business Jets (Geschäftsreiseflugzeuge) verzeichnet.

Als vorrangige Veranschaulichung wird die Dreiseitenansicht verwendet. Sollte keine Dreiseitenansicht vorhanden gewesen sein, wurde ein Bild des jeweiligen Flugzeugs eingefügt. Bei den meisten Passagierflugzeugen mit Strahltriebwerken und bei einigen Passagierflugzeugen mit Propellerturbinen werden die Draufsichten der Kabine im Vollschnitt (Layouts) dargestellt. Diese Layouts sind meist den Flugplänen verschiedener Fluggesellschaften entnommen.

Die Passagierzahlen und die Sitzplätze nebeneinander müssen nicht zwingend mit den Daten aus den angezeigten Layouts übereinstimmen, da es Maximalwerte sind. Es ist eher wahrscheinlich, daß die Fluggesellschaften, wenn es keine Chartergesellschaften sind, weit unter dem Maximalwert der Passagieranzahl liegen.

Genaue Angaben über Abmessungen von Küchen (Galley), Toiletten, Gänge, Sitze und die Passagieranzahl der meisten hier aufgeführten Layouts und einigen anderen sind der **Tabel**le A.31 bis **Tabelle A.36** zu entnehmen. Statistische Betrachtungen anhand dieser Wertetabellen werden in **Kapitel 6.5** vorgenommen.

C.1 Passagierflugzeuge mit Strahltriebwerken

A300-600

Bild C.1

Dreiseitenansicht der A300-600 (Jane's)

|--|

Bild C.2 Layout der A300-600 (Lufthansa)

Passagieranzahl:	308 PAX
Spannweite:	44,84 m
Streckung:	7,7
Flügelfläche:	260 m²
Rumpfdurchmesser:	5,64 m
Rumpflänge (Tonne):	53,3 m
Gesamtlänge:	54,08 m
Maximales Abfluggewicht:	165000 kg
Maximales Landegewicht:	138000 kg
Landebahnlänge bei maximalen Landegewicht:	1536 m
Anfluggeschwindigkeit:	249 km/h
Frachtraumvolumen:	147,4 m ³
Sitzplätze - nebeneinander:	9
Einsatzreichweite mit max. Nutzmasse:	5000 km"

A310

Bild C.3 Dreiseitenansicht der A310 (Jane´s)

30.000e	
120	
П	
. upz	
200	

Bild C.4 Layout der A310 (Austrian Airlines)

Passagieranzahl:	260 PAX
Spannweite:	43,89 m
Streckung:	8,8
Flügelfläche:	219 m²
Rumpfdurchmesser:	5,64 m
Rumpflänge (Tonne):	45,13 m
Gesamtlänge:	46,66 m
Maximales Abfluggewicht:	150000 kg
Maximales Landegewicht:	123000 kg
Landebahnlänge bei maximalen Landegewicht:	1480 m
Anfluggeschwindigkeit:	250 km/h
Frachtraumvolumen:	102,1 m ³
Sitzplätze - nebeneinander:	9
Einsatzreichweite mit max. Nutzmasse:	8000 km"

A318

Bild C.5 Fotomontage der A318 (nach Kreuzer 1999)

Passagieranzahl:	117 PAX
Spannweite:	34,09 m
Streckung:	9,5
Flügelfläche:	122,6 m²
Rumpfdurchmesser:	3,95 m
Rumpflänge (Tonne):	31,45 m*
Gesamtlänge:	31,45 m
Maximales Abfluggewicht:	61500 kg
Maximales Landegewicht:	61000 kg
Landebahnlänge bei maximalen Landegewicht:	
Anfluggeschwindigkeit:	250 km/h
Frachtraumvolumen:	
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	3700 km"

Bild C.6 Dreiseitenansicht der A319 (nach Daimler-Chrysler (1))

Bild C.7 Layout der A319 (Swissair)

Passagieranzahl:	142 PAX
Spannweite:	33,91 m
Streckung:	9,4
Flügelfläche:	122,4 m²
Rumpfdurchmesser:	3,95 m
Rumpflänge (Tonne):	33,8 m*
Gesamtlänge:	33,8 m
Maximales Abfluggewicht:	64000 kg
Maximales Landegewicht:	61000 kg
Landebahnlänge bei maximalen Landegewicht:	1356 m
Anfluggeschwindigkeit:	250 km/h
Frachtraumvolumen:	
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	5500 km

Bild C.8 Dreiseitenansicht der A320 (Jane´s)

Bild C.9 Layout der A320 (Lufthansa)

Passagieranzahl:	179 PAX
Spannweite:	33,91 m
Streckung:	9,4
Flügelfläche:	122,4 m²
Rumpfdurchmesser:	3,95 m
Rumpflänge (Tonne):	37,57 m*
Gesamtlänge:	37,57 m
Maximales Abfluggewicht:	73500 kg
Maximales Landegewicht:	64500 kg
Landebahnlänge bei maximalen Landegewicht:	1470 m
Anfluggeschwindigkeit:	255 km/h
Frachtraumvolumen:	38,76 m ³
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	5500 km"

Bild C.10 Dreiseitenansicht der A321 (Jane's)

Bild C.11 Layout der A321 (Air France)

Passagieranzahl:	212 PAX
Spannweite:	34,09 m
Streckung:	9,4
Flügelfläche:	122,4 m²
Rumpfdurchmesser:	3,95 m
Rumpflänge (Tonne):	44,51 m*
Gesamtlänge:	44,51 m
Maximales Abfluggewicht:	83000 kg
Maximales Landegewicht:	73500 kg
Landebahnlänge bei maximalen Landegewicht:	1587 m
Anfluggeschwindigkeit:	260 km/h
Frachtraumvolumen:	52,04 m³
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	4600 km"

A321

Bild C.12 Dreiseitenansicht der A330-300 (Jane's)

Bild C.13 Layout der A330-300 (LTU)

Passagieranzahl:	412 PAX
Spannweite:	60,30 m
Streckung:	10,0
Flügelfläche:	363,1 m²
Rumpfdurchmesser:	5,64 m
Rumpflänge (Tonne):	62,9 m*
Gesamtlänge:	63,65 m
Maximales Abfluggewicht:	230000 kg
Maximales Landegewicht:	177000 kg
Landebahnlänge bei maximalen Landegewicht:	1815 m*
Anfluggeschwindigkeit:	260 km/h
Frachtraumvolumen:	161,4 m³¤
Sitzplätze - nebeneinander:	9
Einsatzreichweite mit max. Nutzmasse:	6500 km"

Bild C.14 Dreiseitenansicht der A340-200 (Jane's)

Bild C.15 Layout der A340-200 (Austrian Airlines)

Passagieranzahl:	303 PAX
Spannweite:	60,30 m
Streckung:	10,0
Flügelfläche:	363,1 m²
Rumpfdurchmesser:	5,64 m
Rumpflänge (Tonne):	58,64 m
Gesamtlänge:	59,39 m¤
Maximales Abfluggewicht:	257000 kg
Maximales Landegewicht:	181000 kg
Landebahnlänge bei maximalen Landegewicht:	
Anfluggeschwindigkeit:	•
Frachtraumvolumen:	134,6 m ³ ¤
Sitzplätze - nebeneinander:	9
Einsatzreichweite mit max. Nutzmasse:	13334 km ¤

A340-300

Bild C.16 Layout der A340-300 (Air France)

Passagieranzahl:	420 PAX
Spannweite:	60,30 m
Streckung:	10,0
Flügelfläche:	363,1 m²
Rumpfdurchmesser:	5,64 m
Rumpflänge (Tonne):	62,9 m*
Gesamtlänge:	63,65 m
Maximales Abfluggewicht:	257000 kg
Maximales Landegewicht:	186000 kg
Landebahnlänge bei maximalen Landegewicht:	1855 m
Anfluggeschwindigkeit:	260 km/h
Frachtraumvolumen:	161,4 m ³ ¤
Sitzplätze - nebeneinander:	9
Einsatzreichweite mit max. Nutzmasse:	12000 km"

A340-600

A340-600		3-class long range	Total: 380 seats
First class 12 seats	Business class 54 seats	Economy class 314 seats	Seat pitches: F 62", B 40", Y 32"

Layout der A340-600 (Daimler-Chrysler (2)) Bild C.17

Passagieranzahl:	440 PAX
Spannweite:	63,60 m
Streckung:	9,3
Flügelfläche:	437 m²
Rumpfdurchmesser:	5,64 m
Rumpflänge (Tonne):	74,4 m*
Gesamtlänge:	75,3 m
Maximales Abfluggewicht:	365000 kg
Maximales Landegewicht:	254000 kg
Landebahnlänge bei maximalen Landegewicht:	
Anfluggeschwindigkeit:	265 km/h
Frachtraumvolumen:	42*LD3 ~ 182 m ³ Containerrauminhalt ¤
Sitzplätze - nebeneinander:	9
Einsatzreichweite mit max. Nutzmasse:	12500 km"

Bild C.18 Dreiseitenansicht der B717-200 (Jane´s)

106 PAX
28,45 m
8,7
92,97 m²
3,61 m
34,48 m*
37,8 m
54900 kg
49900 kg
1469 m
250 km/h
26,76 m ³
5
3600 km"

Bild C.20 Layout der B737-300 (Air France)

149 PAX
28,88 m
7,9
105,4 m²
3,75 m
32,2 m*
33,4 m
56470 kg
51720 kg
1433 m
250 km/h
30,2 m ³
6
4204 km

Bild C.21 Layout der B737-400 (KLM)

Passagieranzahl:	149 PAX
Spannweite:	28,88 m
Streckung:	7,9
Flügelfläche:	105,4 m²
Rumpfdurchmesser:	3,75 m
Rumpflänge (Tonne):	35,2 m*
Gesamtlänge:	36,45 m
Maximales Abfluggewicht:	62820 kg
Maximales Landegewicht:	54885 kg
Landebahnlänge bei maximalen Landegewicht:	1539 m
Anfluggeschwindigkeit:	257 km/h
Frachtraumvolumen:	38,88 m³
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	3870 km

B737-500

Bild C.22 Layout der B737-500 (Hapag-Lloyd)

Passagieranzahl:	132 PAX
Spannweite:	28,88 m
Streckung:	7,9
Flügelfläche:	105,4 m²
Rumpfdurchmesser:	3,75 m
Rumpflänge (Tonne):	29,8 m*
Gesamtlänge:	31,01 m
Maximales Abfluggewicht:	52390 kg
Maximales Landegewicht:	49895 kg
Landebahnlänge bei maximalen Landegewicht:	1356 m
Anfluggeschwindigkeit:	237 km/h
Frachtraumvolumen:	23,27 m ³
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	4481 km

Bild C.23 Dreiseitenansicht der B737-600 (nach Boeing)

Passagieranzahl:	132 PAX
Spannweite:	34,31 m
Streckung:	9,4
Flügelfläche:	125 m²
Rumpfdurchmesser:	3,75 m
Rumpflänge (Tonne):	30 m*
Gesamtlänge:	31,42 m
Maximales Abfluggewicht:	65090 kg
Maximales Landegewicht:	54657 kg
Landebahnlänge bei maximalen Landegewicht:	1268 m
Anfluggeschwindigkeit:	233 km/h
Frachtraumvolumen:	21,41 m³
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	5981 km

Bild C.24 Dreiseitenansicht der B737-700 (nach Endres 1998)

149 PAX
34,31 m
9,4
125 m²
3,75 m
32,4 m*
33,63 m
69399kg
58059 kg
1356 m
241 km/h
28,37 m ³
6
6009 km"

Bild C.25 Dreiseitenansicht der B737-800 (nach Boeing)

Bild C.26 Layout der B737-800 (Lauda Air)

Passagieranzahl:	189 PAX
Spannweite:	34,31 m
Streckung:	9,4
Flügelfläche:	125 m²
Rumpfdurchmesser:	3,75 m
Rumpflänge (Tonne):	38,2 m*
Gesamtlänge:	39,47 m
Maximales Abfluggewicht:	78244 kg
Maximales Landegewicht:	65317 kg
Landebahnlänge bei maximalen Landegewicht:	1600 m
Anfluggeschwindigkeit:	257 km/h
Frachtraumvolumen:	45,05 m ³
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	5426 km

Bild C.27 Dreiseitenansicht der B747-400 (Jane´s)

Bild C.28 Layout der B747-400 (KLM)

Passagieranzahl:	496 PAX
Spannweite:	64,44 m
Streckung:	7,9
Flügelfläche:	524,9 m²
Rumpfdurchmesser:	6,5 m
Rumpflänge (Tonne):	68,63 m
Gesamtlänge:	70,66 m
Maximales Abfluggewicht:	385555 kg
Maximales Landegewicht:	260360 kg
Landebahnlänge bei maximalen Landegewicht:	2072 m
Anfluggeschwindigkeit:	270 km/h
Frachtraumvolumen:	172 m ³ ¤
Sitzplätze - nebeneinander:	10
Einsatzreichweite mit max. Nutzmasse:	9800 km"

Bild C.29 Dreiseitenansicht der B757-200 (Jane's)

Bild C.30 Layout der B757-200 (LTU)

Passagieranzahl:	239 PAX
Spannweite:	38,05 m
Streckung:	7,8
Flügelfläche:	185,25 m²
Rumpfdurchmesser:	3,75 m
Rumpflänge (Tonne):	46,96 m
Gesamtlänge:	47,32 m
Maximales Abfluggewicht:	104325 kg
Maximales Landegewicht:	89810 kg
Landebahnlänge bei maximalen Landegewicht:	1460 m
Anfluggeschwindigkeit:	245 km/h
Frachtraumvolumen:	50,69 m³
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	5500 km"

Bild C.32 Layout der B767-200 (Malev)

Passagieranzahl:	255 PAX
Spannweite:	47,57 m
Streckung:	8,0
Flügelfläche:	283,3 m²
Rumpfdurchmesser:	5,03 m
Rumpflänge (Tonne):	47,24 m
Gesamtlänge:	48,51 m
Maximales Abfluggewicht:	136080 kg
Maximales Landegewicht:	122470 kg
Landebahnlänge bei maximalen Landegewicht:	1450 m¤
Anfluggeschwindigkeit:	252 km/h
Frachtraumvolumen:	111,3 m³
Sitzplätze - nebeneinander:	7
Einsatzreichweite mit max. Nutzmasse:	7000 km"

Bild C.33 Dreiseitenansicht der B767-300 (nach Endres 1998)

Bild C.34 Layout der B767-300 (Sabena)

Passagieranzahl:	316 PAX
Spannweite:	47,57 m
Streckung:	8,0
Flügelfläche:	283,3 m²
Rumpfdurchmesser:	5,03 m
Rumpflänge (Tonne):	53,67 m
Gesamtlänge:	54,94 m
Maximales Abfluggewicht:	156490 kg
Maximales Landegewicht:	136080 kg
Landebahnlänge bei maximalen Landegewicht:	1646 m
Anfluggeschwindigkeit:	261 km/h
Frachtraumvolumen:	147 m ³
Sitzplätze - nebeneinander:	7
Einsatzreichweite mit max. Nutzmasse:	7600 km"

Bild C.35 Dreiseitenansicht der B777-200 (Jane's)

tanigatularia kar a tanigatularia kar tanigatularia kar tanigatularia kar tanigatularia kar
есне 777-товая нам. нам. нам.

Bild C.36 Layout der B777-200 (Lauda Air)

Passagieranzahl:	375 PAX
Spannweite:	60,93 m
Streckung:	8,68
Flügelfläche:	427,8 m²
Rumpfdurchmesser:	6,2 m
Rumpflänge (Tonne):	62,78 m
Gesamtlänge:	63,73 m
Maximales Abfluggewicht:	233600 kg
Maximales Landegewicht:	201850 kg
Landebahnlänge bei maximalen Landegewicht:	1700 m
Anfluggeschwindigkeit:	256 km/h
Frachtraumvolumen:	160,16 m ³
Sitzplätze - nebeneinander:	10
Einsatzreichweite mit max. Nutzmasse:	10000 km"

Bild C.37 Dreiseitenansicht der B777-300 (nach Boeing)

Passagieranzahl:	478 PAX
Spannweite:	60,93 m
Streckung:	8,68
Flügelfläche:	427,8 m²
Rumpfdurchmesser:	6,2 m
Rumpflänge (Tonne):	72,91 m
Gesamtlänge:	73,86 m
Maximales Abfluggewicht:	299370 kg
Maximales Landegewicht:	237682 kg
Landebahnlänge bei maximalen Landegewicht:	3260 m
Anfluggeschwindigkeit:	278 km/h
Frachtraumvolumen:	200,48 m³
Sitzplätze - nebeneinander:	10
Einsatzreichweite mit max. Nutzmasse:	7900 km"

Bild C.38 Dreiseitenansicht der BAC-Airstar 2500 (Jane's)

115 PAX
28,5 m
8,5
95,78 m²
3,4 m
29,67 m
32,61 m
47400 kg
40823 kg
1464 m
237 km/h
19,45 m³
5
2593 km

BAe 146-300

Bild C.40 Layout der BAe 146-300 (Crossair)

Passagieranzahl:	122 PAX
Spannweite:	26,21 m
Streckung:	8,97
Flügelfläche:	77,3 m²
Rumpfdurchmesser:	3,56 m
Rumpflänge (Tonne):	28,9 m*
Gesamtlänge:	30,99 m
Maximales Abfluggewicht:	44225 kg
Maximales Landegewicht:	38328 kg
Landebahnlänge bei maximalen Landegewicht:	1228 m
Anfluggeschwindigkeit:	195 km/h
Frachtraumvolumen:	22,99 m³
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	2300 km"

Canadair Regional Jet

Bild C.41 Dreiseitenansicht des Canadair Regional Jets (Jane´s)

Bild C.42 Layout des Canadair Regional Jets (Lufthansa)

Passagieranzahl:	50 PAX
Spannweite:	21,21 m
Streckung:	8,9
Flügelfläche:	54,54 m²
Rumpfdurchmesser:	2,69 m
Rumpflänge (Tonne):	24,38 m
Gesamtlänge:	26,77 m
Maximales Abfluggewicht:	23133 kg
Maximales Landegewicht:	20275 kg
Landebahnlänge bei maximalen Landegewicht:	1423 m
Anfluggeschwindigkeit:	210 km/h
Frachtraumvolumen:	13,64 m ³
Sitzplätze - nebeneinander:	4
Einsatzreichweite mit max. Nutzmasse:	2500 km"

Embraer EMB-145

Bild C.43 Dreiseitenansicht der Embraer EMB-145 (Jane´s)

Passagieranzahl:	50 PAX
Spannweite:	20,04 m
Streckung:	7,9
Flügelfläche:	51,18 m²
Rumpfdurchmesser:	2,28 m
Rumpflänge (Tonne):	27,93 m
Gesamtlänge:	29,87 m
Maximales Abfluggewicht:	19200 kg
Maximales Landegewicht:	18700 kg
Landebahnlänge bei maximalen Landegewicht:	1290 m
Anfluggeschwindigkeit:	220 km/h
Frachtraumvolumen:	14,75 m ³
Sitzplätze - nebeneinander:	3
Einsatzreichweite mit max. Nutzmasse:	2800 km"

Fairchild Dornier 328Jet

Bild C.44 Bild des Fairchild Dornier 328Jet (nach Kreuzer 1999)

Passagieranzahl:	34 PAX
Spannweite:	20,99 m
Streckung:	10,6
Flügelfläche:	41,5 m ²
Rumpfdurchmesser:	2,42 m
Rumpflänge (Tonne):	20,92 m
Gesamtlänge:	21,28 m
Maximales Abfluggewicht:	14990 kg
Maximales Landegewicht:	13730 kg
Landebahnlänge bei maximalen Landegewicht:	1186 m¤
Anfluggeschwindigkeit:	200 km/h
Frachtraumvolumen:	6,3 m³
Sitzplätze - nebeneinander:	3
Einsatzreichweite mit max. Nutzmasse:	1500 km"

Fokker 100

Bild C.45 Dreiseitenansicht der Fokker 100 (Jane's)

Passagieranzahl:	109 PAX
Spannweite:	28,08 m
Streckung:	8,4
Flügelfläche:	93,5 m²
Rumpfdurchmesser:	3,3 m
Rumpflänge (Tonne):	32,5 m
Gesamtlänge:	35,53 m
Maximales Abfluggewicht:	44450 kg
Maximales Landegewicht:	38780 kg
Landebahnlänge bei maximalen Landegewicht:	1320 m
Anfluggeschwindigkeit:	237 km/h
Frachtraumvolumen:	19,72 m ³
Sitzplätze - nebeneinander:	5
Einsatzreichweite mit max. Nutzmasse:	2500 km"

Fokker 70

Bild C.46 Dreiseitenansicht der Fokker 70 (Jane's)

Bild C.47 Layout der Fokker 70 (Austrian Airlines)

Passagieranzahl:	79 PAX
Spannweite:	28,08 m
Streckung:	8,4
Flügelfläche:	93,5 m²
Rumpfdurchmesser:	3,3 m
Rumpflänge (Tonne):	27,88 m
Gesamtlänge:	30,91 m
Maximales Abfluggewicht:	36740 kg
Maximales Landegewicht:	34020 kg
Landebahnlänge bei maximalen Landegewicht:	1215 m
Anfluggeschwindigkeit:	220 km/h
Frachtraumvolumen:	17,8 m³
Sitzplätze - nebeneinander:	5
Einsatzreichweite mit max. Nutzmasse:	2800 km"

Ilyushin (T-74) II-96-300

Ilyushin II-96M powered by four P&W PW2337s, with additional side view (top) of the II-96-300, powered byBild C.48Dreiseitenansicht der II-96-300 (Jane's)

270 PAX
57,66 m
9,5
391,6 m²
6,08 m
51,15 m
55,35 m
216000 kg
175000 kg
1980 m
260 km/h
115,9 m³
9
6800 km"

Bild C.49

Dreiseitenansicht der MD-11 (Jane's)

Bild C.50 Layout der MD-11 (Alitalia)

Passagieranzahl:	398 PAX
Spannweite:	51,77 m
Streckung:	7,5
Flügelfläche:	338,9 m²
Rumpfdurchmesser:	6,02 m
Rumpflänge (Tonne):	58,65 m
Gesamtlänge:	61,37 m
Maximales Abfluggewicht:	273289 kg
Maximales Landegewicht:	195040 kg
Landebahnlänge bei maximalen Landegewicht:	1966 m
Anfluggeschwindigkeit:	260 km/h
Frachtraumvolumen:	194 m³
Sitzplätze - nebeneinander:	9
Einsatzreichweite mit max. Nutzmasse:	10500 km"

Bild C.51 Dreiseitenansicht der MD-82 (nach Endres 1998)

Bild C.52 Layout der MD-82 (Alitalia)

Passagieranzahl:	138 PAX
Spannweite:	32,87 m
Streckung:	9,62
Flügelfläche:	115,1 m²
Rumpfdurchmesser:	3,61 m
Rumpflänge (Tonne):	41,3 m
Gesamtlänge:	45,06 m
Maximales Abfluggewicht:	67810 kg
Maximales Landegewicht:	58967 kg
Landebahnlänge bei maximalen Landegewicht:	1463 m
Anfluggeschwindigkeit:	
Frachtraumvolumen:	35,48 m³
Sitzplätze - nebeneinander:	5
Einsatzreichweite mit max. Nutzmasse:	3798 km

MD-83

Bild C.53 Layout der MD-83 (Crossair)

Passagieranzahl:	172 PAX
Spannweite:	32,87 m
Streckung:	9,62
Flügelfläche:	115,1 m²
Rumpfdurchmesser:	3,61 m
Rumpflänge (Tonne):	41,3 m
Gesamtlänge:	45,06 m
Maximales Abfluggewicht:	72575 kg
Maximales Landegewicht:	63276 kg
Landebahnlänge bei maximalen Landegewicht:	1540 m
Anfluggeschwindigkeit:	265 km/h
Frachtraumvolumen:	35,48 m ³ ¤
Sitzplätze - nebeneinander:	5
Einsatzreichweite mit max. Nutzmasse:	4200 km"

MD-87

Bild C.54 Dreiseitenansicht der MD-87 (Jane´s)

Bild C.55 Layout der MD-87 (Austrian Airlines)

Passagieranzahl:	130 PAX
Spannweite:	32,87 m
Streckung:	9,62
Flügelfläche:	115,1 m²
Rumpfdurchmesser:	3,61 m
Rumpflänge (Tonne):	36,3 m
Gesamtlänge:	39,75 m
Maximales Abfluggewicht:	63505 kg
Maximales Landegewicht:	58060 kg
Landebahnlänge bei maximalen Landegewicht:	1451 m
Anfluggeschwindigkeit:	
Frachtraumvolumen:	26,56 m ³
Sitzplätze - nebeneinander:	5
Einsatzreichweite mit max. Nutzmasse:	4393 km

Bild C.56 Dreiseitenansicht der MD 90-30 (Jane´s)

Passagieranzahl:	178 PAX
Spannweite:	32,87 m
Streckung:	9,6
Flügelfläche:	112,3 m²
Rumpfdurchmesser:	3,61 m
Rumpflänge (Tonne):	43,03 m
Gesamtlänge:	46,51 m
Maximales Abfluggewicht:	70760 kg
Maximales Landegewicht:	64410 kg
Landebahnlänge bei maximalen Landegewicht:	1509 m
Anfluggeschwindigkeit:	260 km/h
Frachtraumvolumen:	36,8 m³
Sitzplätze - nebeneinander:	5
Einsatzreichweite mit max. Nutzmasse:	4216 km

MD 90-50/55

Passagieranzahl:	178 PAX
Spannweite:	32,87 m
Streckung:	9,6
Flügelfläche:	112,3 m²
Rumpfdurchmesser:	3,61 m
Rumpflänge (Tonne):	43,03 m
Gesamtlänge:	46,51 m
Maximales Abfluggewicht:	78245 kg
Maximales Landegewicht:	71210 kg
Landebahnlänge bei maximalen Landegewicht:	1628 m
Anfluggeschwindigkeit:	
Frachtraumvolumen:	23,3 m³
Sitzplätze - nebeneinander:	5
Einsatzreichweite mit max. Nutzmasse:	5600 km"

Tupolev Tu-204-220

Bild C.57 Dreiseitenansicht der Tu-204-220 (Jane's)

Passagieranzahl:	214 PAX
Spannweite:	42 m
Streckung:	9,7
Flügelfläche:	182,4 m²
Rumpfdurchmesser:	3,95 m
Rumpflänge (Tonne):	44,5m*
Gesamtlänge:	46 m
Maximales Abfluggewicht:	110750 kg
Maximales Landegewicht:	89500 kg
Landebahnlänge bei maximalen Landegewicht:	2000 m
Anfluggeschwindigkeit:	250 km/h
Frachtraumvolumen:	31,8 m³
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	6600 km"

Yakovlev Yak-142

Bild C.58 Dreiseitenansicht der YAK-142 (Jane´s)

Passagieranzahl:	120 PAX
Spannweite:	34,88 m
Streckung:	8,1
Flügelfläche:	150 m²
Rumpfdurchmesser:	3,8 m
Rumpflänge (Tonne):	32,9 m*
Gesamtlänge:	36,38 m
Maximales Abfluggewicht:	57000 kg
Maximales Landegewicht:	51000 kg
Landebahnlänge bei maximalen Landegewicht:	1800 m
Anfluggeschwindigkeit:	210 km/h
Frachtraumvolumen:	29,3 m³
Sitzplätze - nebeneinander:	6
Einsatzreichweite mit max. Nutzmasse:	1380 km

Erklärung der Kennzeichnungen an den aufgelisteten Daten in Anhang C.1:

- Die Werte ohne Kennzeichnung sind Jane's 1996/1997 und Jane's 1992/1993 entnommen.
- Die mit einem * gekennzeichneten Werte sind aus den Dreiseitenansichten abgelesen worden.

- Die mit einem " gekennzeichneten Werte sind Kreuzer 1999 entnommen.
- Die mit einem ¤ gekennzeichneten Werte sind der **Uni Würzburg** entnommen.

C.2 Passagierflugzeuge mit Propellerturbinen

Airtech CN-235

Bild C.59 Dreiseitenansicht der CN-235 (Jane´s)

Passagieranzahl:	44 PAX
Spannweite:	25,81 m
Streckung:	10,2
Flügelfläche:	59,1 m²
Rumpfdurchmesser:	2,76 m
Rumpflänge (Tonne):	21,2 m*
Gesamtlänge:	21,4 m
Maximales Abfluggewicht:	15100 kg
Maximales Landegewicht:	14900 kg
Landebahnlänge bei maximalen Landegewicht:	1276 m
Anfluggeschwindigkeit:	203 km/h
Frachtraumvolumen:	
Sitzplätze - nebeneinander:	4
Einsatzreichweite mit max. Nutzmasse:	4352 km

Antonov An-140

Bild C.60 Bild der An-140 (nach Kreuzer 1999)

Passagieranzahl:	56 PAX
Spannweite:	24,25 m
Streckung:	10,7
Flügelfläche:	55 m ²
Rumpfdurchmesser:	
Rumpflänge (Tonne):	
Gesamtlänge:	22,46 m
Maximales Abfluggewicht:	22000 kg
Maximales Landegewicht:	
Landebahnlänge bei maximalen Landegewicht:	
Anfluggeschwindigkeit:	190 km/h
Frachtraumvolumen:	
Sitzplätze - nebeneinander:	4
Einsatzreichweite mit max. Nutzmasse:	900 km"

Antonov An-38-100

Bild C.61	Dreiseitenansicht der An-38-10	0 (Jane´s)	
-----------	--------------------------------	------------	--

Passagieranzahl:	27 PAX
Spannweite:	22,06 m
Streckung:	12,3
Flügelfläche:	39,7 m²
Rumpfdurchmesser:	2,05 m
Rumpflänge (Tonne):	14,3 m*
Gesamtlänge:	15,54 m
Maximales Abfluggewicht:	8800 kg
Maximales Landegewicht:	8600 kg
Landebahnlänge bei maximalen Landegewicht:	270 m
Anfluggeschwindigkeit:	130 km/h
Frachtraumvolumen:	
Sitzplätze - nebeneinander:	3
Einsatzreichweite mit max. Nutzmasse:	650 km"

Avions de Transport regional ATR 42

Bild C.63 Layout der ATR 42 (Alitalia)

Passagieranzahl:	50 PAX
Spannweite:	24,57 m
Streckung:	11,1
Flügelfläche:	54,5 m²
Rumpfdurchmesser:	2,865 m
Rumpflänge (Tonne):	22,67 m*
Gesamtlänge:	22,67 m
Maximales Abfluggewicht:	16700 kg
Maximales Landegewicht:	16400 kg
Landebahnlänge bei maximalen Landegewicht:	1034 m
Anfluggeschwindigkeit:	195 km/h
Frachtraumvolumen:	8,4 m³
Sitzplätze - nebeneinander:	4
Einsatzreichweite mit max. Nutzmasse:	1600 km"

ATR 72

Bild C.64

Dreiseitenansicht der ATR 72 (Jane's)

Bild C.65 Layout der ATR 72 (LOT)

Passagieranzahl:	72 PAX
Spannweite:	27,05 m
Streckung:	12,0
Flügelfläche:	61 m²
Rumpfdurchmesser:	2,865 m
Rumpflänge (Tonne):	27,17 m*
Gesamtlänge:	27,17 m
Maximales Abfluggewicht:	21500 kg
Maximales Landegewicht:	21350 kg
Landebahnlänge bei maximalen Landegewicht:	1210 m
Anfluggeschwindigkeit:	200 km/h
Frachtraumvolumen:	6,4 m ³
Sitzplätze - nebeneinander:	4
Einsatzreichweite mit max. Nutzmasse:	1300 km"

Bild C.66 Dreiseitenansicht der BAe ATP (nach Endres 1998)

Passagieranzahl:	71 PAX
Spannweite:	30,63 m
Streckung:	12,0
Flügelfläche:	78,32 m²
Rumpfdurchmesser:	2,6 m
Rumpflänge (Tonne):	25,7 m*
Gesamtlänge:	26 m
Maximales Abfluggewicht:	22930 kg
Maximales Landegewicht:	22250 kg
Landebahnlänge bei maximalen Landegewicht:	1128 m
Anfluggeschwindigkeit:	190 km/h
Frachtraumvolumen:	
Sitzplätze - nebeneinander:	4
Einsatzreichweite mit max. Nutzmasse:	1200 km"

BAe Jetstream 41

Bild C.67	Dreiseitenansicht der BAe Jetstream 41	(Jane's)
-----------	--	----------

Passagieranzahl:	30 PAX
Spannweite:	18,29 m
Streckung:	10,26
Flügelfläche:	32,59 m²
Rumpfdurchmesser:	1,98 m
Rumpflänge (Tonne):	18,1 m*
Gesamtlänge:	19,25 m
Maximales Abfluggewicht:	10433 kg
Maximales Landegewicht:	10115 kg
Landebahnlänge bei maximalen Landegewicht:	1250 m
Anfluggeschwindigkeit:	190 km/h
Frachtraumvolumen:	6,16 m ³
Sitzplätze - nebeneinander:	3
Einsatzreichweite mit max. Nutzmasse:	1300 km"

De Havilland DHC-8 100/200

DHC-8 Dash 8 Series 100, with additional side view (bottom) and wingtip of Series 300Bild C.68Dreiseitenansicht der DHC-8 100 und DHC-8 300 (Jane's)

Bild C.69 Layout der DHC-8 100 (Tyrolean Airways)

Passagieranzahl:	39 PAX
Spannweite:	25,91 m
Streckung:	12,4
Flügelfläche:	54,35 m²
Rumpfdurchmesser:	2,69 m
Rumpflänge (Tonne):	21 m*
Gesamtlänge:	22,25 m
Maximales Abfluggewicht:	16465 kg
Maximales Landegewicht:	15513 kg
Landebahnlänge bei maximalen Landegewicht:	780 m
Anfluggeschwindigkeit:	180 km/h
Frachtraumvolumen:	8,5 m³
Sitzplätze - nebeneinander:	4
Einsatzreichweite mit max. Nutzmasse:	1750 km"

De Havilland DHC-8 400

Bild C.70 Dreiseitenansicht der DHC-8 400 (Jane's)

Spannweite:28,42 mStreckung:12,8Flügelfläche:63,08 mRumpfdurchmesser:2,69 mRumpflänge (Tonne):31 m*Gesamtlänge:32,99 mMaria la Al Grandi Litter26000 l	2
Streckung:12,8Flügelfläche:63,08 mRumpfdurchmesser:2,69 mRumpflänge (Tonne):31 m*Gesamtlänge:32,99 mMaria la Al Grandi Litter26000 l	2
Flügelfläche:63,08 mRumpfdurchmesser:2,69 mRumpflänge (Tonne):31 m*Gesamtlänge:32,99 mMaria la Al Grandi Litter26000 l	2
Rumpfdurchmesser:2,69 mRumpflänge (Tonne):31 m*Gesamtlänge:32,99 mMaria la Al Grandi Litta 2000 la	
Rumpflänge (Tonne):31 m*Gesamtlänge:32,99 mMaria I. Al Grandi I. I.26000 L	
Gesamtlänge: 32,99 m	
Maximales Ablinggewicht: 26989 k	g
Maximales Landegewicht: 26762 k	g
Landebahnlänge bei maximalen Landegewicht: 1293 m	
Anfluggeschwindigkeit: 190 km	h
Frachtraumvolumen: 15,46 m	3
Sitzplätze - nebeneinander: 4	
Einsatzreichweite mit max. Nutzmasse: 1800 km	ı"

Embraer EMB-120ER

Bild C.71 Dreiseitenansicht der EMB-120ER (Jane´s)

Passagieranzahl:	30 PAX
Spannweite:	19,78 m
Streckung:	9,9
Flügelfläche:	39,43 m²
Rumpfdurchmesser:	2,28 m
Rumpflänge (Tonne):	18,73 m
Gesamtlänge:	20,07 m
Maximales Abfluggewicht:	11990 kg
Maximales Landegewicht:	11700 kg
Landebahnlänge bei maximalen Landegewicht:	1390 m
Anfluggeschwindigkeit:	190 km/h
Frachtraumvolumen:	6,4 m³
Sitzplätze - nebeneinander:	3
Einsatzreichweite mit max. Nutzmasse:	1400 km"

Dornier 228

Bild C.72 Dreiseitenansicht der Dornier 228 (Jane´s)

Passagieranzahl:	19 PAX
Spannweite:	16,97 m
Streckung:	9,0
Flügelfläche:	32 m²
Rumpfdurchmesser:	2,04 m
Rumpflänge (Tonne):	15,9 m*
Gesamtlänge:	16,56 m
Maximales Abfluggewicht:	6400 kg
Maximales Landegewicht:	6100 kg
Landebahnlänge bei maximalen Landegewicht:	450 m
Anfluggeschwindigkeit:	140 km/h
Frachtraumvolumen:	3,49 m³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	500 km"

Dornier 328

Bild C.73	Dreiseitenansicht der Dornier 328	(Jane's	;)
-----------	-----------------------------------	---------	----

Passagieranzahl:	33 PAX
Spannweite:	20,98 m
Streckung:	11,0
Flügelfläche:	40 m²
Rumpfdurchmesser:	2,42 m
Rumpflänge (Tonne):	20,92 m
Gesamtlänge:	21,28 m
Maximales Abfluggewicht:	13990 kg
Maximales Landegewicht:	13230 kg
Landebahnlänge bei maximalen Landegewicht:	1165 m
Anfluggeschwindigkeit:	185 km/h
Frachtraumvolumen:	6,3 m³
Sitzplätze - nebeneinander:	3
Einsatzreichweite mit max. Nutzmasse:	1900 km"

Fairchild METRO 23

Bild C.74 Dreiseitenansicht der METRO 23 (Jane´s)

Passagieranzahl:	19 PAX
Spannweite:	17,37 m
Streckung:	10,5
Flügelfläche:	28,71 m²
Rumpfdurchmesser:	1,51 m
Rumpflänge (Tonne):	17,5 m*
Gesamtlänge:	18,09 m
Maximales Abfluggewicht:	7484 kg
Maximales Landegewicht:	7110 kg
Landebahnlänge bei maximalen Landegewicht:	1273 m
Anfluggeschwindigkeit:	190 km/h
Frachtraumvolumen:	2,74 m ³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	950 km"

Fokker 50

Bild C.75 Dreiseitenansicht der Fokker 50 (Jane's)

Bild C.76 Layout der Fokker 50 (Lufthansa)

Passagieranzahl:	58 PAX
Spannweite:	29 m
Streckung:	12,0
Flügelfläche:	70 m²
Rumpfdurchmesser:	2,7 m
Rumpflänge (Tonne):	25,25 m*
Gesamtlänge:	25,25 m
Maximales Abfluggewicht:	19950 kg
Maximales Landegewicht:	19500 kg
Landebahnlänge bei maximalen Landegewicht:	1020 m
Anfluggeschwindigkeit:	195 km/h
Frachtraumvolumen:	8,2 m³
Sitzplätze - nebeneinander:	4
Einsatzreichweite mit max. Nutzmasse:	2000 km"

Ilyushin IL-114

Bild C.77 Dreiseitenansicht der II-114 (Jane´s)

Passagieranzahl:	64 PAX
Spannweite:	30 m
Streckung:	11,8
Flügelfläche:	76 m²
Rumpfdurchmesser:	2,86 m
Rumpflänge (Tonne):	26,2 m
Gesamtlänge:	26,88 m
Maximales Abfluggewicht:	23500 kg
Maximales Landegewicht:	21500 kg
Landebahnlänge bei maximalen Landegewicht:	1300 m
Anfluggeschwindigkeit:	190 km/h
Frachtraumvolumen:	•
Sitzplätze - nebeneinander:	4
Einsatzreichweite mit max. Nutzmasse:	1000 km"

IPTN N-250

Bild C.78 Dreiseitenansicht der IPTN N-250 (Jane´s)

Passagieranzahl:	68 PAX
Spannweite:	28 m
Streckung:	12,1
Flügelfläche:	65 m²
Rumpfdurchmesser:	2,9 m
Rumpflänge (Tonne):	25,25 m
Gesamtlänge:	26,63 m
Maximales Abfluggewicht:	22000 kg
Maximales Landegewicht:	21800 kg
Landebahnlänge bei maximalen Landegewicht:	1220 m
Anfluggeschwindigkeit:	190 km/h
Frachtraumvolumen:	11,65 m ³
Sitzplätze - nebeneinander:	4
Einsatzreichweite mit max. Nutzmasse:	1200 km"

LET L-610

Bild C.79 Dreiseitenansicht der LET L-610 (Jane's)

Passagieranzahl:	40 PAX
Spannweite:	25,6 m
Streckung:	11,7
Flügelfläche:	56 m²
Rumpfdurchmesser:	2,7 m
Rumpflänge (Tonne):	20,53 m
Gesamtlänge:	21,72 m
Maximales Abfluggewicht:	14500 kg
Maximales Landegewicht:	14200 kg
Landebahnlänge bei maximalen Landegewicht:	645 m
Anfluggeschwindigkeit:	175 km/h
Frachtraumvolumen:	7,5 m ³
Sitzplätze - nebeneinander:	4
Einsatzreichweite mit max. Nutzmasse:	560 km"

Raytheon Beech 1900D

Passagieranzahl:	19 PAX
Spannweite:	17,67 m
Streckung:	10,9
Flügelfläche:	28,8 m²
Rumpfdurchmesser:	1,91 m
Rumpflänge (Tonne):	16,5 m*
Gesamtlänge:	17,63 m
Maximales Abfluggewicht:	7688 kg
Maximales Landegewicht:	7530 kg
Landebahnlänge bei maximalen Landegewicht:	844 m
Anfluggeschwindigkeit:	175 km/h
Frachtraumvolumen:	5,43 m³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	925 km"

Bild C.81 Dreiseitenansicht der Saab 2000 (Jane's)

Bild C.82 Layout der Saab 2000 (Crossair)

Passagieranzahl:	50 PAX
Spannweite:	24,76 m
Streckung:	11,0
Flügelfläche:	55,74 m²
Rumpfdurchmesser:	2,31 m
Rumpflänge (Tonne):	27,28 m*
Gesamtlänge:	27,28 m
Maximales Abfluggewicht:	22800 kg
Maximales Landegewicht:	22000 kg
Landebahnlänge bei maximalen Landegewicht:	1280 m
Anfluggeschwindigkeit:	200 km/h
Frachtraumvolumen:	10,2 m ³
Sitzplätze - nebeneinander:	3
Einsatzreichweite mit max. Nutzmasse:	1850 km"

Saab 340B

Bild C.83 Dreiseitenansicht der Saab 340B (Jane's)

Bild C.84 Layout der Saab 340B (Crossair)

Passagieranzahl:	33 PAX
Spannweite:	21,44 m
Streckung:	11,0
Flügelfläche:	41,81 m²
Rumpfdurchmesser:	2,31 m
Rumpflänge (Tonne):	19,73 m*
Gesamtlänge:	19,73 m
Maximales Abfluggewicht:	13155 kg
Maximales Landegewicht:	12930 kg
Landebahnlänge bei maximalen Landegewicht:	1065 m
Anfluggeschwindigkeit:	190 km/h
Frachtraumvolumen:	8,3 m³
Sitzplätze - nebeneinander:	3
Einsatzreichweite mit max. Nutzmasse:	950 km"

Erklärung der Kennzeichnungen an den aufgelisteten Daten in Anhang C.2:

- Die Werte ohne Kennzeichnung sind Jane's 1996/1997 und Jane's 1992/1993 entnommen.
- Die mit einem * gekennzeichneten Werte sind aus den Dreiseitenansichten abgelesen worden.
- Die mit einem " gekennzeichneten Werte sind Kreuzer 1999 entnommen.

C.3 Business Jets

ASTRA SPX (IAI)

Bild C.85 Dreiseitenansicht der ASTRA SPX (Jane's)

Passagieranzahl:	6 PAX
Spannweite:	16,64 m
Streckung:	8,8
Flügelfläche:	29,4 m ²
Rumpfdurchmesser:	1,74 m ((b+h)/2)
Rumpflänge (Tonne):	16,3 m*
Gesamtänge:	16,94 m
Maximales Abfluggewicht:	11181 kg
Maximales Landegewicht:	9389 kg
Landebahnlänge bei maximalen Landegewicht:	829 m
Anfluggeschwindigkeit:	222 km/h
Frachtraumvolumen:	1,56 m ³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	3900 km"

Bombardier BD 701 - Global Express

Passagieranzahl:	18 PAX
Spannweite:	28,5 m
Streckung:	8,6
Flügelfläche:	94,95 m²
Rumpfdurchmesser:	2,92 m
Rumpflänge (Tonne):	26,2 m*
Gesamtlänge:	30,3 m
Maximales Abfluggewicht:	42412 kg
Maximales Landegewicht:	36653 kg
Landebahnlänge bei maximalen Landegewicht:	779 m
Anfluggeschwindigkeit:	235 km/h
Frachtraumvolumen:	
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	9600 km"

Bombardier/Canadair Challenger

Bild C.87 Bild der Challenger (nach Kreuzer 1999)

Passagieranzahl:	12 PAX
Spannweite:	19,61 m
Streckung:	8,0
Flügelfläche:	48,31 m²
Rumpfdurchmesser:	2,69 m
Rumpflänge (Tonne):	18 m*
Gesamtlänge:	20,85 m
Maximales Abfluggewicht:	21591 kg
Maximales Landegewicht:	17236 kg
Landebahnlänge bei maximalen Landegewicht:	846 m
Anfluggeschwindigkeit:	220 km/h
Frachtraumvolumen:	
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	5800 km"

Bombardier/Learjet 45

Bild C.88	Dreiseitenansicht des	Learjet 45	(Jane´s	s)
-----------	-----------------------	------------	---------	----

Passagieranzahl:	10 PAX
Spannweite:	13,35 m
Streckung:	6,8
Flügelfläche:	26,3 m²
Rumpfdurchmesser:	1,61 m
Rumpflänge (Tonne):	16,6 m*
Gesamtlänge:	17,89 m
Maximales Abfluggewicht:	8845 kg
Maximales Landegewicht:	8709 kg
Landebahnlänge bei maximalen Landegewicht:	911 m
Anfluggeschwindigkeit:	220 km/h
Frachtraumvolumen:	1,42 m ³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	3000 km"

Bombardier/Learjet 60

Bild C.89	Dreiseitenansicht des L	eariet 60 (Jane's)

Passagieranzahl:	9 PAX
Spannweite:	13,34 m
Streckung:	6,8
Flügelfläche:	24,55 m²
Rumpfdurchmesser:	1,92 m
Rumpflänge (Tonne):	17,02 m
Gesamtlänge:	17,88 m
Maximales Abfluggewicht:	10319 kg
Maximales Landegewicht:	8845 kg
Landebahnlänge bei maximalen Landegewicht:	1582 m
Anfluggeschwindigkeit:	235 km/h
Frachtraumvolumen:	
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	3500 km"

Cessna 560 XL Citation Excel

Bild C.90

Bild der 560 XL Citation Excel (nach **Jane´s**)

Passagieranzahl:	10
Spannweite:	16,98 m
Streckung:	8,4
Flügelfläche:	34,35 m²
Rumpfdurchmesser:	1,95 m
Rumpflänge (Tonne):	15,24 m
Gesamtlänge:	15,79 m
Maximales Abfluggewicht:	8482 kg
Maximales Landegewicht:	7892 kg
Landebahnlänge bei maximalen Landegewicht:	1010 m
Anfluggeschwindigkeit:	195 km/h
Frachtraumvolumen:	2,26 m ³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	2900 km"

Cessna 650 Citation VII

Passagieranzahl:	9
Spannweite:	16,31 m
Streckung:	9,2
Flügelfläche:	28,99 m²
Rumpfdurchmesser:	1,8 m*
Rumpflänge (Tonne):	14,9 m*
Gesamtlänge:	16,9 m
Maximales Abfluggewicht:	10183 kg
Maximales Landegewicht:	9072 kg
Landebahnlänge bei maximalen Landegewicht:	881 m
Anfluggeschwindigkeit:	205 km/h
Frachtraumvolumen:	1,44 m³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	3300 km"

Cessna 750 Citation X

Bild C.92 Dreiseitenansicht der 750 Citation X (Jane's)

Passagieranzahl:	12 PAX
Spannweite:	19,48 m
Streckung:	7,7
Flügelfläche:	48,96 m²
Rumpfdurchmesser:	2,23 m
Rumpflänge (Tonne):	17,8 m*
Gesamtlänge:	22 m
Maximales Abfluggewicht:	16011 kg
Maximales Landegewicht:	14424 kg
Landebahnlänge bei maximalen Landegewicht:	1067 m
Anfluggeschwindigkeit:	220 km/h
Frachtraumvolumen:	2,04 m³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	4900 km"

Dassault Falcon 2000

Passagieranzahl:	9 PAX
Spannweite:	19,33 m
Streckung:	7,6
Flügelfläche:	49,02 m²
Rumpfdurchmesser:	2,5 m
Rumpflänge (Tonne):	19,7 m*
Gesamtlänge:	20,23 m
Maximales Abfluggewicht:	16238 kg
Maximales Landegewicht:	14970 kg
Landebahnlänge bei maximalen Landegewicht:	1588 m
Anfluggeschwindigkeit:	210 km/h
Frachtraumvolumen:	4 m³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	3700 km"
Dassault Falcon 50 EX

Passagieranzahl:	8 PAX
Spannweite:	18,86 m
Streckung:	7,6
Flügelfläche:	46,83 m²
Rumpfdurchmesser:	2,11 m
Rumpflänge (Tonne):	17,66 m
Gesamtlänge:	18,52 m
Maximales Abfluggewicht:	18007 kg
Maximales Landegewicht:	16200 kg
Landebahnlänge bei maximalen Landegewicht:	1483 m
Anfluggeschwindigkeit:	220 km/h
Frachtraumvolumen:	3,3 m³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	4900 km"

Dassault Falcon 900B

Passagieranzahl:	19 PAX
Spannweite:	19,33 m
Streckung:	7,6
Flügelfläche:	49 m²
Rumpfdurchmesser:	2,5 m
Rumpflänge (Tonne):	19,3 m*
Gesamtlänge:	20,21 m
Maximales Abfluggewicht:	20640 kg
Maximales Landegewicht:	19050 kg
Landebahnlänge bei maximalen Landegewicht:	1783 m
Anfluggeschwindigkeit:	200 km/h
Frachtraumvolumen:	3,6 m ³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	5900 km"

Galaxy Aerospace "Galaxy"

Passagieranzahl:	10 PAX
Spannweite:	17,71 m
Streckung:	9,2
Flügelfläche:	34,28 m²
Rumpfdurchmesser:	2 m*
Rumpflänge (Tonne):	18,6 m*
Gesamtlänge:	18,97 m
Maximales Abfluggewicht:	15173 kg
Maximales Landegewicht:	12474 kg
Landebahnlänge bei maximalen Landegewicht:	•
Anfluggeschwindigkeit:	210 km/h
Frachtraumvolumen:	
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	4500 km"

Gulfstream V

Passagieranzahl:	14 PAX
Spannweite:	28,5 m
Streckung:	7,7
Flügelfläche:	105,63 m²
Rumpfdurchmesser:	2,4 m
Rumpflänge (Tonne):	26,3 m*
Gesamtlänge:	29,39 m
Maximales Abfluggewicht:	40370 kg
Maximales Landegewicht:	32659 kg
Landebahnlänge bei maximalen Landegewicht:	900 m
Anfluggeschwindigkeit:	235 km/h
Frachtraumvolumen:	6,4 m ³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	8600 km"

Raytheon Hawker 1000

Passagieranzahl:	15 PAX
Spannweite:	15,66 m
Streckung:	7,1
Flügelfläche:	34,75 m²
Rumpfdurchmesser:	1,93 m
Rumpflänge (Tonne):	14,4 m*
Gesamtlänge:	16,42 m
Maximales Abfluggewicht:	14060 kg
Maximales Landegewicht:	11340 kg
Landebahnlänge bei maximalen Landegewicht:	1280 m
Anfluggeschwindigkeit:	220 km/h
Frachtraumvolumen:	1,61 m³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	5400 km"

Sino-Swearingen SJ30-2

Bild C.99 Dreiseitenansicht der SJ30-2 (Jane´s)

Passagieranzahl:	7 PAX
Spannweite:	11,07 m
Streckung:	8
Flügelfläche:	15,33 m²
Rumpfdurchmesser:	1,65 m
Rumpflänge (Tonne):	12,7 m*
Gesamtlänge:	14,31 m
Maximales Abfluggewicht:	5579 kg
Maximales Landegewicht:	5303 kg
Landebahnlänge bei maximalen Landegewicht:	942 m
Anfluggeschwindigkeit:	200 km/h
Frachtraumvolumen:	1,84 m³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	3900 km"

VisionAire VA-10 Vantage

Bild C.100	Dreiseitenansicht d	ler VA-10	Vantage	(Jane's)
------------	---------------------	-----------	---------	---------	---

Passagieranzahl:	5 PAX
Spannweite:	14,87 m
Streckung:	10,8
Flügelfläche:	20,55 m²
Rumpfdurchmesser:	1,71 m
Rumpflänge (Tonne):	11,3 m*
Gesamtlänge:	12,71 m
Maximales Abfluggewicht:	3538 kg
Maximales Landegewicht:	3175 kg
Landebahnlänge bei maximalen Landegewicht:	760 m
Anfluggeschwindigkeit:	175 km/h
Frachtraumvolumen:	1,18 m ³
Sitzplätze - nebeneinander:	2
Einsatzreichweite mit max. Nutzmasse:	1800 km"

Erklärung der Kennzeichnungen an den aufgelisteten Daten in Anhang C.3:

- Die Werte ohne Kennzeichnung sind Jane's 1996/1997 und Jane's 1992/1993 entnommen.
- Die mit einem * gekennzeichneten Werte sind aus den Dreiseitenansichten abgelesen worden.
- Die mit einem " gekennzeichneten Werte sind Kreuzer 1999 entnommen.