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Abstract 
 
 
The purpose of this report is to study the Pilot Induced Oscillations (PIO) phenomenon.  
The method to show this phenomenon is to build the model of an airplane and its control 
system and then perform simulations on this plane with Matlab-Simulink software. The 
equations of flight dynamics used are the linear and the non-linear equations of dynamics 
given by Mc Lean 1990. The simulation is performed on a Douglas DC-8 with the help of 
derivatives data given by Mc Ruer 1995. 
 
The model of the plane is built in different parts: flight dynamics model, pilot model, actuator 
model and control model. Then these parts are integrated in a bigger model representing the 
whole airplane with its controls. After checking that the aircraft is stable, a big gain 
representing a wrong reaction of the pilot is put inside this model. Then the plane starts to 
oscillate: the Pilot Induced Oscillations appear. 
 
So, this report clearly shows that the PIO are caused by an overreaction of the pilot inside the 
loop of the control system. 
 
 
 

(c)
Commercial use strictly prohibited.Your request may be directed to:Prof. Dr.-Ing. Dieter Scholz, MSMEEmail see:http://www.ProfScholz.de
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Glossary 
 

Eigenvalue 
“Complex numbers, λ that satisfy � � �  � � where A is a � � � matrix and x is some vector. 
In this case, x is called an eigenvector.” (LBM) 
 

Static error 
Difference between the input and the output values when � � ∞ and the temporal evolution 
of these signals is almost null.  
 

PID Controller 
“A PID controller attempts to correct the error between a measured process variable and a 
desired set point by calculating and then outputting a corrective action that can adjust the 
process accordingly and rapidly, to keep the error minimal.” (Wikipedia 2009) 
 

Dirac impulse 
“Function representing an infinitely sharp peak bounding unit area. This function δ(x) has the 
value zero everywhere except at x = 0 where its value is infinitely large in such a way that its 
total integral is 1.” (Wikipedia 2009) 
 

Step function 
Discontinuous function whose value is zero before the step time and A after, where A is a 
constant different from zero. 
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1. Introduction 
 
Aircrafts are never stable by themselves, they need to control. Otherwise they would fly in a 
constant turn. In order to make this aircraft fly in the direction we want, we have to make 
corrections at any time. There are two ways of making these corrections: the first one is a 
correction by the pilot, and the other is by the automatic flight control system (AFCS). This 
AFCS uses a feedback control which is much more accurate and faster, and which can 
eliminate some disturbances. (Mc Lean 1990) 
 
But sometimes and under some conditions theses feedback control systems tend to oscillate. 
That is why the AFCS system is not really stable. If we use a high amplification, the response 
will be more accurate and faster but the system will be less stable. Then we have to find a 
compromise between stability and accuracy when we design a system like the AFCS. 
 
As we want to study aircraft stability, we have to make a model of the aircraft. The first step 
for this modeling is to know which equations are used for the flight dynamics. Then we will 
integrate them in the aircraft model. Most of these equations are non-linear but we will see 
that we can get a linear model which is really close from the non-linear model but much easier 
and faster for the simulations.  
 
One of these phenomena is the Pilot Induced Oscillation (PIO). We will explain this 
phenomenon more in detail in the PIO chapter. The main thing to know about this 
phenomenon is that it is an undesired movement of the aircraft which makes it oscillate and 
loose its stability. As the control system of the aircraft uses a closed loop, these oscillations 
are amplified then they become bigger and the aircraft stability is much worse. 
 
In order to understand this PIO phenomenon we will first study the flight dynamics of the 
aircraft without trying to control it. Then we will see the simple models of aircraft control and 
pilot models without aircraft. The next step will be to integrate these basics linear models in 
an aircraft in order to control it. The last step will be to integrate a non linear model of 
actuator in the aircraft. Then we will have to put the right conditions in order to simulate the 
PIO, which means introducing high gains in the closed loop. 
 
The literature we will use in this study consists in writings on aircraft dynamics and NASA 
reports about the PIO phenomenon, as written in the list of references. All simulations will be 
made on Matlab-Simulink software.  
 
The aircraft of which we are going to study the flight dynamics is the Douglas DC-8. The 
derivative data of this plane are included at the end of this report. 
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The basic model of an aircraft is described by Mc Lean 1990 

 

 
Fig 1.1 Conventions used for the aircraft axis and velocities (Mc Lean 1990) 
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Fig 1.2 Control surfaces deflections conventions (Mc Lean 1990) 
 
 

 
Fig 1.3 General structure of an AFCS (Mc Lean 1990) 
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2. Linear and non linear flight dynamics 
 
The first thing we need to do, in order to build the model of the aircraft, is to put the set of 
equation representing the flight dynamics inside a block, so we can simulate the flight of the 
aircraft. 
The first step will be to use the linear equations which are easy to put inside the model, then 
we will use the non linear equations, which should be closer from the reality, but much harder 
and slower for the simulations. 
When we use the linear dynamics, we have to separate two cases of flight: the longitudinal 
flight, which means that the aircraft flights straight, and can turn a few around the Y axis, so it 
changes its pitch angle. The other case of flight is the lateral flight which means that the 
aircraft can turn around the X or Z axis, but not on the Y axis, so it can change its roll or its 
yaw angle. 
 

2.1. Longitudinal aircraft dynamics (linear) 
 

2.1.1. Equations 
 
The dynamic of the aircraft can be represented by this state space equation:   �� � � . �  ! . "  
Where  � is called the state vector and " the control vector. 

We have also: � �  #"$%�&  and  " �  
'((
()*+*,"-$-%- .//

/0
  

" (of x vector) is the plane velocity on X axis, $ on Z axis, % is the pitch velocity and � the 
pitch angle. *+ is the command on the elevator, *, on the flaps and "-, $-, %- are about the wind velocity. 

 
The vector A is the state matrix and B is the control matrix. Both of these vectors are filled 
with derivatives. 

� �  1 23 2453 54  0 67 89   0:;3 :;40 0 :;<  0 1  0 =  and  ! �  '((
) 2>? 2>@5>? 5>@

623 624 06 53 654 689:;>? :;>@0 0 6 :;3 6:;4 6:A <0 0 61 .//
0
 

With: 

 :;3 �  :3   :4�  . 53  :;4 �  :4   :4�  . 54 

 :;< �  :<   89 . :4�   :;>? �  :>?   :4� . 5>? 
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2.1.2. Application 
 
We use these equations to simulate the longitudinal dynamic of a DC8. 
We do not use the second column of the B matrix (flaps command), so the control matrix and 
control vector are now: 
 

! �  '((
) 2>? 6235>? 6 53 624 0654 689:;>? 6 :;30 0 6:;4 6:;<0 61 .//

0
    and  " �  1 *+ "-$-%-

= 

 

The output equation of the simulation is:  B � C . �  D . " 
 
As we only want to know the evolution of the state vector, we use the following parameters 
for C and D: 

C �  #1 00 1 0 00 00 00 0 1 00 1&     and  D �  #0 00 0 0 00 00 00 0 0 00 0&      
 

 
Fig 2.1 Simulink model used for the simulation 
 
As we can see on the model, the command is only an action on the elevator (step). 

Command 
Aircraft 

Dynamics Output 

*+ 

"- 

$- 

%- 



14 
 

 
Fig 2.2 Velocity on x axis 
 
As we can see on this graph, the velocity on x-Axis is null at the beginning, and then it 
increases and reaches its final value after about 150 seconds. There are some few but quite 
high oscillations of the speed before it reaches the final value. 
 

 
Fig 2.3 Velocity on z axis 
 
Concerning the velocity on z-Axis, we can see the same kind of evolution as for the x-Axis. 
We also see that this speed is negative: it means that the plane is going higher and higher, 
because the z-Axis is in the direction of the ground. 
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Fig 2.4 Pitch velocity 
 
On this graph, we can see the action of the elevator: at the beginning, the pitch velocity has a 
big variation, and there are some oscillations. The final value of this velocity is null. 
 

 
Fig 2.5 Pitch angle 
 
As for the pitch velocity, we see a big variation of the pitch angle at the beginning, and then 
some decreasing oscillations. But here the final value is not null. 
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2.2. Lateral aircraft dynamics (linear) 
 

2.2.1. Equations 
 
The state space equation for lateral aircraft dynamics is the same as for longitudinal dynamics, 
but now the matrixes and vectors have different values:  
 

� �  '((
) EF 0�GH �IH 61 7/89 �KH   0LGH LIH0 1 LKH     0    0     0  .//

0
   And  ! �  '((

() E>M � E>N ��>M H �>N H 6EF 0 16 �GH 6 �IH 6 �KHL>M H L>N H0 0 6 LGH 6 LIH 6 LKH0 61 0 .//
/0
 

With 

�GH �   �G   OPQOP . LG  LGH �   LG   OPQOQ . �G �IH �   �I   OPQOP . LI LIH �   LI   OPQOQ . �I �KH �   �K   OPQOP . LK LKH �   LK   OPQOQ . �K �>M H �   �>M   OPQOP . L>M  L>M H �   L>M   OPQOQ . �>M  �>N H �   �>N   OPQOP . L>N  L>N H �   L>N   OPQOQ . �>N 

E>M� �  RSMTU   E>N � �  RSNTU  

 

� �  1����=   And  " �  
'((
()*V*W�-�-�- .//

/0
  

�  is the state vector. The variables in � are: � the yaw angle, � the roll velocity, � the yaw 

velocity and � the roll angle. 
 " is the command vector. The variables used in " are: *V the command on the ailerons, *W the 

command on the rudder and  �-, �-, �-are about the wind speed. 
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2.2.2. Application 
 
We need to use the equations above, and the values for the matrix of output equations are:  
 

C �  '((
()1 00 1 0 0 00 0 00 00 00 0

1 0 00 1 00 0 1.//
/0      And   D �  '((

()0 00 0 0 0 00 0 00 00 00 0
0 0 00 0 00 0 0.//

/0      
 
 
 

 
Fig 2.6 Simulink model used for the simulation 
 
As we can see on this model, the input of our model is an action on the ailerons (step). Then 
this action should have a consequence on the roll angle. 
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Fig 2.7 Roll velocity 
 
The action on the ailerons has a direct consequence on roll velocity: at the beginning, this 
velocity is null, and then it increases until its final value. 
 

 
Fig 2.8 Roll angle 
 
The roll angle is the integral of roll velocity, so it is normal to see and quite linear increase of 
its value. 
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Fig 2.9 Yaw angle 
 
The yaw angle increases a little. This is because of the adverse yaw effect: as the aircraft is no 
more horizontal, the lift is no more symmetric and there is a forward lift component on the 
descending wing. However, this angle is about 30 times smaller than the roll angle. 
 

 
Fig 2.10 Yaw velocity 
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2.3. Non linear dynamics 
 
After having tried the linear dynamics in two different cases of flight, we now have to study 
the non linear model of flight dynamics. This model is much more complex than the previous 
ones, but it is valid in each case of flight. It is even still valid when the flight is not strictly 
longitudinal or lateral, so we have more freedom with this model. 
 

2.3.1. Equations 
 
As given by Scholz 1992, the dynamic of the aircraft is described by 6 equations.   
The forces (X, Y, Z) and moments (L, M, N) on the aircraft are equal to: X � m ZU�   QW 6 RV  g sin θe Y � m ZV�   RU 6 PW 6 g cos θ sin φe Z � m ZW�   PV 6 QU 6 g cos θ cos φe L � P� In 6 InoZR�  PQe  ZIo 6 Ipe qr M � Q� Ip 6 InotPu 6 Ru�  tIn 6 Io� vr N � R� Io 6 InoP�  PQZIp 6 Ine   InoQR 

 

With these equations, we can easily calculate the derivatives of speeds (U� , V� , W� , P� , Q�  and R� ): 
• Derivative of speed on x axis:  U� � z{ 6 QW  RV 6 g sin θ 

• Derivative of speed on y axis:  V� � |{ 6  RU  PW  g cos θ sin φ 

• Derivative of speed on z axis:  W� � }{ 6  PV  QU  g cos θ cos φ 6 g 

 

• Derivative of roll speed: P� � ~ ���  ����/ ��  � L  ��� �� � N 6 PQ ZIp 6 Ine 6  Ino QR � 6Ino PQ 6 ZIo 6 Ipe qr� 

• Derivative of pitch speed: Q� � ~�� tM  InotPu 6 Ru� 6 tIn 6 Io� vr� 

• Derivative of yaw speed: R� � ~ ���  ����/ �� �N  ��� �� � L 6 PQ Ino 6  ZIo 6 Ipe QR � 6
Ino qr 6  PQ ZIp 6 Ine� 

• Derivative of pitch angle: θ� � Q cos φ 6  R sin φ 

• Derivative of roll angle: φ� � P  R tan θ cos φ   Q tan θ sin φ 
 
We also need these expressions that give us the inputs on the model: 

• 
z{ �  X� tU 6 U9�   X� W   X��δ�  X��  δ� 

• 
|{ �  Y� V  Y��δ�  Y��  δ� 
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• 
}{ �  Z� tU 6 U9�   Z� W   Z��δ�  Z��  δ� 

• L �  In  Z L� V   L� P   L� R   L��  δ�   L��  δ�e 

• M �  Ip   � M� tU 6 U9�   M� W   M��  � }{ 6  PV  QU  g cos θ cos φ 6  g�   M� Q   M��δ�  M��  δ�� 

• N �  Io  Z N� V   N� P   N� R   N��  δ�   N��  δ�e 

 
After adding these 6 expressions in the derivatives of angle speeds, we get these expressions: 
 

• Derivative of roll speed: 
 P� � 1 In 6   Inou/ Io  �In  Z L� V   L� P   L� R   L��  δ�   L��  δ�e

 Ino Io � Io  Z N� V   N� P   N� R   N��  δ�   N��  δ�e 6 PQ ZIp 6 Ine
6 Ino QR � 6 Ino PQ 6 ZIo 6 Ipe qr� 

 

• Derivative of pitch speed: 
 Q� � 1Ip ZIp  Z M� tU 6 U9�   M� W 

  M��  �Z� tU 6 U9�   Z� W   Z��δ�  Z��  δ� 6  PV  QU  g cos θ cos φ6  g�   M� Q   M��δ�  M��  δ�e  InotPu 6 Ru� 6 tIn 6 Io� vre 

 

• Derivative of yaw speed: 
 

R� � 1 Io 6   Inou/ In �Io  Z N� V   N� P   N� R   N��  δ�   N��  δ�e
 Ino In � In  Z L� V   L� P   L� R   L��  δ�   L��  δ�e 6 PQ Ino
6  ZIo 6 Ipe QR � 6 Ino qr 6  PQ ZIp 6 Ine  

 
Note: There is no change for the expressions of longitudinal speeds. 
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2.3.2. Application 
 
We integrate these equations in a Matlab model: 

 
Fig 2.11 Non linear model of aircraft 
 
As we can see, this model is really complex. The 9 equations are on the right of the model and 
all the variables needed for the equations are on the left. As we calculate derivatives of 
speeds, we need to integrate them to get the new value of speed on each axis. This is the 
reason why we use a lot of integrators. 
We put this model into a box, to hide the complexity of it, and we get this model: 

Mux Inputs and variables 

Equations 
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Fig 2.12 Non linear model with inputs and outputs 
 
The model shown here is configured for longitudinal flight because there is only on input 

different from zero: *+which is the action given on the elevators. 
But, unlike the linear model, we can easily change from a longitudinal flight to a lateral flight 
and even combine both, just by changing the input, whereas we needed to use two different 
models before. 
 

Test for longitudinal dynamics 
 

 
Fig 2.13 Evolution of the velocity on x axis 
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Fig 2.14 Evolution of the velocity on z axis 
 

 
Fig 2.15 Evolution of the pitch velocity 

 
Fig 2.16 Evolution of the pitch angle 
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The evolution of velocities on x and z axis and the evolution of pitch angle are almost the 
same as for the linear system. The values are different because the initial conditions are not 
the same at the beginning, the inputs have not the same values and the outputs for the non 
linear system are displayed in degrees whereas we display the output of linear system in 
radians. 
 

Test for lateral dynamics (action on the ailerons) 
 
We change the input: there is now no action on the elevator, but a step on the ailerons. 

 
Fig 2.17 Evolution of the roll velocity 
 

 
Fig 2.18 Evolution of the yaw velocity 
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Fig 2.19 Evolution of the roll angle 
 
As for the longitudinal test, the results are almost the same as for the linear model. 
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3. Flying qualities 
 
We are now going to study the flying qualities of the aircraft, in order to know if it meets the 
specifications needed for stability. These specifications are given by a few criteria, so we need 
to calculate the values for the DC-8 and compare them with the acceptable values given in the 
extracts at the end of this report. 
 

3.1. Longitudinal dynamics 
 
In order to study the flying qualities of the aircraft, we need to calculate the eigenvalues of the 
matrix A (state space matrix). Using the example given by Mc LEAN 1990, we are going to 
solve this linear equation to find the eigenvalues:  |� ¢ 6 �| � 0 
 
We solve this equation with the A matrix of a DC-8 in cruise conditions. 

We find 4 solutions:   �~,u �  61,0765 ¦  2,9575 © 
 And    �ª,« �  60,0059 ¦  0,0236 © 
 

The eigenvalues �~,u are associated to the short period mode because the frequency is high 

(2,9575) rad/s.  And the eigenvalues �ª,« are associated to the phugoid mode because their 

frequency is very low (0,0236). 
With these eigenvalues, we can write:  t  �u   2 ®I ¯®I �   ¯®Iu �t  �u   2 I° ¯I° �   ¯I°u �=0  

where ®I and I° are the damping ratios associated to the short period (sp) and to the 

phugoid (ph), and where ̄®I and ̄ I° are the angular frequencies associated to the short 

period and to the phugoid. 
 

We have:   t  �u   2,1529 �    9,9055 � t  �u  0,0117 �  0,0006 � 
 

3.1.1. Short period mode 
 ¯®I �  ±9,9055 �  3,1473 �²³/�  and  ®I �  u,~´uµu .¶·¸ �  0,3420 

We can also calculate the Control Anticipation Parameter (CAP) and L¹º: 

 L¹º �  6 TU- · ¼½ C�v �  ¾·¸�¿Qº  

 
We find:   

 L¹º �  31,7981   And   C�v �  0,3115 
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Then we can see that the plane satisfies the short period damping ratio specification given by 
Mc Lean (p156): the flight phase category is B (cruise), so the minimum value for damping 

ratio is 0,3. The value of our aircraft is ®I �  0,3420 Á 0,3  

Concerning the Control Anticipation Parameter, the value that we calculated satisfies the 
criterion for this kind of plane and flight phase: the level 1 criterion is:  0,085 Â  C�v � 0,3115 Â 3,6 
 

3.1.2. Phugoid mode 
 ¯I° �  √0,0006 �  0,0243 �²³/�  And  I° �  9,9~~Äu .¶¸Å �  0,2412 

 

So the damping ratio of the plane is 0,2412 which is upper than the minimum value for level-

1 (0,04). Then, the plane satisfies the level 1 criterion for the phugoid mode qualities. 
 

3.2. Lateral dynamics 
 
As for the longitudinal dynamics, we have to solve this equation and find the eigenvalues: |� ¢ 6 �| � 0 
The eigenvalues we have are now:  

 �~,u �  60,1187 ¦  1,4901© 
 �ª �  61,2544 

 �« �  60,0040 
 

Now, we can write:  t�u   2 Æ ¯Æ �   ¯Æu �t�   � �t�   Ç� � 0 

The values we have are: t�u   0,2374 �   2,2346 � t�  0,0040�t�  1,2544 � � 0 
     
So we find: 

  ¯Æ �  √2,2346 �  1,4949 �²³/�  And  Æ �  9,uªÄ«u .¶È �  0,0794 

The roll mode time constant is:  �K �  6 ~ÉÊ �  0,7972 � 

The spiral mode time constant is: �® �  6 ~ÉË �  247,1148 � 

 

We can see that the value of Æ  t0,0794� is a little under the minimum specification (0,08) for 

Dutch roll mode. There is the same problem with the product ̄ Æ Æ (0,1187) instead of 0,15. 

But the value of ̄ Æ is good: 1,4949 (specification : 0,4). 
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4. Simple models of linear aircraft control 
 
In the second chapter, we built a model of the aircraft dynamics. The following steps will be 
to integrate this little model in a bigger one, representing the whole aircraft dynamics and 
control system. Before doing this, we have to know how we will control this aircraft, which 
means, how we build the loop. As we made in the second chapter, we will separate the linear 
and the non linear model, and then the longitudinal and lateral cases of flight. For each case, 
we will first do an open loop control, and then a closed loop control, and compare them. 
 

4.1. Longitudinal dynamics for linear model 
 
We want to control the pitch angle of the aircraft. The best command for controlling it is to 
make an action on the elevator. So the only input in our model is the action on the elevator: 
we compare two steps signals that have a different step time. We use this model in open loop. 
 

 
Fig 4.1 Simulink model used for the simulation in open loop 
 

 
Fig 4.2 Temporal evolution of pitch angle 
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As we can see on this graph, the system has got oscillations and is really slow: it needs 1000 s 
to reach the final value. But it is stable: the oscillations decrease during the time. We also see 
that there is a big difference between the input and the final value of the output. We need to 

add a gain in the system to adapt the output to the input. When the input is 0,01 the final 

value of the output is 0,08. Then the value of the new gain that we add is � � 9,9~9,9Ì � 1/8. The 

new model is: 

 
Fig 4.3 Simulink model with the new gain 
 

 
Fig 4.4 Temporal evolution of pitch after adding the gain 
 
The final value of the system is now the equal to the input value: the response is adapted to 
the command. By adding this gain, we didn’t change the fundamental behavior of the system: 
there are still decreasing oscillations, and the system is still stable. 
So by adding a gain, we solved only one problem. If we want to solve the problem of the 
oscillations and the time of response, we need to close the command loop. We connect the 
output to the input, by comparing the input and output signals. We also remove the gain we 
added before, because it is no more needed. 
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Fig 4.5 Simulink model with the closed loop 
 

 
Fig 4.6 Temporal evolution in closed loop 
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Fig 4.7 Temporal evolution of the pitch angle in closed loop after adding the gain 
 
The response is now without any static error. The next improvement we could make is to add 
a corrector in order to get a faster response. 
So, after closing the loop, the response is much faster than the response in open loop, and 
there is no oscillation. The final values are without errors in each case.  
 

4.2. Longitudinal dynamics for non linear model 
 
Now, we try to control the pitch angle of the aircraft but using the non linear model of the 
aircraft, in order to compare the both aircrafts models. At the beginning we do not use any 
gain and the model is in open loop. The response we get is: 

 
Fig 4.8 Temporal evolution of the pitch angle 
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This response is really slow and the static error is huge. There are also some oscillations with 
big amplitude at the beginning. Then we try to add a gain in order to remove the static error. 

As we want a final value equal to 0.01 and as the final value we get is equal to 0.0845, the 

value we use for this gain is: � � ~Ì.«´  

 
Fig 4.9 Temporal evolution of the pitch angle after adding the gain 
 
The response is almost the same as the previous. The only difference we can see is that the 
final output value is equal to the input value. So the static error is null. 
As we want a faster response, without oscillations, we close the loop. We connect the input 
and the output and compare their values. We remove the gain we added before. The response 
in closed loop is: 

 
Fig 4.10 Temporal evolution of pitch angle in closed loop 
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The new response is really faster: the final value is reached after 400 seconds whereas it 
needed about 1000 seconds in open loop. The other difference is that there are no more 
oscillations. But there is a little static error. We remove it by adding a gain in the loopback. 

As the final value we want is 0.01and as the final value we get is 0.00875 the best value for 

this new gain is: �Í � Ì.Ä´~9  

 

 

Fig 4.11 Evolution of pitch angle in closed loop after adding the gain in loopback 
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Fig 4.12 Comparison of both aircraft models in open loop after adding the gains 
 

 
Fig 4.13 Comparison of both aircraft models in closed loop after adding the gains 
 
As we can see, the responses are really close if we use the linear or the non linear model for 
the aircraft. As the simulation is really faster (between 50 and 100 times) when we use the 
linear model, we will not use the non linear model anymore because it is a waste of time and 
we get results that are almost the same. 
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4.3. Lateral dynamics 
 
Concerning the lateral dynamics, we will try to control the roll angle φ. The action we use is 
an input on the ailerons. This model is used in open loop. We also add a gain to adapt the 
output to the input. 
 

 
Fig 4.14 Simulink model with the gain, in open loop 
 

 
Fig 4.15 Temporal evolution of roll angle in open loop 
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So, we need to close the loop to have a faster response. We close it by comparing the input 
value to the output value. 
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Fig 4.16 Simulink model in closed loop  
 

 
Fig 4.17 Temporal evolution of roll angle in closed loop 
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5. Pilot models 
 
Now we know how to make the control the aircraft. As we need a true model of the aircraft 
control, we have to integrate a pilot in this model.  
We can find a lot of different pilot models. Some are easy, others are really complex. In this 
work, we are going to try 2 different ones given by Mc Lean 1990. The first one is called 
“Lead term and pure time delay” and the second one “Phase advance and pure time delay”. 
 

5.1. Lead term and pure time delay 
 
The transfer function of this model is: 

  Î̧ t®�IÏÐÑÑt®� �  �It 1  � �Í ��� ® Ò   

 

Where �Ó�ÔÔt�� is the command and Õ�t�� the pilot response. �� is the gain that the pilot 

gives, �� is a time constant and Ö the delay of reaction of the pilot. These 3 values are 
parameters that are adjustable. 
 
This is the Matlab model corresponding to this transfer function. The “s” of the equation in t 1  � �� � is a derivative block in the model, and the exponential �6 � Ö is a delay which 

value is equal to Ö. 
We add a gain (“Gain2”) so that we can easily compare the input and the output, otherwise 
the output value would be really high in comparison with the input. (We choose the value 1 
for all the others parameters). 
 

 
Fig 5.1 Simulink model for pilot: lead term and pure time delay 
 

Pilot model 
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Fig 5.2 Temporal evolution of pilot response 
 
As we can see on this graph, the response is a Dirac impulse with a delay of one second. This 
delay corresponds to the delay a man needs to take a decision and the delay between his 
decision and the effective action on his muscles. The value of this delay is the exact value 

of Ö. 
The real response is really bigger than the one we can see on this figure, because we used a 
gain with a really small value to have an easier comparison between the input and the output. 
The most important point is that the pilot reaction to an event is really strong and a few 
delayed. 
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5.2. Phase advance and pure time delay 
 
The transfer function is now: 

   Î̧ t®�IÏÐÑÑt®� �  �I t ~×® ØÙ �t ~×® ØÚ � �� ® Ò   

 �Ó�ÔÔt�� is the command and Õ�t�� is the pilot response. �� is the gain that the pilot gives, �� and �1are time constants and Ö the delay of reaction of the pilot. These 4 values are 
parameters which are adjustable. 

 
Fig 5.3 Simulink model for pilot: phase advance and pure time delay 
 
As used in the model given by Witte 2004, we use a value of �1 which is much smaller 

than �Í  t�Í  �  0,583 &  �~ � 0,01� 
. 

 
Fig 5.4 Temporal evolution of pilot response 
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6. Aircraft control by the pilot 
 
In order to simulate the aircraft controlled by the pilot, we need to add a pilot model in the 
controlled aircraft model. We saw the response of 2 different pilot models and we need to 
choose one of them. As the first one has a pure derivative block whereas the second has a 
derivative block with an integrator, we decide to use the second pilot model: “phase advance 
and pure time delay”: the pure derivative block could create problems while running the 
simulation. 
 

6.1. Longitudinal control 
 

 
Fig 6.1 Simulink model of aircraft controlled by a pilot 
 
 

 
Fig 6.2 Comparison of pitch temporal evolution with or without pilot 
 
As we can see on this figure, the final value is not the same with or without the pilot model. 
We also see that the oscillations are bigger, and that when we want a zero degree pitch, there 
is still an error. 
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Fig 6.3 Focus on the beginning of the response 
 
If we focus on the beginning, we also see that there is a delay between the step and the 
effective response on the pitch angle. This is because of the delay we added in the loop, to 
simulate the reaction time of the pilot. So, during one second, there is absolutely no action on 
the aircraft for the model with the pilot, whereas the reaction of the other model is 
instantaneous. Then, when the piloted aircraft starts to react, the other one has already started 
for a “long” time. The difference on pitch angles is already big. 
 
If you close the loop by connecting the output (pitch angle) to the input and by comparing 
them, there is no improvement in the response. 
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6.2. Lateral control 
 
As for the longitudinal model, we add the pilot model in the control aircraft model. We also 
add a gain to have a lower response. 

 
Fig 6.4 Model of aircraft controlled by a pilot 
 

 
Fig 6.5 Comparison of the roll responses with or without the pilot in open loop 
 
We see that the response with or without the pilot have the same behavior, but the values are 
totally different. For the model with pilot, there is a really big difference between the final 
output value and the input, whereas there is no one in the model without the pilot. We cannot 
remove this static error by adding a gain, because of the transfer function we used in the pilot 
model. If we want make this error lower, we need to close the loop in the model.  
So we connect the output (roll angle) with the input and compare them. 
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Fig 6.5 Comparison of the roll responses with or without the pilot in closed loop 
 
The response is now really fast, and the error is very low, but there is an offset on the output 
value for the model with the pilot. The value of this offset is about 0,027 rad. 
If we zoom on the beginning, we can see how fast the new response is: 

 
Fig 6.6 Zoom on the beginning of the response 
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7. Linear and non linear actuators models 
 
The last little model we have to integrate into the big model is the model of an actuator. 
Indeed, we cannot represent truly the aircraft without the actuator model. 
We can find two different models representing an actuator: the linear and the non-linear one. 
In this part, we will study both of them and compare them in order to select the best one. 
 

7.1. Linear model 
 
Every actuator receives a surface deflection command *Ó and transforms it into an actual 

surface deflection *. The model of this actuator can be represented by this linear function: *t��*Ót�� � ������ ·  11   ��� 

Where �� is the time constant of the actuator and ������ the gain of the actuator. 

 

 
Fig 7.1 Simulink linear model of actuator 
 

 
Fig 7.2 Temporal evolution of response for a step (�®ÛKFÜ � 1  &  �I � 0,1 �� 

 
The response of this model is a decreasing exponential response, also called first order 
response. The final value of the output is the same as the step input because we chose the 

value of 1 for the gain �®ÛKFÜ. We can also see that the response is fast: this is because of the 

small value of �I.  
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7.2. Non linear model 
 
Another way to simulate an actuator is to use a non linear model. For this, we use this closed 
loop model given by Witte 2004 with a gain, an integrator and a saturation which is a non 
linear element. 
 

 
Fig 7.3 Simulink non linear model of actuator 
 
The response to a step is quite the same as for the linear model: 

 
Fig 7.4 Temporal evolution of response for a step 
 
The response is fast and without any static error, as for the linear model. 
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7.3. Comparison of linear/non linear actuators 
 
We compare the actuators using a sinusoidal input. For the first test, the parameters for the 

sinusoid are:  ¯Ý � 5 �²³/� and the amplitude � � 10 ³�7 
 

  
Fig 7.5 Comparison of temporal responses for linear and non linear model of actuators 
 
In this case, we can see a little difference between both models, but the curves have the same 
aspect. The amplitude of the linear model is little smaller and seems to be a few delayed in 
comparison with the non linear model. 

For the second test, we change the amplitude of the sinusoid: � � 15 ³�7 
 

 
Fig 7.6 Comparison after changing the amplitude of the sinusoid 
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Now, we see that the non linear model has a quite triangular response. If we look at the 
actuator velocity before and after the saturation block this triangular response becomes 
obvious: 

 
Fig 7.7 Comparison of actuator velocity with or without saturation 
 
The reason of this triangular response is that the velocity is limited, so the slope of actuator 
angle response is limited to ±45°/s. This is why the response looks more like a triangle than a 
sinusoid which needs higher slope values. 
 
As the non-linear model of actuator is closer from the reality (because of the limitation of 
velocity), we will choose this one to put it in the aircraft model. 
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8. Pilot Induced Oscillations 
 

8.1. Definition and systematic 
 
Pilot Induced Oscillations (PIO) are defined by Mc Ruer 1995 as: 

„an inadvertent, sustained aircraft oscillation which is the consequence of an abnormal joint 
enterprise between the aircraft and the pilot” 

 
Klyde 1995 gives a more precise definition of this phenomenon: a complex interaction 
between the pilot and the intervention of the Automatic Flight Control System. 
 
Mitchell 1995 has another definition in order to know when a PIO appears: 

„A PIO exists when the airplane attitude, angular rate, or normal acceleration is 180 degrees out 
of phase with the pilot’s control inputs” 

 
The definition on Wikipedia 2009 is a mix of the previous definitions: 

„Pilot-induced Oscillation occurs when the pilot of an aircraft inadvertently commands an often 
increasing series of corrections in opposite directions, each an attempt to cover the aircraft's 
reaction to the previous input with an overcorrection in the opposite direction” 
„Pilot-induced oscillations may be the fault of the aircraft, the pilot, or both. It is a common 
problem for inexperienced, and especially student pilots“ 

 
 
The phases of flight when this phenomenon can occur are phases which need a rapid reaction 
of the pilot or which require to keep a precise altitude of flight: 

• Aerial refueling 

• Formation flying 

• Landing 

• Unexpected and sudden change of flying configuration that can perturb the Automatic 
Flight Control System 

 
All these phases of flight require a high need of amplification gain in the loop, in order to 
perform the exact action wanted by the pilot. 
 
A basic representation of the Flight Control System is: 
 

 
Fig 8.1 Basic model of Flight Control System 
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The input of this model could be: 

• A desired value of pitch/roll/yaw angle 

• A value of pitch/roll/yaw angle velocity 

• A value of speed on x/y/z axis 

• The value of altitude the aircraft has to reach 
 
PIO phenomena of small scale can be treated by linear theory, if we stay in a domain which 
disturbance is small. If the amplitude of oscillation is higher, it can be treated with the non 
linear theory (Mc Ruer 1995). 
 
When flight qualities are reduced, this high-frequency lags can occur, then the emergence of 
the phenomenon is expected. But these conditions are hardly predicted, and the current 
theory, based on criteria, simulations and tests can not cover all cases that may arise. 
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8.2. History 
 
Pilot induced oscillations caused the destruction of a few aircraft in the past. 
 
In February 1989 a Saab JAS-39 Gripen prototype crashed in Linköping (Sweden) during the 
landing. PIO, as a result of an over-sensitive yet slow-response steering system was 
determined to be the cause. The video of this accident is available here: 
http://www.youtube.com/watch?v=IRk4vfq9AZ4 (2009-06-29) 
 
Pilot-induced oscillation was blamed for the 1992 crash of the prototype F/A-22 Raptor, 
landing at Edwards Air Force Base (USA) in California. This crash was linked to actuator rate 
limiting causing the pilot to over-compensate for pitch fluctuations. The video of this crash 
can be watched here: http://www.youtube.com/watch?v=faB5bIdksi8 (2009-06-29) 
 
These PIO occurred also while the landing of space shuttle prototype Enterprise in October 
1977. The space shuttle entered in a PIO along roll and pitch axis, but fortunately the space 
shuttle didn’t crash. The cause of the problem was a 270-millisecond time delay in the fly-by-
wire system: http://www.dfrc.nasa.gov/Gallery/Movie/STS/HTML/EM-0084-02.html (2009-
06-29) 
 
It appears that the Pilot-induced Oscillations never caused the crash of an airliner. 
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8.3. Simulation 
 
For this simulation, we use all the models we used before. We have to connect a pilot model, 
an actuator, and the flight dynamics block.  
We use the second pilot model (called Phase advance and pure time delay) as we used in the 
previous simulations. We add the non linear actuator model and the block concerning the 
flight dynamics to this pilot model. 
 

8.3.1. Longitudinal dynamics 
 
For the case of a longitudinal flight, we are going to control the pitch angle θ.  The input will 
be a comparison between two steps, with different step times. As we need to close the loop in 
order to control the aircraft, we need to compare this input with an output value. The output 
value will be the pitch angle θ because this is the parameter we want to control. We also add a 

gain in the loopback. We choose to set the value of 0,7 for this gain. 
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Fig 8.2 Model of aircraft controlled by a pilot with the non linear actuator model, in closed loop 

A
ctu

ato
r m

o
d

el 
F

lig
h

t d
yn

am
ics 

O
u

tp
u

t 
P

ilo
t m

o
d

el 



54 
 

 
Fig 8.3 Temporal evolution of the pitch angle 
 
With this graph, we can see that the system has a few oscillations and that the final value is 
not the one we want, but it is stable.  There is also a little delay at the beginning and end of 
the step, but we can’t do anything against it. This delay is because of the delay introduced by 
the pilot model. 
If we want that the systems reaches the final value, we need to add a gain in the loop. We add 

a gain with a value of 0,47. The new response is: 

 
Fig 8.4 Temporal evolution of the pitch angle after adding the gain in the loop 
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There are less oscillations and the final value is reached. But the system is still very slow. If 
we wanted to make it faster, we should use a controller. 
 
Now, we add another gain in the loop that simulates a strong action of the pilot. We choose to 
triple the action of the pilot. The result on the plane is: 

 
Fig 8.5  Temporal evolution of pitch after adding the new gain 
 
As we can see, the system has now really big oscillations that are growing until they reach 
their maximum value. The system is unstable. This is a case of Longitudinal Pilot Induced 
Oscillations (Longitudinal PIO).  
So if we only add a gain representing an overreaction of the pilot, we can create oscillations. 

 
Fig 8.6 Zoom on the beginning of the response 
 
With this zoom, we can easily see the growing oscillations, before they reach their maximum 
value. 
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8.3.2. Lateral dynamics 
 
 
In the case of a flight with lateral movements, we are going to control the roll angle φ. The 
best action we can do in order to control the roll angle is to move the ailerons. So the input of 
our model will be a command on these ailerons. Then we have to connect the pilot model with 
the actuator model and with the aircraft dynamics block. 
As for the longitudinal flight, the command we set in the input of our model is a comparison 
of two steps signals. We also close the loop. As we want to control the roll angle, we connect 
the output roll angle of the aircraft to the input and compare it with the command. We also 
add a gain in the loopback. For the longitudinal dynamics, after a few tries it was easy to 
know which was the best value for this loopback gain, but for the lateral dynamics choosing 
the right value of this gain is much harder. Then we will compare the different responses we 
have using different values (�� ) for this gain, and find out what is the best value for this gain. 
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Fig 8.7 Model of aircraft controlled by a pilot with the non linear actuator model, in closed loop 
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Fig 8.8 Comparison of roll temporal evolution with different values of �� 
 
If we compare the 4 results we have, we see that when the gain is high, the static error is low, 
but there are some oscillations. When the gain is low, the static error is very high, but there is 
almost no oscillation. 

If we add a gain in the main loop in order to adapt the output to the input, there is no 
interesting change. For example, we try this on the model with �� � 0,2. 

 
Fig 8.9 Comparison of roll temporal evolution with different values of G 
 
When we add a low gain, the static error is a very few lower and the system is really slower. 
We remove the new gain (G) we added in the loop because it is useless and we only keep the 

gain in the loopback (�Í). We need to choose the right value for it, so we use the figure 8.7. 
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The best value seems to be �� � 0,4 because the oscillations are lower than for higher values 
of �� and the error is lower than when �� � 0,2. 

 
Then the response of our system is: 

 
Fig 8.10 Evolution of roll with �� � 0,4 
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Fig 8.11 Temporal evolution of roll 
 
But if we chose to triple the gain: 

 
Fig 8.12 Temporal evolution of roll after adding the new gain 
 
The response of the system has now oscillations that don’t decrease. The system is totally 
unstable. This is another case of Pilot Induced Oscillations: the output has no final value, but 
oscillates without ending. In this case, it is a lateral PIO. 
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8.4. Prediction 
 
With the previous simulations, we realized that the apparition of a PIO depends on the gain 
that is in the loop. If we double or triple the gain of a stable system, we can create 
instabilities. So the question we would like to answer is: “what is the minimum gain we need 
to create instabilities in our system?” 
In order to solve this problem, we would need to draw the Nyquist diagram and the need use 
the Nyquist stability criterion to know easily if the system is stable and what is the gain for it. 
But before drawing this diagram, we need to transform the open loop of our system into a 
transfer function and because of the non-linearities in the system, the software cannot do this. 
Then, the only solution would be to find the expression of this transfer function using the 
describing function.  
Witte 2004 explains how to use this describing function. But this work is really long that is 
why I could not do it. Then, it could be the subject of a new project.  
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Summary 
 
In this study, we learned how to build the model of an automatic flight control system 
(AFCS). At the beginning we had only the model of aircraft dynamics and by adding other 
models, we designed an entire AFCS. 
 
Besides, by comparing the linear and non-linear models of aircraft dynamics, we realized that 
their responses are almost the same when we put the same input (small perturbation). The 
main difference between theses both models is the time needed to perform the calculation: the 
non linear model needs almost 100 more time than the linear one, which is not convenient 
when we try to work or “play” with the model. This is why we only used the linear model 
after having compared these both models. 
 
In the last part, we showed that once the entire AFCS model is built, it is quite easy to cause a 
Pilot-induced oscillation: the only element needed is a high amplification in the loop. Indeed, 
once this gain is added, the aircraft pitch or roll angle oscillates more and more before 
reaching a maximal value. 
 
Then, with this work we now have the model of an aircraft in order to know if it will be stable 
under certain conditions. This work could be the beginning of another work: the new subject 
would be to study the stability of the aircraft in different phases of flight, by changing the 
values inside the file of aircraft’s characteristics. Another subject could be to compare the 
stability of different comparable aircrafts. Finally, another study could be to add the PI 
correctors in the model, in order to have a faster and more accurate response, and then see if 
the PIO occurs in the same conditions, or if we need a higher or lower gain than we used in 
this work. 
 
In conclusion, we could say that this work is only the first step of a bigger PIO study, in 
which we could compare different aircrafts in different phases of flight… 
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Appendix 
 
Derivative data of Douglas DC-8 (Mc Ruer 1995): 
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Aircraft stability criteria (Mc Lean 1990) : 
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