fachhochschule hamburg

FACHBEREICH FAHRZEUGTECHNIK Studiengang Flugzeugbau

> Berliner Tor 5 D - 20099 Hamburg

Diplomarbeit - Flugzeugbau -

Fahrzeugtechnik

Vergleich verschiedener Verfahren zur Masseprognose von Flugzeugbaugruppen im frühen Flugzeugentwurf

Verfasser: Eurico J. Fernandes da Moura

Abgabedatum: 13.02.01

Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME
 Prüfer: Prof. Dr.-Ing. H. Flüh

Kurzreferat

In der vorliegenden Diplomarbeit werden aus der Literatur bekannte Verfahren für den frühen Flugzeugentwurf zur Masseprognose von Flugzeugbaugruppen miteinander verglichen. Dabei werden auch die tatsächlichen Massen der Baugruppen der Passagierflugzeuge (A340-300 und A320-200) in den Vergleich einbezogen. Untersucht wurden die Massen folgender Flugzeugbaugruppen: Rumpf, Triebwerksgondel, Triebwerk, Bug- und Hauptfahrwerk. Weiterhin wurde die Masse der Flugzeugsysteme betrachtet. Ziel der Arbeit ist die Ermittlung der Massen der oben genannten Flugzeugbaugruppen mit Hilfe unterschiedlicher Verfahren, wie sie in der Literatur durch verschiedene Autoren (z. B. Torenbeek, Roskam, Raymer) oder durch Firmen (z. B. Boeing) oder durch Forschungsprogramme (Ergebnisse z. B. im Luftfahrt Technischen Handbuch) ermittelt wurden. Die jeweiligen Abweichungen der berechneten Massen gegenüber den von Airbus bekannten Massen werden in Diagrammen dargestellt. Mit einer durchschnittlichen Abweichung von etwa 10 % gegenüber den Zahlen von Airbus, scheinen die von Marckwardt angegebenen Verfahren recht geeignet zu sein. Es wurde auch festgestellt, dass die Boeing-Methode aus dem Jahre 1968 durchweg recht genaue Ergebnisse lieferte. Bei der Ermittlung der Masse der Flugzeugsysteme, stellte sich heraus, dass die Verfahren von Marckwardt 1997 angegebenen Verfahren neben denen von Torenbeek im hier betrachteten Vergleich die genauesten Ergebnisse lieferten.

university of applied sciences gegr. 1970 fachhochschule hamburg

FACHBEREICH FAHRZEUGTECHNIK

Studiengang Flugzeugbau

Vergleich verschiedener Verfahren zur Masseprognose von Flugzeugbaugruppen im frühen Flugzeugentwurf

- Rumpf, Triebwerksgondel und Triebwerk, Flugzeugsysteme -

Diplomarbeit nach § 21 der Prüfungsordnung.

Hintergrund

In der Literatur werden verschiedene Ansätze vorgestellt, um die Masse von Flugzeugbaugruppen wie z.B. Flügel, Rumpf, Höhenleitwerk, Seitenleitwerk, Fahrwerk und Triebwerk abzuschätzen.

Aufgabe

Es ist eine Literaturrecherche über Verfahren zur Masseprognose der Baugruppen von Passagierflugzeugen durchzuführen. Dabei sind zu untersuchen:

- Rumpf,
- Triebwerksgondel,
- Triebwerk,
- Bug- und Hauptfahrwerk,
- Flugzeugsysteme (pauschal und evtl. in einer getrennten Betrachtung).

Die unterschiedlichen Verfahren zur Masseprognose sollen am Beispiel ausgewählter Flugzeugtypen miteinander verglichen werden. Die so gewonnenen ersten Erkenntnisse sollen verallgemeinert werden. Dabei sollen gegebenenfalls auch die tatsächlichen Massen der Baugruppen von Passagierflugzeugen herangezogen werden.

Die Ergebnisse sollen in einem Bericht dokumentiert werden. Bei der Erstellung des Berichtes sind die entsprechenden DIN-Normen zu beachten.

Erklärung

Ich versichere, daß ich diese Diplomarbeit ohne fremde Hilfe selbständig verfaßt und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht.

.....

Datum Unterschrift

Inhaltsverzeichnis

Verzeich	nisse der Bilder	8
Verzeich	nisse der Tabellen	9
Liste der	Formelzeichen	12
Liste der	Abkürzungen	13
1	Einleitung	14
2	Rumpfmasse	16
2.1	Verfahren nach Torenbeek	16
2.2	Verfahren nach Marckwardt	
2.3	Gleichungen nach Burt-Phillips aus Marckwardt 1997	21
2.4	Gleichungen aus Roskam	
2.5	Gleichungen aus dem luftfahrttechnischen Handbuch	25
2.6	Gleichungen nach Raymer	
2.7	Rumpfmasse nach Boeing	
3	Masse der Triebwerksgondel	
3.1	Gleichungen nach Torenbeek	
3.2	Gleichungen nach Marckwardt	
3.3	Gleichungen aus Roskam	
3.4	Gleichungen aus dem Luftfahrttechnischen Handbuch	40
3.5	Gleichungen nach Raymer	41
3.6	Masse der Triebwerksgondel nach Boeing	43
4	Triebwerksmasse	47
4.1	Gleichung nach Torenbeek	47
4.2	Verfahren nach Marckwardt	47
4.3	Verfahren aus Roskam	49
4.4	Gleichungen aus dem Luftfahrttechnischen Handbuch	51
4.5	Gleichungen nach Raymer	
4.6	Masse des Triebwerks nach Boeing	53
5	Masse der Bug- und Hauptfahrwerke	
5.1	Gleichung nach Torenbeek	
5.2	Verfahren nach Marckwardt	59
5.3	Gleichungen aus Roskam	60

5.4	Gleichungen aus dem Luftfahrttechnischen Handbuch	62
5.5	Gleichungen nach Raymer	63
5.6	Fahrwerksmasse nach Boeing	65
6	Masse der Flugzeugsysteme	70
6.1	Gleichung aus Scholz 1998	
6.2	Verfahren nach Marckwardt	72
6.3	Gleichungen aus Roskam	73
6.4	Gleichungen aus dem Luftfahrttechnischen Handbuch	85
6.5	Gleichungen nach Raymer	
6.6	Masse der Flugzeugsysteme nach Torenbeek	
6.7	Masse der Flugzeugsysteme nach Boeing	
7	Zusammenfassung	95
Literaturv	erzeichnis	96
Anhang A	Boeing-Diagramme	98
Anhang B	Flugzeugdaten	112

Verzeichnisse der Bilder

Bild 2.1	m_R / O_R nach Rumpfoberfläche aus Marckwardt 1997	19
Bild 2.2	m_R nach $d_R * l_R$ nach Marckwardt 1997	19
Bild 2.3	m_R als Funktion der m_A , n_{BR} und O_R , aus Boeing 1969	32
Bild 2.4	Abschätzung der m_R als Funktion der O_R nach Boeing 1969	33
Bild 2.5	Abweichungen der Rumpfmassen in Überblick (A340-300)	34
Bild 2.6	Abweichungen der Rumpfmassen in Überblick (A320-200)	34
Bild 3.1	Triebwerksbemaßung aus Marckwardt 1997	37
Bild 3.2	Triebwerksbemaßung nach Torenbeek 1988	42
Bild 3.3	Masse der Triebwerksgondel nach Gondelfläche aus Boeing 1969	44
Bild 3.4	Abweichungen der Gondelmassen in Überblick (A340-300)	45
Bild 3.5	Abweichungen der Gondelmassen in Überblick (A320-200)	45
Rild 4 1	Trockenmasse von Strahltriebwerken aus Marckwardt 1997	48
Bild 4 2	Trockenmasse von Turboprontriebwerken nach Marckwardt 1997	4 0 48
Bild 4.3	Trockenmasse von Turbojettriebwerken aus Roskam 1989	50
Bild 4.4	Abweichungen der Triebwerksmassen in Überblick (A 340-300)	56
Bild 4.5	Abweichungen der Triebwerksmassen in Überblick (A320-200)	56
Bild 5.1	Fahrwerksmasse/Abflugmasse nach m_A aus Marckwardt 1997	59
Bild 5.2	Hauptfahrwerksmasse/Fahrwerksmasse nach m_A aus Marckwardt 1997	60
Bild 5.3	Masse des Bugfahrwerks (Struktur und Steuerung) aus Boeing 1969	67
Bild 5.4	Abweichungen der Fahrwerksmassen in Überblick (A340-300)	68
Bild 5.5	Abweichungen der Fahrwerksmassen in Überblick (A320-200)	68
Bild 6.1	Abschatzung der Masse der Flugzeugsysteme (Flugsteuerung, entspricht Gl nach Marchwardt 1997	. 6. 2) 71
Bild A4.1	Triebwerkszubehör nach Triebwerkschub aus Boeing 1969	98
Rild A4 2	Triebwerkssteuerung in Funktion der Steuerungslänge aus Boeing 1969	90
Bild A4.3	Triebwerkstartsystem in Funktion der Triebwerkanzahl aus Boeing 1969	100
Bild A4.4	Treibstoffsystem eines Triebwerks in Funktion der Tankkapazität, aus B	neing
21412101	1969	101
Bild A 4 5	Schuhumkehrermasse in Funktion der Luftmassenströmung aus Baging 1960	102
Bild A6 1	Masse der Instrumenten in Funktion der m_{ℓ} aus Roeing 1969	102
Bild A6.2	Masse der Steuerung in Funktion der Spannweite aus Boeing 1969	104
Bild A6.3	Masse des hydraulischen Systems in Funktion der m_{\perp} aus Boeing 1969	105
Bild A6.4	Masse des preumatischen Systems in Funktion der m_A , dus Doeing 1969 Masse des preumatischen Systems in Funktion der max m_A aus Boeing 1969	106
Bild A6.5	Elektronikmassen in Funktion der max m_{Λ} aus Boeing 1969	.107
Bild A6.6	Masse der Einrichtung in Abhängigkeit von der N_{PAV} aus Boeing 1969	108
Bild A6.7	Masse des Klimaanlagesystems in Abhängigkeit von Volumen des Druckrun	npfes
	aus Boeing 1969	.109
Bild A6.8	Masse des Anti- und Enteisungssystems in Funktion der Spannweite, aus B	oeing
	1969	110
Bild A6.9	Volumen des Rumpfes (Bereich unter Druckbelastung) in Funktion der Ru	ımpf-
	oberfläche, aus Boeing 1969	111

Verzeichnisse der Tabellen

Tabelle 2.1	Rumpfmasse nach Gl. 2.1 aus Torenbeek 1988	16
Tabelle 2.2	Benetzte Fläche von Rumpf aus Torenbeek 1988	17
Tabelle 2.3	Rumpfmasse nach Bild 2.1 aus Marckwardt 1997	18
Tabelle 2.4	Rumpfmasse nach Bild 2.2 aus Marckwardt 1997	20
Tabelle 2.5	Rumpfmasse nach Gl. 2.6 aus Marckwardt 1997	20
Tabelle 2.6	Rumpfmasse nach Gl. 2.7 aus Marckwardt 1997	20
Tabelle 2.7	Rumpfmasse nach Gl. 2.8 aus Marckwardt 1997	20
Tabelle 2.8	Bruchlastfaktoren aus Marckwardt 1997	21
Tabelle 2.9	Abreißverhalten aus Marckwardt 1997	21
Tabelle 2.10	Rumpfmasse nach Burt-Phillips aus Marckwardt 1997	21
Tabelle 2.11	Rumpfmasse nach USAF aus Roskam 1989	23
Tabelle 2.12	Rumpfmasse nach General Dynamics aus Roskam 1989	24
Tabelle 2.13	Rumpfmasse aus Gl. 2.20 nach Torenbeek 1988 aus Roskam 1989	25
Tabelle 2.14	Rumpfmasse nach R. Ertringer (IABG/WTT) aus LTH 1981	26
Tabelle 2.15	Rumpfmasse aus Dr. W. Schneider (VFW) aus LTH 1981	28
Tabelle 2.16	Rumpfmasse nach Boeing aus LTH 1981	28
Tabelle 2.17	Rumpfmasse nach Gl. 2.27 aus Raymer 1992	31
Tabelle 2.18	Rumpfmasse nach Bild 2.3 aus Boeing 1969	33
Tabelle 2.19	Rumpfmasse nach Boeing 1969 aus Bild 2.4	33
Tabelle 2.20	Rumpfmassen nach Verschiedenen Verfahren in Überblick	35
Tabelle 3.1	Triebwerksgondelmasse nach Gl. 3.2 aus Torenbeek 1988	36
Tabelle 3.2	Triebwerksgondelmasse nach Gl. 3.3 aus Marckwardt 1997	37
Tabelle 3.3	Triebwerksgondelmasse nach General Dynamics aus Roskam 1989	39
Tabelle 3.4	Triebwerksgondelmasse nach R. Ertinger aus LTH 1981	40
Tabelle 3.5	Daten der Triebwerksgondel	41
Tabelle 3.6	Triebwerksgondelmasse nach Gl. 3.15 aus Raymer 1992	42
Tabelle 3.7	Massen der Triebwerksgondel nach Bild. 3.3 aus Boeing 1969	44
Tabelle 3.8	Massen der Triebwerksgondel in Überblick	46
Tabelle 4.1	Triebwerksmasse nach Gl. 4.1 aus Torenbeek 1988	47
Tabelle 4.2	Triebwerkstrockenmasse nach dem Bild 4.1 aus Marckwardt 1997	47
Tabelle 4.3	Triebwerksmasse nach dem Bild 4.3 aus Roskam 1989	50
Tabelle 4.4	Gesamte Masse des Schubumkehrers nach R. Ertinger aus LTH 1981	51
Tabelle 4.5	Triebwerkstrockenmasse nach der Gl. 4.6 aus Raymer 1989	52
Tabelle 4.6	Triebwerksteuerungsmasse aus Raymer 1992	52

Triebwerksmasse nach Gl. 4.8 aus Raymer 1992	53
Triebwerkszubehörmasse nach Bild A4.1 aus Boeing 1969	54
Masse der Triebwerkssteuerung nach Bild A4.2 aus Boeing 1968	54
Masse des Triebwerkstartsystems nach Bild A4.3 aus Boeing 196	955
Masse des Treibstoffsystems nach Bild A4.4 aus Boeing 1969	55
Masse von Schubumkehrer nach dem Bild A4.5 aus Boeing 1969)55
Triebwerksmasse aus Boeing 1969	56
Triebwerksmassen in Überblick	57
Fahrwerksmasse nach Gl. 5.1 aus Torenbeek 1988	58
Koeffizienten für die Berechnung der Fahrwerksmasse aus 7	Гorenbeek
1988	58
Fahrwerksmasse nach Gl. 5.2 aus Marckwardt 1997	59

Tabelle 5.3 Fahrwerks59 Fahrwerksmasse nach dem Bild 5.1 aus Marckwardt 1997......60 Tabelle 5.4 Fahrwerksmasse nach General Dynamics aus Roskam 1989......62 Tabelle 5.5 Tabelle 5.6 Tabelle 5.7 Tabelle 5.8 Fahrwerksmasse nach Gl. 5.18 aus Raymer 1992......64 Tabelle 5.9 Tabelle 5.10 Tabelle 5.11

Tabelle 6.1	Masse der Flugzeugsysteme nach Gl. 6.1 aus Scholz 199870
Tabelle 6.2	Flugzeugsysteme (Flugsteuerung) nach Bild. 6.1, aus Marckwardt
	1997
Tabelle 6.3	Masse der Flugzeugsysteme nach Gl. 6.2, aus Marckwardt 199772
Tabelle 6.4	Masse der Flugzeugsysteme nach Gl. 6.3, aus Marckwardt 199772
Tabelle 6.5	Masse der Flugzeugsysteme Teil 1 und Teil 2, aus Marckwardt 199772
Tabelle 6.6	Masse der Flugsteuerung nach USAF aus Roskam 198974
Tabelle 6.7	Masse der Flugsteuerung nach General Dynamics aus Roskam 198974
Tabelle 6.8	Masse der Flugsteuerung nach Torenbeek aus Roskam 198975
Tabelle 6.9	Masse des Hydraulischen Systems nach Gl. 6.15 aus Roskam 198975
Tabelle 6.10	Masse des elektrischen Systems nach USAF aus Roskam 198976
Tabelle 6.11	Elektrisches, hydraulisches und pneumatisches Systems nach Torenbeek aus
	Roskam 198977
Tabelle 6.12	Masse des elektrischen Systems nach General Dynamics aus Roskam
	1989
Tabelle 6.13	Masse der Instrumenten nach General Dynamics aus Roskam 198979
Tabelle 6.14	Masse der Instrumenten, Avionik und Elektronik nach Torenbeek aus
	Roskam 1989

Tabelle 4.7

Tabelle 4.8

Tabelle 4.9

Tabelle 4.10

Tabelle 4.11

Tabelle 4.12

Tabelle 4.13

Tabelle 4.14

Tabelle 5.1

Tabelle 5.2

Tabelle 6.15	Masse der W _{api} nach General Dynamics aus Roskam 1989	80
Tabelle 6.16	Masse der W _{api} nach Torenbeek aus Roskam1989	81
Tabelle 6.17	Masse der W _{ox} nach General Dynamics aus Roskam 1989	81
Tabelle 6.18	Masse der W _{ox} nach Torenbeek aus Roskam 1989	82
Tabelle 6.19	Masse der W _{ox} nach Torenbeek aus Roskam 1989	82
Tabelle 6.20	Masse der W _{fur} nach Torenbeek aus Roskam 1989	83
Tabelle 6.21	Masse der W _{fur} nach General Dynamics aus Roskam 1989	84
Tabelle 6.22	Masse der W _{fur} nach Torenbeek aus Roskam 1989	84
Tabelle 6.23	Masse der Steuerwerkanlage nach R. Ertinger aus LTH 1981	85
Tabelle 6.24	Masse von elektronischer Anlage nach H. L. Roland aus LTH 1981	86
Tabelle 6.25	Masse von elektronischer Anlage nach Mauch/Gebel aus LTH 1981	86
Tabelle 6.26	Masse der Instrumenten nach Gl. 6.48 aus Raymer 1992	87
Tabelle 6.27	Masse der Avionik nach Gl. 6.51 aus Raymer 1992	88
Tabelle 6.28	Masse der Einrichtung nach Gl. 6.52 aus Raymer 1992	88
Tabelle 6.29	Masse der W _{fuel system} nach Gl. 6.56 aus Raymer 1992	89
Tabelle 6.30	Masse der Avionik nach Gl. 6.60 aus Raymer 1992	89
Tabelle 6.31	Masse der Einrichtung nach Gl. 6.61 aus Raymer 1992	90
Tabelle 6.32	Masse der Ausrüstung nach Gl. 6.64 aus Torenbeek 1988	90
Tabelle 6.33	Masse der Flugsteuerung nach Gl. 6.65 aus Torenbeek 1988	91
Tabelle 6.34	Masse des Cockpitsystems nach Gl. 6.64 aus Torenbeek 1988	91
Tabelle 6.35	Masse des Automatischen Systems nach Gl. 6.65 aus Torenbeek 1988.	92
Tabelle 6.36	Masse des Treibstoffsystems nach Gl. 6.66 aus Torenbeek 1988	92
Tabelle 6.37	Masse der Hydraulik und Pneumatik aus Torenbeek 1988	92
Tabelle 6.38	Masse der Instrumenten nach Bild A6.1 aus Boeing 1969	93
Tabelle 6.39	Masse der Steuerung nach Bild A6.2 aus Boeing 1969	93
Tabelle 6.40	Masse der Hydraulik nach Bild A6.3 aus Boeing 1969	94
Tabelle 6.41	Masse des pneumatischen Systems nach Bild A6.4 aus Boeing 1969	94
Tabelle 6.42	Masse der Elektronik nach Bild A6.5 aus Boeing 1969	94
Tabelle 6.43	Masse der Einrichtung (furnishings) nach Bild A6.6 aus Boeing 1969.	94
Tabelle 6.44	Masse des Klimaanlagesystems (air conditioning) nach Bild A6.7 aus	Boe-
	ing 1969	94
Tabelle 6.45	Masse des Anti- und Enteisungssystems nach Bild A6.8 aus B	oeing
	1969	94

Liste der Formelzeichen

b	Spannweite
d	Durchmesser
d_F	äquivalenter Rumpfdurchmesser
8	Erdbeschleunigung
h	1.) Flughöhe; 2.) Höhe
k	Konstante
l	Länge oder Hebelarm
М	Machzahl oder Moment um die Querachse
m_A	Abflugmasse
m_F	Kraftstoffmasse (fuel mass)
m_{MF}	maximale Kraftstoffmasse
<i>m_{MTO}</i>	maximale Startmasse (maximum take-off mass)
<i>m_{MZF}</i>	maximale Leertankmasse (maximum zero fuel mass)
m_R	Rumpfmasse
n	Lastvielfaches oder Anzahl
n _{lim}	sicheres Lastvielfaches (limit load factor)
n _{ult}	Bruchlastfaktor (<i>ultimate load factor</i>)
O_R	Rumpfoberfläche
Р	Leistung
q	Staudruck
R	Reichweite (range)
S	Fläche (surface area)
Т	Schub (Thrust)
V	Fluggeschwindigkeit (velocity)
V_D	Sturzfluggeschwindigkeit (dive speed)
W	Breite (width)
W _{api} W _{ox}	Masse der Klimaanlage, Druckregler, Anti- und Enteisungssystem Masse des Sauerstoffsystems

Griechische Formelzeichen

φ	Pfeilung (in	amerikanischer	Literatur:	A)
---	--------------	----------------	------------	----

- λ Zuspitzung
- I_F Schlankheitsgrad des Rumpfes
- σ relative Luftdichte
- Λ Flügelstreckung

Liste der Abkürzungen

BRP	Nebenstromverhältnis (bypass ratio)
CABIN	Kabine
CARGO	Frachtraum
CG	Schwerpunkt (center of gravity)
ef	Austritt aus dem Fan (fan exhaust opening)
EFCS	electronic flight control system
eg	Austritt aus der Gasturbine (gas generator exhaust opening)
F	Kraftstoff (fuel) oder Rumpf (fuselage)
Fan Cowling	Verkleidung des Fans
F/C	flight control (Flugsteuerung)
FUR	furnishings (Einrichtung)
g	Gasturbine (gas generator)
Gasgenerator Cowling	Verkleidung der Gasturbine
GE	General Electric
Н	Höhenleitwerk (horizontal tail)
L	Landung (landing)
MAC	mittlere aerodynamische Flügeltiefe, Tiefenlinie (mean aerodynamic
	chord)
MD	design diving Mach Number
ML	maximale Landemasse (maximum landing weight)
MTO	maximale Startmasse (maximum take off weight)
Ν	Triebwerksgondel (nacelle)
OE	Leermasse (operating empty)
р	Endstück eines Triebwerks (plug)
PAX	Passagier (passenger, pa x)
Plug	Endstück eines Triebwerks (plug)
SAWE	international society of Allied Weight Engineers
TL	Turbinen- Luftstrahltriebwerk
VD	design diving speed
ZTL	Turbinen- Luftstrahltriebwerk
wet	benetzt (wetted)

1 Einleitung

In dieser Diplomarbeit werden, am Beispiel ausgewählter Passagierflugzeuge, die Massen der Baugruppen (bzw. Massengruppen) mit Hilfe unterschiedlicher Verfahren zur Masseprognose ermittelt und miteinander verglichen. Dabei werden auch die tatsächlichen Massen der Baugruppen von Passagierflugzeugen herangezogen. Hierin sind die einzelnen Massen der Baugruppen auf Abweichungen zur realen Masse für unterschiedliche Flugzeugmuster untersucht worden. Wie genau oder ungenau die Berechnungen tatsächlich sind, ist in den folgenden Abschnitten zusammenfassend dargestellt.

1.1 Aufbau und Ziel der Arbeit

• Der Hauptteil der Arbeit enthält die abstrakten Ausführungen zum Thema:

Abschnitt 2 enthält einen Überblick über die unterschiedlichen Verfahren bei	
	nung der Rumpfmasse. Die gerechneten Massen werden in Diagrammen ver-
	anschauficht.
Abschnitt 3	behandelt die unterschiedlichen Verfahren bei der Berechnung der Massen
	der Triebwerksgondel.
Abschnitt 4	behandelt die Triebwerksmasse.
Abschnitt 5	behandelt die Masse der Bug- und Hauptfahrwerke.
Abschnitt 6	behandelt die Masse der Flugzeugsysteme.
Anhang A	enthält die Diagramme von Boeing 1968
Anhang B	enthält die Flugzeugdaten. Hier befinden sich die sämtliche Flugzeugparame-
	ter

Ziel der Arbeit ist die Ermittlung der Massen der Flugzeugbaugruppen mit Hilfe unterschiedlicher Verfahren (wie z.B. nach Torenbeek, nach Boeing oder nach Raymer). Diese Verfahren werden anschließend miteinander verglichen. Somit ist es möglich die unterschiedlichen Verfahren besser zu beurteilen. Die errechneten Massen werden in Diagrammen veranschaulicht. Dabei werden drei Flugzeugmuster berücksichtigt (A340-300, A330-200 und die A320-200). Für die A330-200 wurde aber kein Vergleich mit den tatsächlichen Massen durchgeführt.

1.2 Literaturübersicht

1.2.1 Literatur für die Datensammlung

Als eine gute Datensammlung ist die Homepage von **Pschirus 1999** zu nennen. Die Internetseiten der **EADS 2000** sind dagegen nicht hilfreich, da hier nur wenige Daten zu finden sind. Aus den Internetseiten von **Arnold 2001** (<u>www.arnoldpublishers.com</u>), konnte ich viele nützliche Daten übernehmen. Weitere Quellen sind die Homepage von **CFM international 1998** (<u>http://www.cfm56.com/home.htm</u>) und die von **General Electric Co. 2000** (<u>http://www.geae.com/lrgcom/cf6/cf6_comm_80e1.htm</u>).

Als sechste Quelle ist das Buch "Am Start moderne Verkehrsflugzeuge & Business Jets" von **Kreuzer 1999.** Es gibt einen kurzen Überblick der zur Zeit als *modern* bezeichneten Flugzeuge. Hier sind nur grundsätzliche Daten verzeichnet. Neben dem Entwicklungsgrund und einer kurzen Beschreibung wird von jedem Flugzeug ein Farbbild gezeigt.

Viele Daten dieser Diplomarbeit sind aus dem Werk "Jane's all the world aircraft" entnommen worden. Dieses Werk enthält Daten von Flugzeugen aus der ganzen Welt. Die in dieser Arbeit verwendeten Daten sind größtenteils **Jane's 1992 bzw. 1996** entnommen. Das Werk erscheint alle zwei Jahre in einer Neuauflage mit allen neu entwickelten Flugzeugen. Die dabei zur Verfügung stehenden Daten und Informationen zu den Flugzeugsystemen sind zahlreich und übersichtlich. Bei älteren Flugzeugtypen wird auf die vorherigen Jahrgänge des Buches verwiesen. Das Werk mit dem Titel "Das große Buch der Passagierflugzeuge" ist ohne Zweifel, bedeutungsvoll. Für das Kapitel 5 wurde unter anderen, das Werk von **Currey 1988** "Aircraft Landing Gear Design: Principles and Practices" verwendet.

1.2.2 Literatur für den Flugzeugentwurf

Neben dem "Skript zur Vorlesung Flugzeugentwurf" von Scholz 1998 und den "Unterlagen zur Vorlesung Flugzeugentwurf" von Marckwardt 1997, werden hier folgende Bücher verwendet: "Synthesis of Subsonic Airplane Design" von Torenbeek 1988 und "Airplane Design" von Roskam 1989, in dem sich jedoch lediglich Gleichungen aus anderen Quelle finden. Es wurden auch folgende Unterlagen verwendet: Unterlagen aus dem luftfahrttechnischen Handbuch Band: Gewichte, sowie Unterlagen von Boeing 1968. Weitere Unterlagen die für diese Diplomarbeit benutzt wurden, sind: "Paper von Berry 2000" (Titel ist Sizing the Landing Gear in the Conceptual Design Phase) und ein Artikel aus "Flight International" 2000 (Bericht über Triebwerke) sowie das "Skript zur Vorlesung Flugzeugtriebwerke" von Bräunling 1997.

2 Rumpfmasse

2.1 Verfahren nach Torenbeek

Torenbeek bezieht seine Daten aus einer großen Zahl verschiedener Veröffentlichungen. Insbesondere wurden derer der *International Society of Allied Weight* genutzt, Scholz 1998. In dieser Diplomarbeit werden aus Torenbeek 1988 nur die wichtigsten Gleichungen mit dem Schwerpunkt bei den Transportflugzeuge wiedergegeben.

Für Sturzfluggeschwindigkeiten $V_D > 250$ kts (=128.6 m/s) EAS ist:

$m_F = 0.23 \cdot \sqrt{100}$	$\overline{V_D \cdot \frac{l_H}{w_F + h_F}} \cdot S_{F,wet}^{1.2}$	(2.1)
-------------------------------	--	-------

Flugzeuge	V_D [m/s]	<i>l_H</i> [m]	$w_F[\mathbf{m}]$	<i>h</i> _{<i>F</i>} [m]	$S_{F, Wet}$ [m ²] *	Rumpfmasse [kg]	Abweichung [%]
A340-300	216,6	26,5	5,64	5,64	977,2	23105	-9,9
A330-200	216,6	23,3 ³	5,64	5,64	894,0	18297	-
A320-200	207,9	13,53	3,95	4,14	465 ²	7358	-20,6

Tabelle 2.1: Rumpfmasse nach Gl. 2.1 aus Torenbeek 1988

³ wurde aus Endres 2000 abgelesen

² wurde aus dem **Bild 2.1** abgelesen

* wurde nach **Gleichung** 2.4 ermittelt

V_D läßt sich aus der Gleichung 2.3 ausrechnen

 l_{H} , h_F und w_F sind aus den Internetseiten von Arnold 2001 entnommen.

Folgende Korrekturen sind zu beachten:

+ 8%	fiir eine	Druckkabine (nressure	cahin)
± 0.70		DIUCKRAUIIIC	pressure	cuvin)

- + 4% für Triebwerke am Rumpfheck
- + 7% für ein Hauptfahrwerk, das am Rumpf befestigt ist
- 4% wenn der Rumpf keinen Fahrwerksschacht (*landing gear bay*) enthält
- + 10% für ein Frachtflugzeug mit einem verstärkten Kabinenboden (*cabin floor*)

Gleichung 2.1 kann zur Abschätzung der separaten Masse eines Leitwerksträgers (*tail boom*) genutzt werden. Wenn ein Hauptfahrwerksbein im Leitwerksträger untergebracht ist, wird die Masse um 7% erhöht, aus Scholz 1998.

 V_D Sturzfluggeschwindigkeit (*dive speed*) in **m/s** äquivalenter Fluggeschwindigkeit (*equivalent airspeed*), V_{EAS} . V_{EAS} ist eine Funktion der wahren Fluggeschwindigkeit (*true airspeed*), V_{TAS} .

$$\begin{split} V_{EAS} = V_{TAS} \cdot \sqrt{s} & \text{mit } s = \frac{r}{r_0} \tilde{n} \\ V_D = M_D \cdot a & \text{mit } a^2 = g \cdot \frac{p}{r} & \text{aus der Thermodynamik} \\ a & \text{ist die Schallgeschwindigkeit und } \tilde{a} \text{ ist der Isentropenexponent. Für Luft gilt } \tilde{a} = 1.4 \\ M_D & \text{Sturzflugmachzahl } (dive Mach number). \text{ Nach JAR-23.335(b) bzw. JAR-25.335(b) und Praxiserfahrung ist } M_D \text{ um } 0.05 \dots 0.09 \text{ höher als } M_C \text{ bzw. } M_{M0}, \\ l_H & \text{Hebelarm des Höhenleitwerks, ist der Abstand der Neutralpunkte von Flügel und Höhenleitwerk,} \\ w_F & \text{maximale Rumpfbreite } (fuselage width), \\ h_F & \text{maximale Rumpfbröhe } (fuselage height), \\ S_{F, wet} & \text{Fläche des Rumpfes } (fuselage wetted area) \text{ in } \mathbf{m}^2 \\ V_C \text{ und } V_D \text{ lassen sich auch nach der } \mathbf{Gl. 2.2} \text{ und } \mathbf{Gl. 2.3}, \text{ aus Marckwardt 1997, ausrechnen.} \end{split}$$

$Vc = 217[m/s] \cdot M_{M0}$	(2.2)
------------------------------	-------

A340-300	186,62 m/s
A330-200	186,62 m/s
A320-200	177,94 m/s

und

 $V_D = V_C + 30[m/s]$ (2.3)

A340-300	216,6 m/s
A330-200	216,6 m/s
A320-200	207,9 m/s

Die benetzte Fläche von Rümpfen mit zylindrischem Mittelteil ist für $\lambda_F \ge 4.5$ aus Torenbeek 1988.

$S_{wet,F} = \boldsymbol{p} \cdot \boldsymbol{d}_F \cdot \boldsymbol{l}_F \cdot$	$\left(1-\frac{2}{I_F}\right)^{2/3} \cdot \left(1+\right)$	$\left(\frac{1}{I_F^2}\right)$	(2.4)
--	--	--------------------------------	-------

Tabelle 2.2:	Benetzte Fläche von	Rumpf aus Torenbe	ek 1988	
Flugzeuge	d_F [m] ²	$l_{F}[m]^{-3}$	1 _F	$S_{F, Wet}$ [m ²]
A340-300	5,64	62,47	11,1	977,2
A330-200	5,64	57,77	10,2	894,0
A320-200	3,96	37,57	9,5	465 *
2 4 114	001			

³ aus Arnold 2001

² aus Pschirus 1999

- d_F Rumpfdurchmesser. Für nicht kreisförmige Rümpfe wird d_F berechnet aus dem Rumpfumfang P mit $d_F = P_F / \pi$
- λ_F Schlankheitsgrad des Rumpfes, $\lambda_F = l_F / d_F$.

Die benetzte Fläche von stromlinienförmigen Rümpfen ohne zylindrisches Mittelteil ist Torenbeek 1988:

$$S_{wet,F} = \mathbf{p} \cdot d_F \cdot l_F \cdot \left(0.5 + 0.135 \cdot \frac{l_n}{l_F} \right)^{2/3} \cdot \left(1.015 + \frac{0.3}{\mathbf{l}_F^{1.5}} \right)$$
(2.5)

 l_n der Abstand von der Flugzeugnase in x-Richtung bis zum Beginn des zylindrischen Teil des Rumpfes.

2.2 Verfahren nach Marckwardt

Liste der Formelzeichen

В	Rumpfbreite [m]
b	Spannweite [m]
$dc_A/d\boldsymbol{a}$	Abreißverhalten
Н	Rumpfhöhe [m]
L_R	Rumpflänge [m]
m_A	Abflugmasse [kg]
m_A/S	Flächenbelastung [kg/m ²]
m_R	Rumpfmasse [kg]
n_{Br}	Bruchlastfaktor
O_R	Rumpfoberfläche [m ²]
V_c	Reisegeschwindigkeit [m/s]
17	Ctumfly acceptorin district (dive an

V_D Sturzfluggeschwindigkeit (dive speed) [m/s]

Aus dem **Bild 2.1** und **Bild 2.2**, werden die Massen des Rumpfes aus den Diagrammen abgelesen.

Flugzeuge	$S_{F, Wet}$ [m ²]	Rumpfmasse [kg] (abgelesen)	Abweichung [%]
A340-300	977,2	24425	-4,7
A330-200	894,0	21903	-
A320-200	465	8463	-8,6

 Tabelle 2.3: Rumpfmasse nach Bild 2.1 aus Marckwardt 1997

Bild 2.1

 m_R nach $d_R * l_R$ nach Marckwardt 1997 **Bild 2.2**

Tabelle 2.4 :	Rumpimasse nach Bild 2.2 aus Marckwardt 1997				
Flugzeuge	Rumpfdurchmesser * Rumpflänge	Rumpfmasse [kg]	Abweichung [%]		
	[m ³]	(abgelesen)			
A320-200	5575	8100	-12,6		
A340-300	22010	25000	- 2,5		

Nach diesen Verfahren, können die Rumpfmassen mit niedriger Abweichung errechnet werden.

Statistikgleichung nach Marckwardt 1997

$m_R = 5.65 \cdot \left(\frac{B+H}{2} \cdot L_R^2\right)^{3007} \tag{2.6}$		$m_R = 5.65 \cdot \left(\frac{B+H}{2} \cdot L_R^2\right)^{0.837}$	(2.6)
--	--	---	-------

Tabelle 2.5: Rumpfmasse nach Gl. 2.6 aus Marckwardt 1997

Flugzeuge	<i>B</i> [m] ²	<i>H</i> [m] ²	$L_R[\mathbf{m}]^2$	Rumpfmasse [kg]	Abweichung [%]	
A340-300	5,64	5,64	62,57	24368	-4,9	
A330-200	5,64	5,64	57,77	21378	-	
A320-200	3,95	4,14	37,57	7876	-15,0	
2	11 2001					

aus Arnold 2001

Mit der folgenden Gleichung kann die Masse des Rumpfes errechnet werden.

$m_{p} = 13.9 \cdot O_{p} \cdot \log(0.0676 \cdot O_{p})$	(2.7)
R R C R'	· · ·

Tabelle 2.6: Rumpfmasse nach Gl. 2.7 aus Marckwardt 1997

Flugzeuge	Rumpfoberfläche [m]	Rumpfmasse [kg]	Abweichung [%]
A340-300	977,2	24719	- 3,6
A330-200	894,0	22136	-
A320-200	465	9678	+4,5

Hier folgt die zweite Statistikgleichung nach Marckwardt 1997.

$$m_R = 0.67 \cdot O_R^{0.456} \cdot \left(\frac{B+H}{2}\right)^{0.729} \cdot L_R^{0.649} \cdot V_D^{0.622}$$
(2.8)

Tabelle 2.7: Rumpfmasse nach Gl. 2.8 aus Marckwardt 1997

Flugzeuge	B [m]	$V_D [m/s]$	O _R [m]	H [m]	$L_R[m]$	Rumpfmasse [kg]	Abweichung
							[%]
A340-300	5,64	216,6	977,2	5,64	62,57	22666	- 11,6
A330-200	5,64	216,6	894,0	5,64	57,77	20688	-
A320-200	3,95	216,6	465	4,14	37,57	8886	- 4,1

Bei A320-200 ist die Abweichung sehr gering. Mit diesem Verfahren läßt sich die Rumpfmasse mit geringer Abweichung ermitteln.

2.3 Gleichungen nach Burt-Phillips aus Marckwardt 1997

Der Bruchlastfaktor ist nach folgender Gleichung definiert:

$n_{Br} = 1.5 \cdot \left[1 + 0.75 \cdot \frac{V_c}{m_A / S} \cdot \frac{dC_A}{da} \right] $ (2)	2.9)
---	------

Tabelle 2.8 Bruchlastfaktoren aus Marckwardt 1997

Flugzeuge	m _A /S [kg/m ²] ²	n _{Br}
A340-300	746	3,254
A330-200	598	3,683
A320-200	600	3,626

² aus Pschirus 1999

Das Abreißverhalten wird nach Marckwardt 1997, wie folgt definiert:

$\frac{dC_A}{dC_A} =$	$2 \cdot \Pi \cdot \Lambda$	(210)
da	$2 + \sqrt{4 + \Lambda^2 \cdot \left(\frac{1}{(\cos \mathbf{j}_{0.25})^2} - M^2\right)}$	(2.10)

Tabelle 2.9 Abreißverhalten aus Marckwardt 1997

Flugzeuge	Machzahl	L *	j *	d_{CA}/da
A340-300	0,86	9,26	29,7	6,237
A330-200	0,86	9,26	29,7	6,214
A320-200	0,80	9,39	25	6,378

* aus Arnold 2001

Die Masse des Rumpfes nach **Burt-Phillips**, kann mit der folgenden **Gleichung** ermittelt werden.

$m_{R} = 2.23$	$(m_{Haut} + m_{Stringer} + m_{Spart})$	$+\Delta m_{R}$	(2.11)
Γ.	Λ name stringer spant		()

Tabelle 2.10: Rumpfmasse nach Burt-Phillips aus Marckwardt 1997

Flugzeuge	<i>m_{Haut}</i> [kg]	<i>m</i> _{Stringer} [kg]	<i>m</i> _{Spant} [kg]	Rumpfmasse [kg]	Abweichung [%]
A340-300	5463	3636	1729	24.147	-5,8
A330-200	4968	3323	1575	22.002	-
A320-200	2394	1261	695	9.701	+ 4,7

Mit der unten stehenden Gleichung wird die Hautmasse ermittelt.

$$m_{Haut} = 0.0635 \cdot O_R^{1.07} \cdot V_D^{0.743} \tag{2.12}$$

dann die Masse des Stringers

$$m_{Stringer} = 0.0142 \cdot O_R^{1.45} \cdot V_D^{0.39} \cdot n_{Br}^{0.316}$$
(2.13)

Die Spantmasse wird nach folgender Gleichung berechnet:

$$m_{Spant} = 0.19 \cdot \left(m_{Haut} + m_{Stinger} \right) \tag{2.14}$$

Bei Frachtflugzeugen wird die Rumpfmasseänderung folgendermaßen berechnet:

$$\Delta m_R = 16.2 \cdot S_{Boden}^{1.04} \tag{2.15}$$

2.4 Gleichungen aus Roskam

Liste der Formelzeichen

h_{f}	maximale Rumpfhöhe in [ft]
<i>K</i> _{inl}	=1.25 für Flugzeug mit Einlaß (<i>inlets</i>) im bzw. am Rumpf für die Installation des
	versenkten eingebauten Triebwerks
K_{inl}	=1.0 für den Einlaß (<i>inlets</i>) woanders lokalisiert
k_f	=1.08 für Rumpf unter Druckbelastung
	=1.07 für Hauptfahrwerk am Rumpf befestigt
	=1.10 für Frachtflugzeuge mit Frachtflur
l_f	Rumpflänge in [ft]
L _{f-n}	Rumpflänge, nicht enthalten ist die installierte Gondellänge an der Nase in [ft]
l_h	Entfernung zwischen C/4 bis zu C/4 des Höhenleitwerks (Hebelarm des Höhen-
	leitwerks) in [ft]
n_{ult}	Bruchlastfaktor
q_D	dynamischer Druck [psf]
Sfgs	Bruttofläche der Rumpfschale in [ft ²]
V_C	Fluggeschwindigkeit in KEAS
W	Masse [lbs]
W_f	maximale Rumpfbreite in [ft]
W_{TO}	Abflugmasse in [lbs]

2.4.1 Allgemeine Flugzeuge (General Aviation Airplanes)

2.4.1.1 Verfahren von Cessna aus Roskam

Nur für kleine Flugzeuge (Flugzeuge mit niedriger Leistung) mit einer maximalen Geschwindigkeit von $V_{max} < 200$ Kts (370 Km/h).

Für Tiefdecker gilt:

$$W_{f} = 0.04682 \cdot W_{TO}^{0.692} \cdot N_{Pax}^{0.360} \cdot \frac{(l_{f-n})^{0.59}}{100}$$
(2.16)

Für Hochdecker gilt:

$$W_{f} = 14.86 \cdot W_{TO}^{0.144} \cdot \left(\frac{l_{f-n}}{P_{\text{max}}}\right)^{0.778} \cdot \left(l_{f-n}\right)^{0.383} \cdot N_{Pax}^{0.455}$$
(2.17)

W_{TO}	Abflugmasse (take-off weight) in lbs
L_{f-n}	Rumpflänge, nicht enthalten ist die installierte Gondellänge an der Nase, in ft
Npax	Zahl der Passagiere und Crew

Anmerkung: Die Gleichungen 2.16 und 2.17 sind nicht für Druckrumpf geeignet.

2.4.1.2 Verfahren von USAF aus Roskam

Die folgende **Gleichung** gilt für leichte Flugzeuge mit einer Geschwindigkeit von V > 300 Kts (555.6Km/h).

$W_f = 200 \cdot \left[\left(W_{TO} \cdot \frac{n_{ult}}{10^5} \right)^{0.286} \right]$	$\cdot \left(\frac{l_f}{10}\right)^{0.857} \cdot \frac{w_f + h_f}{10} \cdot \left(\frac{1}{10}\right)^{0.857} \cdot \frac{w_f + h_f}{10} \cdot \left(\frac{1}{10}\right)^{0.857} \cdot \left$	$\left[\frac{V_c}{100}\right]^{0.338} \left]^{1.1} $ (2.18)
---	---	---

Tabelle 2.11: Rumpfmasse nach USAF aus Roskam 1989

Flugzeuge	W_{TO} [kg] ²	l_f [m] ²	<i>w_f</i> [m] ²	$h_f[\mathbf{m}]_2$	Rumpfmasse [kg]	Abweichung [%]
A340-300	271000	62,57	5,64	5,64	27108	+ 5,8
A330-200	230000	57,77	5,64	5,64	24863	-
A320-200	73500	37,57	3,95	4,14	7851	- 15,2

² aus EADS 2000

n_{ult}	Bruchlastfaktor
l_f	Rumpflänge in [ft]
W_{f}	maximale Rumpfbreite in [ft]

h_{f}	maximale Rumpfhöhe in [ft]
V_C	Fluggeschwindigkeit in KEAS [knot]

2.4.2 Zivil-Transport-Flugzeuge (*Commercial Transport Airplanes*)

2.4.2.1 Gleichung nach General Dynamics aus Roskam

Mit der folgenden Gleichung wird die Masse des Rumpfes ermittelt.

$W_f = 2 \cdot 10.43 \cdot (K_{inl})^{1.42}$	$\left(\frac{\overline{q_D}}{100}\right)^{0.283}$	$\left(\frac{W_{TO}}{1000}\right)^{0.95}.$	$\left(rac{l_f}{h_f} ight)^{\!0.71}$	(2.19)
--	---	--	---------------------------------------	----------

Tabelle 2.12. Rumphilasse nach General Dynamics aus Ruskam 17 0	Tabelle 2.12:	Rumpfmasse	nach General I	Dynamics aus	Roskam	1989
--	----------------------	------------	----------------	--------------	--------	------

Flugzeuge	W_{TO} [kg] ²	<i>q</i> _D [psf] *	l_f [m] ²	K _{inl}	h_f [m] ²	Rumpfmasse [kg]	Abweichung [%]
A340-300	271000	2280	62,57	1,0	5,64	25912	+ 1,1
A330-200	230000	2280	57,77	1,0	5,64	20975	-
A320-200	73500	2101	37,57	1,0	4,14	6363	- 31,3

² aus EADS 2000

* wurde aus $q_D = \frac{\mathbf{r}}{2} \cdot V^2$ errechnet.

In die Gleichung werden die englischen Maße eingesetzt.

K_{in1}	=1.25 für Flugzeug mit Einlaß (inlets) im bzw. am Rumpf für die Installation des
	versenkten eingebauten Triebwerks

 K_{inl} =1.0 für den Einlaß (*inlets*) an anderer Stelle lokalisiert

 q_D = dynamischer Druck in [psf]

2.4.2.2 Modifiziertes Verfahren nach Torenbeek aus Roskam

Die folgende **Gleichung** gilt für Transportflugzeuge und *business* Jets mit einer Geschwindigkeit von V > 250 Kts (463Km/h)

$$W_{f} = 0.021 \cdot k_{f} \cdot \left(\frac{V_{D} \cdot l_{h}}{w_{f} + h_{f}}\right)^{1/2} \cdot S_{fgs}^{1.2}$$
(2.20)

Tubene 2.10. Rumphhusse aus Gr 2.20 haen Torenbeek 1900 aus Roskam 1909								
Flugzeuge	$V_D[\mathbf{m/s}]$	L_h [m]	K_{f}	<i>h</i> _f [m]	Rumpfmasse [kg]	Abweichung [%]		
A340-300	216,6	26,5	1,08	5,64	23117	- 9,8		
A330-200	216,6	23,3	1,08	5,64	18297	-		
A320-200	207,9	13,53	1,08	4,14	7362	- 20,5		

Tabelle 2.13: Rumpfmasse aus Gl. 2.20 nach Torenbeek 1988 aus Roskam 1989

Zwischen dieser Gleichung (nach Torenbeek aus dem Werk von Roskam) und der von Torenbeek selbst gibt es keinen Unterschied. Die Abweichungen sind in diesem Fall ähnlich wie die aus der **Tabelle 2.1**.

- k_f kann folgende Werte haben:
- $k_f = 1.08$ für Rumpf unter Druckbelastung
 - =1.07 für Hauptfahrwerk am Rumpf befestigt
 - =1.10 für Frachtflugzeuge mit Frachtflur

In dem Werk von Torenbeek findet man, außerdem zwei weiteren Korrekturfaktoren für k_{f} . Der erste beträgt + 4%, wenn die Triebwerke am Rumpf montiert sind, und - 4%, wenn der Rumpf keinen Fahrwerksschacht (*landing gear bay*) enthält (für die ausgewählte Beispielsflugzeuge ändert sich das Ergebnis nicht).

- l_h Entfernung zwischen C/4 bis zu C/4 von Höhenleitwerk in [ft]
- S_{fgs} Bruttofläche der Rumpfschale in [ft²]
- V_D Sturzfluggeschwindigkeit in [kts]

2.5 Gleichungen aus dem luftfahrttechnischen Handbuch

Liste der Formelzeichen

b	Spannweite	[m]
d	äquivalenter Durchmesser	[m]
l	Länge	[m]
т	Masse	[Kg]
Ма	Machzahl	
m_E	Entwurfsmasse	[Kg]
n	Lastvielfache	
N_{TW}	Anzahl der Triebwerke	
<i>n</i> _{Br}	Bruchlastfaktor	
OR	Rumpfoberfläche	[m ²]
q	Staudruck	[Kg/m ²]
r _H	Leitwerksabstand von 25% lµ zu 2.	5% lµ der Netto-Leitwerksfläche (Höhen-
	leitwerk)	
V_D	Sturzfluggeschwindigkeit (dive spec	<i>ed</i>) [m/s]

Starrflügler: FSCHW = 1.0 Für die ausgewählte Beispielflugzeuge, ist FSCHW =1

Schwenkflügler:

$$FSCHW = \left(\frac{b_{SCHW} - d_R}{b_{absolut} - d_R}\right)^{-0.119}$$
(2.21)

Bemerkung:

Bei Schwenkflügelflugzeugen ist die Geometrie des rückgepfeilten Zustandes eingegeben!

2.5.1.1 Verfahren nach R. Ertinger (IABG/WTT) aus LTH 1981

Mit der folgenden Gleichung wird die Rumpfmasse berechnet.

$m_{_{Ru}} = FSCHW \cdot KR \cdot$	$\left[KPR \cdot 10^{-4} \cdot n_{Br} \cdot Z \cdot \left(1 + \frac{d_R}{l_R}\right)^5 \cdot \left(\frac{l_R}{d_R}\right)^2\right]^{EX}$	(2.22)
------------------------------------	--	--------

Tabelle 2.14:	Rumpfmasse	nach R. Ertringe	r (IABG/WTT) aus LTH 1981
---------------	------------	------------------	-------------	----------------

Flugzeuge	KR	KPR	Z	d_R [m]	$l_R[\mathbf{m}]$	Rumpfmasse [kg]	Abweichung [%]
A340-300	6,36	1,03	3.441.025	5,64	62,47	28.456	+ 11,0
A330-200	6,36	1,20	2.800.660	5,64	57,77	27.446	-
A320-200	6,36	1,37	558.924	3,95	37,57	9.143	- 1,3

d	äquivalenter Durchmesser	[m]
l	Länge	[m]
m	Masse	[Kg]
n_{Br}	Bruchlastfaktor	

Für Transportflugzeuge (mit Triebwerk am Rumpf oder am Flügel)

KR = 6,362	EX = 0.684,	$Y3 = l_R/d_R ,$	$Z = mE * r_{H}$
Y3<9.5		$KPR^{**} = \frac{Y1}{Y3 - Y2}$	
Y3 > 9.5		$KPR^{**} = 7.77 \cdot 0.833^{Y_3}$	
$m_{E} < 32000$	kg	$Y1 = 9.0667 \cdot 0.6552^{m_E/10^4}$	
32000 kg	$\leq m_{_E} < 68000 \text{ kg}$		

$$Y1 = \frac{11.544}{m_{\rm E} \cdot 10^4 + 1.442}$$

$$m_{E} > 68000 \text{ kg} \qquad Y1 = 1.73 \cdot 09694^{m_{E}/10^{4}} Y2 = 6 \cdot 27 \cdot (1 - 5.6306^{-m_{E}/10^{4}}) Y2 = 6.75 \cdot (1 - 3.0163^{-m_{E}/10^{4}}) Y2 = 8.834 \cdot (1 - 1.3479^{-m_{E}/10^{4}}) Y2 = 9.15 \cdot (1 - 1.2363^{-m_{E}/10^{4}})$$

2.5.1.2 Verfahren nach North-American-Aviation aus LTH 1981

Die Rumpfmasse, kann auch nach folgender Gleichung berechnet werden: Diese Gleichung gilt jedoch nicht für Zivil- Flugzeuge:

m	$_{Ru} = FSCHW \cdot KR \cdot O_{Ru}^{1.124} \cdot (n_{Br} \cdot m_{E})$	$)^{0.172} \cdot q^{0.241} \cdot \left(\frac{l_R}{d_R}\right)^{-0.065} \cdot r_{_H}^{-0.047}$	(2.23)
l_R	Rumpflänge	[m]	
т	Masse	[Kg]	
m_E	Entwurfsmasse	[Kg]	
n_{Br}	Bruchlastfaktor		
O_{Ru}	Rumpfoberfläche	[m ²]	
q	Staudruck	[Kg/m ²]	
r_H	Leitwerksabstand von 25%	b lμ zu 25% lμ der Netto-Leitwerk	sfläche (Höhen-

Für Bomber (Triebwerk am Rumpf oder am Flügel) und Transporter gelten folgende Gleichungen.

$$KR^* = 750.8 \cdot 0.843^{FK}$$

$$FK = l_R \cdot O_{Ru} \cdot \frac{q}{d_R \cdot m_E \cdot n_{Br} \cdot 10}$$

2.5.1.3 Modifiziertes Verfahren nach Dr. W. Schneider VFW aus LTH 1981

Mit der folgenden Gleichung wird die Rumpfmasse berechnet.

$$m_{Ru} = FSCHW \cdot KR \cdot \left(m_E \cdot n_{Br} \cdot 10^{-3}\right)^{0.3549} \cdot \left(\frac{l_R}{10 \cdot r_H}\right)^{EX1} \cdot \left(V_D \cdot 10^{-2}\right)^{0.28084} \cdot \left(\frac{l_R}{d_R \cdot \Pi / 2}\right)^{EX2} \cdot O_{Ru}^{EX3} \cdot \left(\Pi \cdot l_R\right)^{-0.9269} \cdot N_{TW}^{0.3745} \cdot \left(10^{-3} \cdot S_{0\max}\right)^{0.1403}$$
(2.24)

Flugzeuge	KR	<i>m_E</i> [kg]	S_{0max} [daN]	<i>r_H</i> [m]	d_R [m]	$l_R[\mathbf{m}]$	Rumpfmasse [kg]	Abweichung [%]	
A340-300	268,5	129850	15100	26,5	5,64	62,47	26186	+ 2,2	
A330-200	62,45	120200	30000	23,3	5,64	57,77	19495	-	
A320-200	62,45	41310	11120	13,5	3,95	37,57	8111	- 12,4	
d	äquivalenter Durchmesser [m]								
l_R	Ru	mpflänge			[m]				
т	Ma	isse			[Kg]				
m_E	Ent	twurfsmass	se		[Kg]				
N_{TW}	An	zahl der Tı	iebwerke	e					
n_{Br}	Brı	ıchlastfakt	or						
O_R	Ru	mpfoberflä	che		[m ²]				
r _H	Leitwerksabstand von 25% lµ zu 25% lµ der Netto-Leitwerksfläche (Höhen-							iche (Höhen-	
	leit	leitwerk)							
Somax	Ne	Nennstandschub in daN							
V_D	Sturzfluggeschwindigkeit (dive speed) [m/s]								

Tabelle 2.15: Rumpfmasse aus Dr. W. Schneider (VFW) aus LTH 1981

Für Unterschall-Bomber und Transporter gelten folgende Gleichungen:

EX1 = 0.5816;	EX3 = 1.145	
1 bis 2- motorig:	KR = 62.45	EX2 = 0.2551
mehrmotorig:	KR = 268.5	EX2 = -0.4259

2.5.1.4 Modifiziertes Verfahren nach Boeing aus LTH 1981

Im Anschluß die Gleichung für die Berechnung der Rumpfmasse nach Boeing.

$$m_{Ru} = FSCHW \cdot KR \cdot 0.786 \cdot (m_E \cdot n_{Br})^{0.43} \cdot O_{Ru}^{0.595} \cdot (Ma_{\max})_{H=0}^{0.616} \cdot \left(\sum_{n=11}^{n=1} K_n\right) + K_{12}$$
(2.25)

Cabelle 2.16: Rumpfmasse nach Boeing aus LTH 1981								
Flugzeuge	O_{Ru} [m ²]	<i>m</i> _E [kg]	<i>n</i> _{Br}	d_{RU}	l_{RU}	M_{max} H=0	Rumpfmas-	Ab-
				[m]	[m]		se [kg]	weichung
								[%]
A340-300	977	129850	3,254	5,64	62,47	0,231	24.881	- 2,9
A330-200	894	120200	3,683	5,64	57,77	0,231	26.777	-
A320-200	465	41310	3,836	3,95	37,57	0,231	10.133	+9,4

 Tabelle 2.16:
 Rumpfmasse nach Boeing aus LTH 1981

 K_1 = Zuwachs für runde, druckdichte Rümpfe:

Dp = maximaler Kabinendifferenzdruck (70000 pa), in die Gleichung soll Dp in bar eingesetzt werden.

$$K_1 = 1.0 + 0.095 \cdot \left(\frac{\Delta p}{0.606}\right)^{0.5} + 0.025 \cdot \left(\frac{0.5 \cdot \Delta p \cdot d_{Ru}}{3559.4}\right)$$

 K_2 = Zuschlag für Fahrwerk im Rumpf:

Transporter (Zivil und Militär)

- $K_2 = 1.06$ am Flügel angelenkt
- $K_2 = 1.12$ im Rumpf angelenkt
- $K_2 = 1.16$ im Rumpf angelenkt (*high flotation*)
- $K_5 = 1.06$ Zuschlag für Triebwerk am Rumpf
- K_7 = Zuschlag für Schlankheitsgrad des Rumpfes:

$$K_7 = 0.965 + 0.0005 \cdot \left(\frac{l_{Ru}}{d_{Ru}}\right)$$

- K_8 = Zuschlag für Passagierfenster: = 1.06 für druckdichten Rumpf = 1.03 für nicht druckdichten Rumpf
- K_9 = Zuschlag für Ladetüren und Rampen: = 1.08 für Schwenknase und Rampe = 1.08 ganz zu öffnende Heckklappe und Rampe = 1.05 große Seitenladetür
- K_{10} = Zuschlag für Böden: = 1.2 für Transportflugzeug (ZIV und MIL)
- K_{11} = Zuschlag für Entwurfsgeschwindigkeit

$$= 0.88 \qquad Ma < 2.0 \\ = 0.9 \qquad 2.0 < Ma < 2.5 \\ 1.05 \qquad Ma < 2.5$$

- = 1.05 Ma > 2.5
- K_{12} = Zuschlag für Bremsklappen: $= 2.756 \cdot 10^{-3} \cdot m_E 7.778$ für $m_E > 10000 \text{ kg}$ = 20 kgfür $m_E < 10000 \text{ kg}$

Für Bomber (Triebwerk am Rumpf oder am Flügel) und Transportflugzeuge, gilt:

$$KR^{*} = \frac{YA}{\frac{l_{Ru}}{d_{Ru}} - YB}} \qquad EXPO = 2.205 \cdot \frac{m_{E}}{10^{4}}$$
$$m_{E} \le 45500 \text{ kg} \qquad YA = 4.755 \cdot 0.992^{\text{EXPO}}$$
$$m_{E} > 45500 \text{ kg} \qquad YA = 4.598 - 0.0487 \cdot \text{m}_{E} \cdot 10^{-4}$$
$$m_{E} \le 90000 \text{ kg} \qquad YB = 3.97 \cdot (1 - 1.07^{-EXPO})$$
$$m_{E} > 90000 \text{ kg} \qquad YB = 5.077 \cdot (1 - 1.045^{-EXPO})$$

2.6 Gleichungen nach Raymer

Liste der Formelzeichen

B_W	= Spannweite [ft]
D	= strukturelle Rumpfbreite [ft]
K _{door}	= 1.0, wenn keine Frachttür
	= 1.06, wenn die Frachttür auf einer Seite ist
	= 1.12 für Frachttüren auf beiden Seiten
	= 1.12 für " <i>aft clamshell</i> "-Tür
	= 1.25 für "aft clamshell "-Tür und Frachttür auf beiden Seiten
K_{Lg}	= 1.12 für Flugzeug mit Hauptfahrwerk am Rumpf montiert, sonst $K_{Lg} = 1.0$
K_{WS}	$= 0.75[(1+2\lambda)/(1+\lambda)](B_W * \tan \Lambda/L)$
L	= Rumpflänge [ft]
L_t	= tail length, ¹ / ₄ -MAC des Flügels bis ¹ / ₄ -MAC des Rumpfes
N_Z	= Bruchlastfaktor; (1.5* <i>limit load factor</i>)
q	= dynamischer Druck [lb/ft ²]
\overline{S}_{f}	= Rumpffläche (<i>wetted area</i>) [ft ²]
W_{dg}	= Entwurfsmasse (Brutto) [lb]
Wpress	= Druckausübung =11.9 + ($V_{pr} * P_{delta}$) ^ 0.271,
	wobei P_{delta} = Kabinendruck (Differential) [psi] (typisch ist 8 psi)
L	Flügelpfeilung (25% MAC)

2.6.1 Cargo/Transport Weights

Die Rumpfmasse kann nach folgender Gleichung ermittelt werden:

$$W_{\text{fuselage}} = 0.3280 \cdot K_{door} \cdot K_{Lg} \cdot (W_{dg} \cdot N_Z)^{0.5} \cdot L^{0.25} \cdot S_f^{0.302} \cdot (1 + K_{WS})^{0.04} \cdot \left(\frac{L}{D}\right)^{0.10}$$
(2.26)

Die mit der **Gleichung 2.26** errechneten Massen, sind sehr ungenau, sie sind deutlich unter den mittleren Durchschnittswerte der Rumpfmasse.

2.6.2 General-Aviation Weights

Es folgt die nächste Version, aus Raymer 1992, mit der die Rumpfmasse ermittelt werden kann.

$$W_{\text{fuselage}} = 0.052 \cdot S_f^{1.086} \cdot (W_{dg} \cdot N_Z)^{0.177} \cdot L_t^{-0.051} \cdot \left(\frac{L}{D}\right)^{-0.072} \cdot q^{0.241} + W_{\text{press}}$$
(2.27)

Flugzeuge	Wpress [psi]	W_{dg} [kg]	<i>q</i> [lb/ft ²]	<i>D</i> [m]	l_t [m]	Rumpfmasse	Abweichung
						[kg]	[%]
A340-300	8	129850	2280	5,64	26,5	24.586	- 4,1
A330-200	8	120200	2280	5,64	23,3	22.783	-
A320-200	8	41310	2101	3,95	13,5	9.373	+ 1,1

Tabelle 2.17: Rumpfmasse nach Gl. 2.27 aus Raymer 1992

Wpress = 8 PSI, Erfahrungswert laut **Raymer 1992**.

2.7 Rumpfmasse nach Boeing

Die Rumpfmasse kann aus dem Bild **2.3**, in Abhängigkeit der Abflugmasse, Bruchlastfaktor und der Rumpfoberfläche abgelesen werden.

W	$V_{\text{Body}} = f\left(M_{\text{MTO}} \cdot N \cdot A_{\text{W}}\right)$	(2.28)
	body (MIIO W)	· · · · · · · · · · · · · · · · · · ·

 A_W Rumpffläche (wettet area) in ft² M_{MTO} maximale Startmasse in LbsNBruchlastfaktor (Ultimate Load Factor)

Es sind folgende Korrekturen zu beachten:

K_1	= Zunahme für gepfeilten Flügel
	$= 0.80 + 0.35 \operatorname{Sin} \Lambda_{c/4}$
K_2	= Zunahme für Triebwerk am Rumpf
	= 1.06 Triebwerk am Rumpf
	= 1.04 Triebwerk im Rumpf
K_3	= Zunahme für Fahrwerk im Rumpf
	= 1.12 Hauptfahrwerk im Rumpf montiert (1.06 für 747)
	= 1.16 Hauptfahrwerk im Rumpf montiert (<i>high flotation</i>)
K_4	= Zunahme für Frachtboden oder Treibstoffboden
	= 1.06 Frachtboden (Zivil Flugzeug z.B. 707-320C)
	= 1.04 für Treibstoffdeck (KC-135A & B-52H)
	= 1.10 für militärische Frachtboden (463L)
	= 1.10 für militärische Frachtboden und hoch konzentrierte Ladung (C-5A)
K_5	= Zunahme für Flugzeuge ohne Passagierfenster
	= 0.94 Frachtflugzeuge ohne Fenster
K_6	= Zunahme für Frachttüren und Rampe
	= 1.06 für breite Frachtseitentür
	= 1.08 für <i>swing nose</i> und Rampe
	= 1.08 für voll offenbare hintere Frachttür und Rampe
K_7	= Zunahme für Bombenladeplatz
	= 1.05 Bombenladeplatz

Bild 2.3 m_R als Funktion der m_A , n_{BR} und O_R , aus **Boeing 1969**

Zum Ablesen der Rumpfmasse aus dem Bild 2.3, sind folgende Angaben nötig:

A340-300 $m_A \cdot N \cdot A_W \cdot 10^{-9} = 271000 / 0,4536 \cdot 3,256 \cdot 10515 \cdot 10^{-9} = 20,44$ A320-200 $m_A \cdot N \cdot A_W \cdot 10^{-9} = 73500 / 0,4536 \cdot 3,836 \cdot 5000 \cdot 10^{-9} = 3,1$

Flugzeuge	Oberfläche [ft ²]	Abgelesen [lb]	Rumpfmasse [kg]	Abweichung [%]
A340-300	10515	55000	24948	- 2,7
A320-200	5000	17550	8775	- 5,3

Tabelle 2.18: Rumpfmasse nach Bild 2.3 aus Boeing 1969

Bild 2.4 Abschätzung der m_R als Funktion der O_R nach **Boeing 1969**

Tabene 2.19: Kumphnasse nach boeing 1909 aus bhu 2.4							
Flugzeuge	Oberfläche [ft ²]	Abgelesen [lb]	Rumpfmasse [kg]	Abweichung [%]			
A340-300	10515	56500	25628	- 2,34			
A320-200	5000	22600	10251	+ 10,67			

Tabelle 2.19:	Rumpfmasse r	hach Boeing	1969 aus	Bild 2.4

Bild 2.5 Abweichungen der Rumpfmassen in Überblick (A340-300)

Bild 2.6 Abweichungen der Rumpfmassen in Überblick (A320-200)

Methode	Masse in kg, A340-300	Masse in kg, A320-200
Torenbeek	23105	7358
Marckwardt nach Bild 2.1	24425	8463
Marckwardt nach Bild 2.2	25000	8100
Marckwardt Statistikgleichung 1	24368	7876
Marckwardt Statistikgleichung 2	24719	9678
Marckwardt Statistikgleichung 3	22666	8886
Burt- Phillips	24147	9701
USAF aus Roskam	27108	7851
General Dynamics aus Roskam	25912	6363
Torenbeek aus Roskam	23117	7362
Ertringer aus LTH	28456	9143
Schneider aus LTH	26186	8111
Boeing aus LTH	24881	10133
General Aviation Raymer	24586	9373
Boeing	24948	8775

 Tabelle 2.20
 Rumpfmassen nach
 Verschiedenen
 Verfahren
 in
 Überblick

3 Masse der Triebwerksgondel

3.1 Gleichungen nach Torenbeek

Für TL-Triebwerke (turbo jet) gilt:

$$m_N = \frac{0.055 \cdot T_{T_o}}{g} \tag{3.1}$$

Und für ZTL-Triebwerke (*turbo jet*) gilt die folgende Gleichung: In dieser Gleichung ist auch die Masse der Pylon mitberücksichtigt.

$m_N = \frac{0.065 \cdot T_{T_o}}{1}$	(3.2)
g	

Tabelle 3.1: Triebwerksgondelmasse nach Gl. 3.2 aus Torenbeek 1988

Flugzeuge	S _{0max} [N] / Triebwerk ²	Gondelmasse [kg]	Abweichung [%]
A340-300	151000	4002	- 22,6
A330-200	300000	3976	-
A320-200	111200	1474	- 30,3

² aus **EADS 2000**

 T_{To} Startschub aller Triebwerke zusammen

g Erdbeschleunigung.

3.2 Gleichungen nach Marckwardt

Liste der Formelzeichen

D	Triebwerksdurchmesser (außen) in [m]
d_m	= D * L / l + d * (1 - L / l)
F_{0ges}	Standschub aller Triebwerke in [N]
g	Erdbeschleunigung in [m/s ²]
m_A	Abflugmasse [kg]
m_{GE}	Masse der Gondel und Einbaustruktur in [kg]
m_{TW}	Masse aller Triebwerke zusammen in [kg]
n_{TW}	Triebwerkszahl

Bild 3.1 Triebwerksbemaßung aus Marckwardt 1997

Und hier folgt die Gleichung zur Ermittlung der Gondelmassen und Einbaustruktur: Anders als wie bei Torenbeek, wird mit der unten gegebenen Gleichung, die Masse der Gondel ohne Pylon ermittelt.

	()	-0.253	()	0.15		0.206	
$m_{GE} = 0.0138$.	m_A		m_{TW}		r _{0ges}	$(\Pi, l, d)^{0.419}$	(3 3)
$\frac{m}{m} = 0.0130^{\circ}$	$1000 \cdot n_{m}$		\overline{m}		$m \cdot q$	$(1 \cdot \mathbf{i} \cdot \mathbf{a}_m)$	(5.5)
m_A	$(1000 m_{TW})$		(m_A)) '	$(m_A \circ)$	/	

Tabelle 3.2: Triebwerksgondelmasse nach Gl. 3.3 aus Marckwardt 1997							
Flugzeuge	<i>m</i> _A [kg]	$d_m[\mathbf{m}]$	<i>l</i> [m] *	F_{0ges} [N] ²	Gondelmasse [kg]	Abweichung [%]	
A340-300	271000	2,37	4,95	604000	2769	+21,7	
A330-200	230000	2,90	7,0	600000	2693	-	

222400

934

- 20,6

A320-200 73500 2,22

* aus Arnold 2001

² aus EADS 2000

 m_{TW} ist die Masse aller Triebwerke, und ist aus der **Tabelle 4.1** zu entnehmen.

4.44

Neben der **Gleichung 3.3**, findet man in diesem Werk (**Marckwardt 1997**) zwei weitere Gleichungen (Statistikgleichung), mit den die Gondelmasse ermittelt werden kann. Diese sind ähnlich wie die **Gl. 3.1** und **Gl. 3.2** aus **Torenbeek 1988**.

3.3 Gleichungen aus Roskam

3.3.1 Allgemeine Flugzeuge (General Aviation Airplanes)

3.3.1.1 Verfahren von Cessna aus Roskam

Die Gleichung 3.4 gilt nur für **kleine Flugzeuge** (Flugzeuge mit niedrige Leistung) mit einer maximalen Geschwindigkeit von $V_{max} = 200$ Kts (370 Km/h).

	$W_n = K_n \cdot W_{TO}$	(3.4)
K_n	0.37 [lbs/hp] für Radialtriebwerke	
K_n	0,24 [lbs/hp] für waagerecht entgegengesetzte Motoren	
W_n	Gondelmasse in [lbs]	
W _{TO}	Abfluggewicht in [lbs]	

Diese Daten sind nicht für Turbopropellersgondel zu verwenden. Hierzu gibt es kein Beispiel, da die **Gleichung 3.4** nur für kleine Flugzeuge gilt.

3.3.1.2 Verfahren von Torenbeek aus Roskam

Für einmotorige Propellerflugzeuge mit Gondel in der Rumpfnase gilt folgendes:

$$W_n = 2.5 \cdot (P_{TO})^{1/2} \tag{3.5}$$

Für Flugzeuge mit mehreren Kolbenmotoren gilt:

$$W_n = 0.32 \cdot P_{TO} \tag{3.6}$$

Für Radialtriebwerke gilt die folgende Gleichung:

$$W_n = 0.045 \cdot \left(P_{TO}\right)^{5/4} \tag{3.7}$$

Und für Propellerflugzeuge folgt:

$$W_n = 0.14 \cdot (P_{TO})^{1/2} \tag{3.8}$$

Anmerkungen, aus Roskam 1989:

- 1. Da P_{TO} die gesamte benötigte (Start-) Leistung ist, ist in dieser eingeschätzten Masse W_n die gesamte Gondelmasse berücksichtigt.
- 2. Ist das Hauptfahrwerk in der Gondel einziehbar, werden 0,04 lbs/hp zu der Gondelmasse addiert.
- 3. Wenn die Triebwerksauströmung über die Flügeln verläuft, wie bei *Lockheed Electra*, ist 0,11 lbs/hp zu der Gondelmasse zu addieren.

3.3.2 Kommerzielle Transportflugzeuge (*Commercial Transport Airplanes*)

3.3.2.1 Gleichung nach General Dynamics aus Roskam

Für Turbojet Triebwerk (TL- Triebwerk) gilt:

$$W_n = 3.0 \cdot (N_{inl}) \cdot \left[(A_{inl})^{0.5} \cdot l_n \cdot p_2 \right]^{0.731}$$
(3.9)

Und für ZTL-Triebwerk (Turbofan), wird die Gondelmassen nach der Gleichung 3.10 ermittelt. Mit der folgenden Gleichung kann die Gondelmasse einschließlich Pylon, ermittelt werden. Für die Ermittlung der tatsächlichen Massen der Gondel mußten die Massen der Pylon abgezogen werden.

$W_n = 7.435 \cdot (N_{inl}) \cdot \left[(A_{inl})^{0.5} \cdot l_n \cdot p_2 \right]^{0.731}$	(3.10)
--	--------

Tabelle 3.3:	Triebwerksgondelmasse	nach General D	vnamics aus	Roskam	1989
Labelle 5.5.	11100 workszonaonnasse	nach Othera D	ynamics aus	NOSMAIII	1/0/

		0				
Flugzeuge	<i>ln</i> [m] ²	N_{inl}	A_{inl} [m ²]	<i>P2</i> [N] ³	Gondelmasse [kg] *	Abweichung [%]
A340-300	4,95	4	2,659	30	4.238	- 18,1
A330-200	7,0	2	4,676	30	3.355	-
A320-200	4,44	2	2,378	30	1.871	- 11,5

* Massen der Gondel und Pylon

² aus Arnold 2001

³ P_2 maximaler statischer Druck im Kompressor in [psi].

Typische Werte von P_2 liegt zwischen 15 und 50 psi, nach **Roskam 1989**, gewählt wurde hier 30 PSI.

Mit: Ainl ~ = 3,141592/4* Triebwerksdurchmesser²

Ninl Anzahl der Saugfläche

 A_{inl} die von Saugfläche benetzte Fläche in ft²

 l_n Gondellänge von den Ventile bis zum Kompressor in ft

3.3.2.2 Modifiziertes Verfahren nach Torenbeek aus Roskam

Für TL-Triebwerke oder ZTL-Triebwerke mit niedrigem Nebenstromverhältnis gilt:

$$W_n = 0.055 \cdot T_{TO} \tag{3.11}$$

Und für die Ermittlung der Gondelmasse eines ZTL-Triebwerks mit höherem Nebenstromverhältnis ist die Gleichung (3.12) anzuwenden.

$$W_n = 0.065 \cdot T_{TO}$$
 (3.12)

Zwischen dieser Gleichung (nach Torenbeek aus dem Buch von Roskam) und der vom Torenbeek selbst gibt es ein einziger Unterschied. Hier wurde die Erdbeschleunigung nicht berücksichtigt, somit taucht T_{TO} in kg und nicht in N. Da T_{TO} der benötigte Gesamtschub ist, wird mit dieser Gleichung die gesamte Gondelmasse ermittelt.

3.4 Gleichungen aus dem luftfahrttechnischen Handbuch

3.4.1 Verfahren nach R. Ertinger (IABG/WTT)

l	Länge [m]
n_{TW}	Anzahl der Triebwerken
Ro	Schubrohrverlängerung
S	Nennstandschub [daN]
TW	Triebwerk
T_{WG}	Triebwerksgondel

Für Strahltriebwerke:

$m_{TWG} = n_{TW} \cdot 0.125 \cdot S_{O_{max}}^{0.943} \cdot Z_{Ul} + m_{RO}$	(3.13)
--	--------

Tabelle 3.4:	Triebwerksgondelmasse nac	h R. Ertinger aus LTH 1981	

Flugzeuge	S _{0max} [N] / Triebwerk	Gondelmasse [kg]	Abweichung [%]
A340-300	151000	2246	- 1,3
A330-200	300000	1053	-
A320-200	111200	488	- 58,5

Und für PTL- und Kolbentriebwerke:

$m_{TWG} = n_{TW} \cdot 0.0086 \cdot m_{TW}^{1.548}$	(3.14)
--	--------

Normale Gondellänge:

 $(l_{TWG} < 1.64 L_{TW}) \Rightarrow Z_{iil} = 1.0; m_{RO} = 0$

überlange Gondel:

 $(l_{TWG} \ge 1.64 \ L_{TW}) \Rightarrow Z_{iil} = l_{TWG} / (1.64 \ l_{TW}) \qquad m_{RO} = 18.95 \ l_{TWG} - 1.64 \ l_{TW}$

Tabelle 3.5: Daten de	er Triebwerksgonde	el		
Flugzeuge	Zül	$m_{R\theta}$ [kg]	l_{TWG} [m] ²	$L_{\rm TW}$ [m] ²
A340-300	1,152	89,51	4,95	2,62
A330-200	1,021	125,79	7	4,18
A320-200	1,119	80,17	4,44	2,42

² aus Arnold 2001

3.5 Gleichungen nach Raymer

Liste der Formelzeichen

$K_{ng} =$	1.017, wei	n die Pylon	an der Gonde	l montiert ist,	sonst = 1.0
------------	------------	-------------	--------------	-----------------	-------------

 K_P = 1.4 für Propellerflugzeuge, sonst = 1.0

 K_{tr} = 1.18 für Jet mit Umkehrschub, sonst = 1.0

- N_{en} = Zahl der Triebwerke
- N_{Lt} = Gondellänge [ft]
- N_w = Gondelbreite [ft]

 N_Z = Bruchlastfaktor (1.5* *limit load factor*)

- S_n = Fläche der Gondel [ft²]
- W_{ec} = Triebwerksmasse (mit Inhalt) [lb]

 $W_{ec} = 2.331 \cdot W_{engine}^{0.901} \cdot K_p \cdot K_{tr}$

3.5.1 Cargo/ Transport Weights

Die Masse der Triebwerksgondel kann nach folgender Gleichung ermittelt werden. Mit der Gleichung 3.15, wird auch die Masse der Pylon mitgerechnet.

$$W_{\text{nacelle}} = 0.6724 \cdot K_{ng} \cdot N_{Lt}^{0.10} \cdot N_{W}^{0.294} \cdot N_{Z}^{0.119} \cdot W_{ec}^{0.611} \cdot N_{en}^{0.984} \cdot S_{n}^{0.224}$$
(3.15)

Flugzeuge	N_w [m]	W_{ec} [kg]	$S_n[\mathbf{m}^2]$	N_{Lt} [m]	Gondelmasse [kg]	Abweichung [%]	
A340-300	2,37	14436	37	4,95	4442	- 14,1	
A330-200	3,10	12931	68	7,00	2758	-	
A320-200	2,37	6388	30	4,44	1402	- 33,6	

Tabelle 3.6: Triebwerksgondelmasse nach Gl. 3.15 aus Raymer 1992

Die Masse des Triebwerks, Wec wird aus der Tabelle 4.7 entnommen

Nach Torenbeek gilt:

 $S_N = S_{FanCowling} + S_{GasgeneratorCowling} + S_{Plug}$

Darin ist:

- *S_{FanCowling}* benetzte Fläche der Verkleidung des Fans
- *S*_{GasgeneratorCowling} benetzte Fläche der Verkleidung der Gasturbine
- *S*_{*Plug} benetzte* Fläche des Endstücks</sub>

Diese benetzten Flächen sind dabei verschiedenen Gleichungen zugeordnet:

$$S_{FanCowling} = l_n \cdot D_n \cdot \left\{ 2 + 0.35 \cdot \beta + 0.8 \cdot \beta \cdot \frac{D_h}{D_n} + 1.15 \cdot (1 - \beta) \cdot \frac{D_{ef}}{D_n} \right\}$$
(3.16)

$$S_{GasgeneratorCowling} = \boldsymbol{p} \cdot \boldsymbol{l}_{g} \cdot \boldsymbol{D}_{g} \cdot \left[1 - \frac{1}{3} \cdot \left(1 - \frac{D_{eg}}{D_{g}}\right) \cdot \left\{1 - 0.18 \cdot \left(\frac{D_{g}}{l_{g}}\right)^{\frac{5}{3}}\right\}\right]$$
(3.17)

$$S_{Plug} = 0,7 \cdot \boldsymbol{p} \cdot \boldsymbol{l}_{p} \cdot \boldsymbol{D}_{p} \tag{3.18}$$

Bild 3.2 Triebwerksbemaßung nach Torenbeek 1988

Beispiel für die A320-200, mit abgelesene Werte aus Endres 2000.

$$S_{FanCowling} = 3,63 \cdot 2,37 \cdot \left\{ 2 + 0,35 \cdot 0,5 + 0,8 \cdot 0,5 \cdot \frac{1,738}{2,37} + 1,15 \cdot (1 - 0,5) \cdot \frac{1,896}{2,37} \right\} = 25,2 \text{ m}^2$$

$$S_{GasgeneratorCowling} = \mathbf{p} \cdot 1,106 \cdot 1,343 \cdot \left[1 - \frac{1}{3} \cdot \left(1 - \frac{1,106}{1,343} \right) \cdot \left\{ 1 - 0,18 \cdot \left(\frac{1,343}{1,106} \right)^{\frac{5}{3}} \right\} \right] = 4,46 \text{ m}^2$$

 $S_N \cong 30 \text{ m}^2$

Nach dem selben Verfahren, ist die S_N einer A340-300 zu berechnen. Die beträgt \cong 37 m².

3.6 Masse der Triebwerksgondel nach Boeing

Aus dem **Bild 3.3** kann die Masse der Gondel abgelesen werden. Die Gondelmasse ist in Funktion der Rumpfoberfläche.

Bild 3.3 Masse der Triebwerksgondel nach Gondelfläche aus Boeing 1969

Die aus dem Bild 3.3 abgelesenen Massen (Gondelmasse), enthalten keine Pylonemasse.

Tabelle 5.7.	Masse del 1	Theowerksgonder hach Dhu. 3.3 aus Dueing 190 9	
Flugzeuge	S_n [ft ²]	Triebwerksgondelmasse (insgesamt) [kg]	Abweichung [%]
A340-300	398	2976	+ 30,8
A320-200	323	1088	- 7,6

Tabelle 3.7: Masse der Triebwerksgondel nach Bild. 3.3 aus Boeing 1969

Bild 3.4 Abweichungen der Gondelmassen in Überblick (A340-300)

Bild 3.5 Abweichungen der Gondelmassen in Überblick (A320-200)

Methode	A340-300 (Masse in kg)	A320-200 (Masse in kg)
Torenbeek	4002	1474
Marckwardt Bild 2.1	2769	934
General Dynamics aus Roskam	4238	1871
R. Ertringer aus LTH 1981	2246	488
Cargo/Transporter Raymer	4442	1402
Boeing	2976	1088

Tabelle 3.8: Massen der Triebwerksgondel in Überblick

Bei der Betrachtung der Massen aus der **Tabelle 3.8**, stellt es sich heraus, daß die Ergebnisse sich sehr voneinander unterscheiden. Das ist so, daß die Massen der Pylon nicht bei jeden Verfahren mitberücksichtigt wurden.

Triebwerksmasse 4

Gleichung nach Torenbeek 4.1

Die Masse der installierten Triebwerke, $m_{E, inst}$ wird nach folgender Gleichung berechnet:

$m_{E,inst} = K_E \cdot K_{thr} \cdot n_E \cdot m_E \tag{4}$	I.]	1)	
--	-------------	---	---	--

Tabelle 4.1: Trie	adelle 4.1: Triedwerksmasse nach Gl. 4.1 aus Torendeek 1988							
Flugzeuge	m _E [kg]	Triebwerksmasse [kg]	Abweichung [%]					
A340-300	2587 ²	14042	- 11,7					
A330-200	4870 ³	13214	-					
A320-200	2266 *	6150	- 8,3					

Taballa 11. Trial 1 Towark cals 1000

² aus Norris 2000

³ aus General Electric 2000

* aus CFM international 1998

$K_E = 1.16$	für einmotorige Propellerflugzeuge,
$K_E = 1.35$	für mehrmotorige Propellerflugzeuge,
$K_{E} = 1.15$	für strahlgetriebene Passagierflugzeuge mit Triebwerken in Gondeln,
$K_E = 1.40$	für Flugzeuge mit eingebauten Triebwerken (buried engines)
$K_{thr} = 1.00$	ohne Schubumkehr (reverse thrust)
$K_{thr} = 1.18$	mit Schubumkehr,
n_E	Anzahl der Triebwerke,
m_E	Masse eines Triebwerks ohne Anbauteile zur Triebwerksintegration.

Verfahren nach Marckwardt 4.2

Mit dem Bild 4.1 kann die Trockenmasse von Strahltriebwerken abgeschätzt werden. Bild 4.2 liefert die Trockenmasse von Turboproptriebwerken.

Flugzeu- ge	TW- Typen	Standschub/ Trockenmasse	Stand- schub[N] 2	Trocken- masse [kg]	Abwei- chung [%]	Tat. Mas- sen [kg] *
A340-300	CFM-56-5C4	5,4	151000	2850	+ 10,0	2587
A330-200	CF6-80E1A4	6,6	300000	4633	- 4,9	4869
A320-200	CFM56-5A3	5,4	111200	2100	- 7,3	2268

Tabelle 4.2: Triebwerkstrockenmasse nach dem Bild 4.1 aus Marckwardt 1997

* Vergleich mit den Veröffentlichten Zahlen von Norris 2000

² aus EADS 2000

Bild 4.1 Trockenmasse von Strahltriebwerken aus Marckwardt 1997

Bild 4.2 Trockenmasse von Turboproptriebwerken nach Marckwardt 1997

4.3 Verfahren aus Roskam

Liste der Formelzeichen

W_e	Masse der gesamten Triebwerken in lbs
P_{TO}	Genötigte Startleistung in hp
W_{eng}	Masse pro Triebwerk in [lb]
N_e	Anzahl der Triebwerke
W_{spch}	Masse des Vorverdichters

4.3.1 Allgemeine Flugzeuge (General Aviation Airplanes)

4.3.1.1 Verfahren von Cessna aus Roskam

Die unten stehende Gleichung gilt nur für kleine Flugzeuge (Flugzeuge mit niedrige Leistung) mit einer maximalen Geschwindigkeit $V_{max} < 200$ Kts (370 Km/h). Hier sind die Masse des Triebwerkszubehörs enthalten, aber nicht die Masse des Triebwerksöls.

Es wird hierzu kein Beispiel vorgeführt, da dieses Verfahren nur für kleine Flugzeuge gedacht ist.

$$We = K_p \cdot P_{TO} \tag{4.2}$$

Der Faktor K_P kann folgende Werte haben.

Für Kolbentriebwerke: $K_P = 1.1$ bis 1.8, je nachdem wie das Flugzeug geladen ist. Für Turboproptriebwerke $K_P = 0.35$ bis 0.55

- *W_e* Masse der gesamten Triebwerken in lbs
- P_{TO} genötigte Startleistung in hp

4.3.2 Zivil-Transport-Flugzeuge (Commercial Transport Airplanes)

Die Triebwerksmasse kann hier, mit Hilfe des **Bildes 4.3** ermittelt werden. Das **Bild** gilt aber nur für ein Triebwerk.

Bild 4.3 Trockenmasse von Turbojettriebwerken aus Roskam 1989

I ubene net	about not most of the main about a com bina no auto Robhann 1969							
Flugzeuge TW- Typen		Startschub Triebwerks-		Abweichung	Tat. Massen			
	*	[lb] *	masse [kg]	[%] ²	[kg] ²			
A340-300	CFM-56-5C4	34000	3100	+ 19,8	2587			
A320-200	CFM56-5A3	27000	2500	+ 10,3	2268			

Tabelle 4.3: Triebwerksmasse nach dem Bild 4.3 aus Roskam 1989

* aus EADS 2000

² in Vergleich mit den Zahlen aus Norris 2000

Mit Hilfe des **Bild**es **4.3**, lassen sich die Triebwerkstrockenmasse leicht ermitteln. Es wurde festgestellt, daß die abgelesene Massen zuverlässig sind.

4.4 Gleichungen aus dem luftfahrttechnischen Handbuch

4.4.1 Triebwerksmasse (ohne Schubumkehr), Verfahren nach R. Ertinger (IABG/WTT) aus LTH 1981

Mit der folgenden Gleichung wird die Triebwerksmasse berechnet. Diese Gleichung gilt allerdings, nur für Militärflugzeuge.

$$m_{TW} = 257.7 \cdot Z^{1.409} \cdot \frac{1 - 1.39^{-10 \cdot Z}}{\left(1 - 1.065^{-10 \cdot Z}\right) \cdot \left(1 - 1.855^{-10 \cdot Z}\right)} \cdot K_{\mathbf{m}} \cdot K_{TW}$$
(4.3)

$$Z = d_{TW}^2 \cdot l_{TW} \cdot \frac{S_{OMIL}}{S_{ONV}}$$
(4.4)

Einkreiser (m=0): Km=1.0Mit Nachverbrennung: $K_{TW} = 1.0$ Ohne Nachverbrennung: $K_{TW} = 1.195$ Zweikreiser :

> $K_{m} = 0.297 \cdot (d_{TW} \cdot K_{O})^{-2.16}$ mit Nachverbrennung : $K_{O} = \frac{S_{OMIL}}{S_{ONV}}$, $K_{TW} = 1.0$ ohne Nachverbrennung : $K_{O} = \left(\frac{l_{TW}}{d_{TW}}\right)^{-0.402}$, $K_{TW} = 1.195$

4.4.1.1 Schubumkehrer

Zivilflugzeuge: $K_U = 1.25$ Militärflugzeuge: $K_U = 1.0$

$$m_U = 0.0018 \cdot N_{TW} \cdot S_O^{1.31} \cdot K_U$$
 (4.5)

Tabelle 4.4: Gesamte Masse des Schubumkehrers nach R. Ertinger aus LTH 1981

Flugzeuge	TW- Typen *	Startschub [N] *	Masse des Schubumkehrers [kg]
A340-300	CFM-56-5C4	151000	2684
A330-200	CF6-80E1A4	300000	3298
A320-200	CFM56-5A3	111200	1797

* aus **EADS 2000**, $S_0 \equiv$ maximaler Trockenschub

Die in der **Tabelle 4.4** ermittelten Massen, sind Massen von den gesamten Schubumkehrern. Diese ermittelten Massen sind in Vergleich mit den Massen aus **Boeing 1968** (**Tabelle 4.12**) zu hoch (Abweichung liegt bei ungefähr 40%).

4.5 Gleichungen nach Raymer

Diese Gleichung ist gültig, bei einem Nebenstromverhältnis *BPR* zwischen 0 und 6. **Raymer 1989** ermittelt mit Daten aus JANE'S diese Gleichung zur Berechnung der Masse der Strahltriebwerken.

$m_{\rm E} = \frac{0.0724}{T_{TO}} \cdot T_{TO}^{1.1} \cdot {\rm e}^{-0.045 \cdot {\rm BPR}}$	(4.6)
g	

Tabelle 4.5:	Triebwerkstrockenmasse	nach der	r Gl. 4.6 aus	Raymer 1989
--------------	------------------------	----------	----------------------	-------------

Flugzeuge	TW-Typen	BPR ²	Startschub	Trocken-	Abweichung	Tatsächliche
			[N]	masse [kg]	[%] *	Massen [kg] ³
A340-300	CFM-56-5C4	6,6	151000	2.753	+ 5,4	2587
A330-200	CF6-80E1A4	5,32	300000	6.151	+ 26,3	4869
A320-200	CFM56-5A3	6,0	111200	2.002	- 11,7	2268

² aus Arnold 2001

³ aus Norris 2000

g Erdbeschleunigung in m	n/s²
--------------------------	------

 T_{TO} Startschub in N

BPR Nebenstromverhältnis (bypass ratio)

4.5.1 Cargo/Transport Weights

Die Triebwerksteuerungsmasse kann nach folgender Gleichung ermittelt werden:

W _{engine} =	$= 5.0 \cdot N_{en} + 0.80 \cdot L_{ec}$	(4.7)
Controls		

Tabelle 4.0: Theowerksteuerungsmasse aus Kaymer 1992				
Flugzeuge	TW-Typen	L_{ec} ² [m]	Triebwerksteuerungsmasse [kg]	
A340-300	CFM-56-5C4	270	107,0	
A330-200	CF6-80E1A4	230	88,0	
A320-200	CFM56-5A3	130	51,7	

 Tabelle 4.6:
 Triebwerksteuerungsmasse aus Raymer 1992

² Lec wurde aus der Zeichnung abgelesen, aus Endres 2000

Beim Vergleichen der Triebwerksteuerungsmassen (**Tabelle 4.6**) mit den Massen von Boeing (**Tabelle 4.9**), wurde Abweichung von bis zu 30 % festgestellt. Der Grund dafür ist, daß die Länge L_{ec} nicht genau abgelesen werden konnte. Die hier errechneten Massen sind etwa 30 % größer.

^{*} Vergleich mit den Veröffentlichten Zahlen aus Norris 2000

 L_{ec} Abstand von Triebwerksfront bis zum Cockpit [ft]– total, wenn mehrere Triebwerke. N_{en} Anzahl der Triebwerke

4.5.2 General-Aviation Weights

Mit der unten stehenden Gleichung, aus Raymer 1992, wird die Masse des Triebwerks ermitteln.

N_{en} Zahl der Triebwerke

*W*_{en} Masse eines Triebwerks

$W_{\text{installed engine}} = 2.575 \cdot W_{en}^{0.922} \cdot N_{en}$	(4.8)
---	-------

Tabelle 4.7: Triebwerksmasse nach Gl. 4.8 aus Raymer 1992

Flugzeuge	TW- Typen *	Trockenmasse des	Triebwerksmasse	Abweichung [%]
		Triebwerks ² [kg]	[kg]	
A340-300	CFM-56-5C4	2587	14436	- 9,2
A330-200	CF6-80E1A4	4870	12931	-
A320-200	CFM56-5A3	2266	6388	- 4,7

² aus Norris 2000

4.6 Masse des Triebwerks nach Boeing

In der Triebwerksmassen sind die zugehörige Masse für das Triebwerk, für die Zelle und für die andere Installationsmassen enthalten.

Die Masse des Triebwerks JT9-D für Boeing 747 ist folgendermaßen gegeben:

Basis Masse –P&W	7900 lbs
Wasser Injektion (Versorgung) – P&W	40
Integration –P&W	530
Integration –Boeing	20
Wärmeschutz –Boeing	40
Triebwerksinstallation	8530 lbs

In den Unterlagen von **Boeing 1968**, findet man keine allgemeine Gleichung zur Berechnung der Masse des Triebwerks. Hier werden die einzelnen Komponenten (siehe **Kapitel 4.6.1** bis **4.6.5**) getrennt betrachtet.

4.6.1 Triebwerkszubehör

Die Masse des Triebwerkszubehörs wird mit Hilfe des **Bildes A41** ermittelt. Was hier nicht berücksichtigt ist, ist das System für die Wasserinjektion. Das Wasserinjektionssystem einer 747 ist auf 334 (lbs) eingeschätzt, und sorgt für 600 (gallons) Wasser und kann innerhalb 3 Minuten gepumpt werden. Das Wasserinjektionssystem einer 707 ist auf 139 (lbs) eingeschätzt.

Aus dem Bild A4.1 wurde die Masse des Triebwerkszubehörs abgelesen.

Labelle 4.0.	Tubene 4.0. Theowerkszubenormasse nach bha 14.1 aus boeing 1707					
Flugzeuge	TW- Typen *	Startschub [N] *	alle Triebwerke [lbs]	Abgelesen [lbs]		
A340-300	CFM-56-5C4	151000	135732	590		
A330-200	CF6-80E1A4	300000	134838	588		
A320-200	CFM56-5A3	111200	49980	340		

Tabelle 4.8: Triebwerkszubehörmasse nach Bild A4.1 aus Boeing 1969

* aus EADS 2000

4.6.2 Triebwerkssteuerung

Die Masse der Triebwerkssteuerung kann aus dem **Bild A4.2** abgelesen werden. Für das Ablesen der Massen braucht man die gesamte Länge der Steuerung, wie sie in **Bild**

A4.2 zu sehen ist.

Tabene 4.7. Masse del Theowerksstederung hach dem Dhu A4.2 aus Doeing 1900				
Flugzeuge	Strecke in ft *	Abgelesen [lbs]		
A340-300	385	160		
A330-200	286	110		
A320-200	170	78		

Tabelle 4.9: Masse der Triebwerkssteuerung nach dem Bild A4.2 aus Boeing 1968

* diese Zahlen wurden aus den Zeichnungen abgelesen (aus Endres 2000)

4.6.3 Triebwerksstartsystem

Diese Masse des Triebwerkstartsystems ist in Abhängigkeit von der Anzahl des Triebwerks, wie aus dem **Bild A4.3** zu erkennen ist.

Flugzeuge	Anzahl der Triebwerke	Abgelesen [lbs]
A340-300	4	220
A330-200	2	75
A320-200	2	75

Tabelle 4.10: Masse des Triebwerkstartsystems nach Bild A4.3 aus Boeing 1969

4.6.4 Treibstoffsystems eines Triebwerks

Die Masse des Treibstoffsystems wird nach dem **Bild A4.4** ermittelt. Sie variiert mit der Kapazität des Tanks.

1 abelle 4.11:	masse des Treibstonsystem	s nach Dhu A4.4 aus	Doeing 1909
Flugzeuge	Tankkapazität [gallon] *	Abgelesen	Masse des Treibstoffsystems
		[lbs/gallon]	[kg]
A340-300	39282	0,062	1240
A330-200	36743	0,068	1250
A320-200	6300	0,172	541

Tabelle 4.11: Masse des Treibstoffsystems nach Bild A4.4 aus Boeing 1969

* aus EADS 2000

4.6.5 Schubumkehrer

Die Masse von Schubumkehrer wird als Funktion des Luftmassenstromes berechnet.

Tabelle 4.12: Masse von Schubumkehrer nach dem Bild A4.5 aus Boeing 1969FlugzeugeLuftmassenstrom des Triebwerks [lbs/s] *Abgelesen [lb/Triebwerk]A340-3001065800A320-200842645

* aus CFM international 1998

In den Unterlagen von **Boeing 1968**, befindet sich keine allgemeine Gleichung zur Ermittlung der Triebwerksmasse, man findet statt dessen Gleichungen mit den die Triebwerkskomponenten berechnet werden. Die Summe von diesen Komponenten und den Triebwerkstrockenmassen, ergibt die gesamte Masse des Triebwerks (siehe **Tabelle 4.13**).

Flugzeuge	Summe aller Kom- ponenten [kg]	Triebwerkstro- ckenmasse [kg] *	Gesamte Masse [kg]	Ausweichung [%]
A340-300	1385	2587	14047	- 11,7
A320-200	3699	2266	5917	- 11,7

Tabelle 4.13: Triebwerksmasse aus Boeing 1969

* aus CFM international 1998

Bild 4.4 Abweichungen der Triebwerksmassen in Überblick (A340-300)

Bild 4.5 Abweichungen der Triebwerksmassen in Überblick (A320-200)

Methode	A340-300 (Masse in kg)	A320-200 (Masse in kg)
Torenbeek	14042	6150
Marckwardt Bild 4.1	2850 *	2100 *
Nach Roskam Bild 4.3	3100 *	2500 *
Cargo/ Transport nach Raymer	2753 *	2001 *
(General Aviation) Raymer	14436	6388
Boeing nach Bild A41-A45	14047	5917

Tabelle 4.14: Triebwerksmassen in Überblick

* Trockenmasse

Es sind hier, Triebwerkstrockenmassen und ausgerüsteten Triebwerksmassen zu unterscheiden.

5 Masse der Bug- und Hauptfahrwerke

Fahrwerk hat ein Gewicht von 3 bis 5 % des Gesamten Flugzeuggewicht, aus **Bräunling 1997**. Fahrwerk besteht aus: Gestänge, Räder, Bremsen, Federbeine, Reifen und Ein-Ausfahrvorrichtungen.

5.1 Gleichung nach Torenbeek

Fahrwerksmasse *m*_{LG}

m_{IGN} bzw. $m_{IGM} = K_{IG}$.	$A_{IG} + B_{IG} \cdot m_{MTO}^{3/4} + C_{IG} \cdot m_{MTO} + D_{IG} \cdot m_{MTO}^{3/2}$	(5.1)
LO,N LO,M LO		()

rubene 5.1. 1 uni werkbinusse nach Gil 5.1 uus 101enbeek 1700					
Flugzeuge	Abflugmas-	Bugfahrwerks-	Hauptfahr-	Gesamte	Abweichung
	se [kg] *	masse [kg]	werksmasse [kg]	Masse [kg]	[%]
A340-300	271000	1402	9869	11271	+ 12,3
A330-200	230000	1198	8224	9422	-
A320-200	73500	434	2444	2878	+ 22,6

Tabelle 5.1: Fahrwerksmasse nach Gl. 5.1 aus Torenbeek 1988

* aus EADS 2000

m_{LG}	Fahrwerksmasse in kg, $m_{LG} = m_{LG,N} + m_{LG,M}$
$m_{LG,N}$	Masse des Bugfahrwerks (nose landing gear) in kg
$m_{LG,M}$	Masse des Hauptfahrwerks (main landing gear) in kg
m_{MTO}	Startmasse in kg
$k_{LG} = 1$	für Tiefdecker
$k_{LG} = 1.08$	für Hochdecker
$A_{LG} \dots D_{LG}$	aus Tabelle 5.2

Tabelle 5.2:	Koeffizienten für d	ie Berechnung o	der Fahrwerksmasse aus	Torenbeek 1988

airplane type	gear type	gear compo-	$\mathbf{A}_{\mathbf{LG}}$	B _{LG}	CLG	$\mathbf{D}_{\mathbf{LG}}$
		nent				
jet trainers and busi-	Retractable gear	Main gear	15.0	0.033	0.0210	-
ness jets	_	Nose Gear	5.4	0.049	-	-
Other civil types	Fixed gear Retractable	Main gear	9.1	0.082	0.0190	-
		Nose gear	11.3	-	0.0024	-
		Tail gear	4.1	-	0.0024	-
		Main gear	18.1	0.131	0.0190	$2.23*10^{-5}$
	Gear	Nose gear	9.1	0.082	-	$2.97*10^{-6}$
		Tail gear	2.3	-	0.0031	-

Anmerkungen zu Gleichung 5.1:

• Die Gleichung wird getrennt für das Hauptfahrwerk (*main landing gear*) und das Bugfahrwerk (*nose landing gear*) angewandt. Die Summe beider Massen ergibt die Fahrwerksmasse m_{LG} .

Die Fahrwerksmasse m_{LG} macht bei kleinen Flugzeugen etwa 7 % der Startmasse m_{MTO} aus.

• Bei Flugzeugen mit mehr als ca. 30000 kg beträgt die Fahrwerksmasse etwa 4.5 % der Startmasse m_{MTO} , aus Scholz 1998

5.2 Verfahren nach Marckwardt

Liste der Formelzeichen

m_A	Abflugmasse	[kg]
m_{FW}	Fahrwerksmasse	[kg]

$m_{FW} = m_A \cdot 0.019 + 25.3 \cdot 10^{-6} \cdot m_A^{0.5} + 0.213 \cdot m_A^{-0.25} + 27.2 \cdot m_A^{-1}$	(5.2))
---	-------	---

Tabelle 5.5. Talli werksmasse hach Gi. 5.2 aus Marckwarut 1997						
Flugzeuge	Abflugmasse [kg]	Fahrwerksmasse [kg]	Abweichung [%]			
A340-300	271000	11275	+ 12,4			
A330-200	230000	9425	-			
A320-200	73500	2879	+ 22.7			

Tabelle 5.3: Fahrwerksmasse nach Gl. 5.2 aus Marckwardt 1997

Bild 5.1 Fahrwerksmasse /Abflugmasse nach *m_A* aus Marckwardt 1997

1 abene et it						
Flugzeuge	Abflugmasse	Fahrwerksmas-	Abgelesene Masse	Abweichung [%]		
	[kg] *	se/Abflugmasse				
A340-300	271000	0,043	11653	+ 16,1		
A330-200	230000	0,041	9430	-		
A320-200	73500	0,039	2867	+22,2		

Tabelle 5.4: Fahrwerksmasse nach dem Bild 5.1 aus Marckwardt 1997

* aus EADS 2000

Bild 5.2 Hauptfahrwerksmasse/Fahrwerksmasse nach *m_A* aus Marckwardt 1997

5.3 Gleichungen aus Roskam

5.3.1 Allgemeine Flugzeuge (General Aviation Airplanes)

5.3.1.1 Verfahren von Cessna aus Roskam

Nur für kleine Flugzeuge (Flugzeuge mit niedriger Leistung) mit einer maximalen Geschwindigkeit von $V_{max} = 200$ Kts (370 Km/h).

Für nicht-einfahrbare Fahrwerke gilt:

$W_g = 0.013 \cdot W_{TO} + 0.146 \cdot W_L^{0.417} \cdot n_{ult.l}^{0.950} \cdot l_{Sm}^{0.183} +$	(main landing gear)	
$+ 6.2 + 0.0013 \cdot W_{TO} + 0.000143 \cdot W_L^{0.749} \cdot n_{ult.l} \cdot l_{Sn}^{0.788}$	(nose landing gear)	(5.3)

Für einfahrbare Fahrwerke gilt:

$W_g = 0.013 \cdot W_{TO} + 0.146 \cdot W_L^{0.417} \cdot n_{ult.l}^{0.950} \cdot l_{Sm}^{0.183} +$	(main landing gear)	
$+ 6.2 + 0.0013 \cdot W_{TO} + 0.000143 \cdot W_L^{0.749} \cdot n_{ult.l} \cdot l_{Sn}^{0.788} + 0.000143 \cdot W_L^{0.749} \cdot n_{ult.l} \cdot l_{Sn}^{0.788} + 0.000143 \cdot W_L^{0.749} \cdot n_{ult.l} \cdot l_{Sn}^{0.749} \cdot n_{ult.l} \cdot n_{ult.l}$	$.014 \cdot W_{TO}$ (nose landing gear)	(5.4)

l_{sm}	Federbeinlänge für das Hauptfahrwerk in ft
lsn	Federbeinlänge für das Bugfahrwerk in ft
$n_{ult.l}$	Bruchlastfaktor für die Landung, und soll hier 5.7 eingesetzt werden
W_g	Fahrwerksmasse in lbs
W_L	Landungsmasse (Entwurf) in lbs
W_{TO}	Startmasse in lbs

5.3.1.2 Verfahren von USAF aus Roskam

Die folgende Gleichung gilt **für leichte** Flugzeuge mit einer Geschwindigkeit vom V > 300 Kts (555.6Km/h).

$$W_g = 0.054 \cdot l_{Sm}^{0.501} \cdot \left(W_L \cdot n_{ult.1} \right)^{0.684}$$
(5.5)

In dieser Gleichung ist auch die Masse des Bugfahrwerks mitberücksichtigt worden.

*n*_{ult.1} Landungsbruchlastfaktor, beträgt hier 5.7 (laut **Roskam 1989**).

5.3.2 Zivil-Transport-Flugzeuge (Commercial Transport Airplanes)

5.3.2.1 Gleichung nach General Dynamics aus Roskam

Hier die Gleichung zur Bestimmung der Fahrwerksmasse.

$$W_g = 62.61 \cdot \left(\frac{W_{TO}}{1000}\right)^{0.84} \tag{5.6}$$

rubene 5.5. Tuni werksmusse nach General Dynamies aus Roskam 1707						
Flugzeuge	Abflugmasse [kg]	Fahrwerksmasse [kg]	Abweichung [%]			
A340-300	271000	6101	- 39,2			
A330-200	230000	5316	-			
A320-200	73500	2039	- 13,1			

 Tabelle 5.5:
 Fahrwerksmasse nach General Dynamics aus Roskam 1989

5.3.2.1 Gleichung nach USN

$W_g = 129.1 \cdot \left(\frac{W_{TO}}{1000}\right)^{0.66}$	(5.7)
$W_g = 129.1 \cdot \left(\frac{4.70}{1000}\right)$	(5.7)

Diese Gleichung gilt nicht für Zivilflugzeuge, sondern nur für USN-Flugzeuge.

5.4 Gleichungen aus dem luftfahrttechnischen Handbuch

5.4.1 Gleichungen für Bomber und Transportflugzeuge von R. Ertinger (IABG/WTT) aus LTH 1981

Die folgende Gleichungen, gelten nur für Bomber und Militärflugzeuge.

$m_{FWB} = 0.0194 \cdot U_{FWB}^{0.898} \cdot NR_{FWB}^{1.185}$	(5.8)
$m_{FWH} = 0.153 \cdot (U_{FWH} \cdot B_{FWH})^{0.793}$	(5.9)
$m_{FW} = m_{FWB} + m_{FWH}$	(5.10)
$U_{FWB} = 7.40 \cdot m_Z^{0.66}$	(5.11)
$U_{FWH} = 0.264 \cdot m_Z^{1.045}$	(5.12)
$(m_{\max} \cdot n_T) > m_L \cdot n_L \to m_Z = m_{\max} \cdot n_T$	(5.13)
$(m_L \cdot n_L) > m_{\max} \cdot n_T \rightarrow m_Z = m_L \cdot n_L$	(5.14)

FWB	Bugfahrwerk
FWH	Hauptfahrwerk
m_L	Landungsmasse [lb]
n_L	Landlastvielfaches
n_T	Taxilastvielfache

5.5 Gleichungen nach Raymer

Liste der Formelzeichen

K_{mp}	= 1.126 für (<i>kneeling</i>) Fahrwerk, sonst 1,0
K_{np}	= 1.15 für (<i>kneeling</i>) Fahrwerk, sonst 1,0
L_m	= Länge des Hauptfahrwerks, in [in]
L_n	= Länge des Bugfahrwerks, in [in]
N_l	= Bruchlastfaktor (Landung) = $N_{Fahrwerk} \ge 1.5$
N_{mss}	= Zahl der <i>shock struts</i> eines Hauptfahrwerks
N_{mw}	= Zahl der Räder (<i>wheels</i>) eines Hauptfahrwerks
N_{nw}	= Zahl der Räder (<i>wheels</i>) eines Bugfahrwerks
V_{stall}	= Stall-Geschwindigkeit [knot]
W_l	= Landungsmasse in [lb]

5.5.1 Cargo/Transport Weights

Die Hauptfahrwerksmasse kann nach folgender Gleichung ermittelt werden. Die Einheiten die oben angegeben sind, sollen beachtet werden (es kann sonst zu falschen Ergebnissen führen)

$W_{\text{main landig}} = 0.0106 \cdot K_{mp} \cdot W_l^{0.888} \cdot N_l^{0.25} \cdot L_m^{0.4} \cdot N_{mw}^{0.321} \cdot N_{mss}^{-0.5} \cdot V_{Stall}^{0.1}$	(5.15)
---	--------

Flugzeuge	Landungsmasse [kg]	L_m [m]	N_{mw} ³	V_{stall} [m/s] ²	N _{mss}	Masse des HFW [kg]
A340-300	190000	4 **	10	190	3	11169
A330-200	177150	4 **	8	190	2	11965
A320-200	61000	2,98 *	4	150	2	3064

Tabelle 5.6: Hauptfahrwerksmasse nach Gl. 5.15 aus Raymer 1992

¹ aus **EADS 2000**

² aus Pschirus 1999

³ aus Arnold 2001

* aus Currey 1988

** aus Vergleich mit A310 (3,7 m) aus Pschirus 1999 (genaue Angabe war nicht vorhanden)

Die Bugfahrwerksmasse kann nach folgender Gleichung ermittelt werden:

$$W_{\text{nose landig}} = 0.032 \cdot K_{np} \cdot W_l^{0.646} \cdot N_l^{0.2} \cdot L_n^{0.5} \cdot N_{nw}^{0.45}$$
(5.16)

Flugzeuge	$L_n[\mathbf{m}] *$	N _{nw}	Masse des BFW [kg]	Fahrwerksmasse	Abweichung [%]
				[kg]	
A340-300	3,2	2	1350	12519	+24,8
A330-200	3,2	2	1290	13256	-
A320-200	2,0	2	512,5	3577	+ 52

 Tabelle 5.7: Die Masse des gesamten Fahrwerks aus Ravmer 1992

* Aus der Zeichnung abgelesen

5.5.2 General-Aviation Weights

Hier ist die nächste Version, aus **Raymer 1992,** mit der die Fahrwerksmasse ermittelt werden können.

Die Hauptfahrwerksmasse kann nach folgender Gleichung ermittelt werden:

	$W_{\text{main landing}} = 0.095 \cdot (N_l \cdot W_l)^{0.768}$.	$\left(\frac{L_m}{12}\right)$	(5.17)
--	---	-------------------------------	--------	---

Tabelle 5.8: Masse des Hauptfahrwerks nach Gl. 5.17 aus Raymer 1992

Flugzeuge	L_m [m]	Masse des HFW [kg]
A340-300	4 2	9771
A330-200	4 2	9260
A320-200	2,98 *	3620

² aus der Zeichnung abgelesen (Endres 2000)

* aus Currey 1988

Die Bugfahrwerksmasse kann nach folgender Gleichung ermittelt werden:

$W_{\text{nose landing}} = 0.125 \cdot \left(N_l \cdot W_l\right)^{0.566} \cdot \left(\frac{L_n}{12}\right)^{0.845}$	(5.18)
--	----------

Tabelle 5.9: Fahrwerksmasse nach Gl. 5.18 aus Raymer 1992

Flugzeuge	$L_n * [m]$	Masse des BFW	Masse des gesamten	Abweichung [%]
		[kg]	Fahrwerks [kg]	
A340-300	3,2	1684	11455	+ 14,2
A330-200	3,2	1619	10878	-
A320-200	2,0	595	4215	+ 79,6
		-		

* aus der Zeichnung abgelesen (Endres 2000)

Bei A320-200 ist die Abweichung ziemlich hoch, der Grund liegt eventuell an der Länge L_n und L_m . Diese beide Größe wurden sozusagen abgeschätzt, genaue Angaben waren nicht vorhanden.

5.6 Fahrwerksmasse nach Boeing

5.6.1 Hauptfahrwerksmasse

Die Masse des Hauptfahrwerks ist die Differenz zwischen dem gesamten Fahrwerk und dem Bugfahrwerk.

Mit:	
DM	Reifendurchmesser des Hauptfahrwerks (main gear) in [in]
W_T	Masse des gesamten Fahrwerks in [lb]
W_L	Masse der Brutto- Landungsgewicht in (lbs)
L_M	Länge zwischen Mittellinie der Drehzapfen (trunnion) zum Mittellinie der Radach-
	se, plus 1/4 des Abstandes zwischen den Radachsen und plus 1/4 des Abstandes
	zwischen den Rädern in [in]
T_M	Anzahl der Hauptfahrwerksräder

Mit dieser Gleichung kann die Masse des Hauptfahrwerks ermittelt werden

$W_{\rm T} = 16.86 \cdot \left(\cdot \right)$	$\left(\frac{W_L}{100000}\right)^{0.552} \cdot D_M^{0.715} \cdot T_M^{0.157} \cdot L_M^{0.631} $ (5.	19)
--	--	-----

Tabelle 5.10: Fahrwerksmasse nach Gl. 5.19 aus Boeing 1968

Flugzeuge	Landungsmasse [kg] *	$T_M *$	L_M ²	D_M *	Masse des Hauptfahrwerks [kg]
A340-300	190000	10	4,82	1,27	10870
A330-200	177150	8	4,82	1,27	10098
A320-200	61000 ³	4	3,13	1,143	3551

² L_m wurde mit Werten aus der Zeichnung errechnet

³ aus EADS 2000

* aus Arnold 2001

Für die Ermittlung der Hauptfahrwerksmasse (vorne) ist folgende Gleichung zu verwenden:

$$W_{\rm F} = 16.86 \cdot \left(\frac{W_L}{200000}\right)^{0.552} \cdot D_F^{0.715} \cdot T_F^{0.157} \cdot L_F^{0.631}$$
(5.20)

Für die Ermittlung der Hauptfahrwerksmasse (hinten) ist folgende Gleichung zu verwenden:

$$W_{\rm A} = 16.86 \cdot \left(\frac{W_L}{200000}\right)^{0.552} \cdot D_A^{0.715} \cdot T_A^{0.157} \cdot L_A^{0.631}$$
(5.21)

Mit:	
F	vorne (Fore)
Α	hinten (Aft)
$D_{F,A}$	Reifendurchmesser, vorne und hinten (fore and aft) in [in]
$L_{F,A}$	Abstand zwischen der Drehzapfen zu der Radachse plus 1/4 des Abstandes
	zwischen den Radachsen (Seitenansicht) plus 1/4 des Abstandes zwischen den Rei-
	fen (Rückansicht) in [in]
$T_{F,A}$	Anzahl der vorderen und hinteren Reifen
W_L	Landungsgewicht in [lbs]

5.6.1 Bugfahrwerksmasse

Die Masse des Bugfahrwerks ist die Summe aus den Massen von:

Rädern Reifen, Leitungen, Luft Bremsen Struktur Steuerung

5.6.2 Struktur plus Steuerung

Die Masse der Struktur und der Steuerung ist abhängig von der Fahrwerkslänge und von der maximalen Senkrechtlast des Fahrwerks. Wenn die Lastabschätzung nicht möglich ist, kann für das Bugfahrwerk der kommerziellen Flugzeuge die folgende Gleichung verwenden werden.

$$V_{n} = \frac{W}{d} = (1.5 \cdot b_{f} + 1.2 \cdot e)$$
(5.22)

Mit:

b_f	Abstand in [in] von der Mittellinie des Hauptrades bis zum Flugzeugschwerpunkt
	(benutze 15% der MAC, wenn der Abstand nicht bekannt ist)
d	Abstand in [in] von der Mittellinie des Bugrades zur Mittellinie des Hauptrades.
е	Abstand in [in] von der statische Grundlinie bis zum Schwerpunkt des Flugzeuges
l	Länge zwischen Mittellinie der Drehzapfen zum Mittellinie der Radachse in [in]
W	Startbruttogewicht oder 1.2* Landungsbruttogewicht (größte nehmen)

Laut **Bild 5.3**, wird die Masse der Struktur plus Steuerung mit Hilfe folgender Gleichung ermittelt.

$$W_T = 288.5 \left(\frac{V_n \cdot l^2}{10^8}\right)^{0.6198}$$
(5.23)

Bild 5.4 Abweichungen der Fahrwerksmassen in Überblick (A340-300)

Bild 5.5 Abweichungen der Fahrwerksmassen in Überblick (A320-200)

Methode	A340-300 (Masse in kg)	A320-200 (Masse in kg)
Torenbeek	11271	2878
Marckwardt nach Gl. 5.2	11275	2879
Marckwardt Bild 5.1	11653	2867
General Dynamics aus Roskam	6101	2039
Cargo /Transport aus Raymer	12519	3577
General Aviation aus Raymer	11455	4215

Tabelle 5.11: Fahrwerksmassen in Überblick

Die Methode nach **Torenbeek** und nach **Marckwardt** liefern zuverlässige Ergebnisse. Bei dem Verfahren nach **General Dynamics** sind die Abweichungen deutlich größer als die durchschnittlichen Abweichung.

Masse der Flugzeugsysteme 6

Gleichung aus Scholz 1998 6.1

Die Masse der installierten Systeme, m_{Sys} wird nach folgender Gleichung berechnet

	m	$_{sys} = K_{equip} \cdot m_{MTO} + 0.768 \cdot K_{F/C} \cdot m_{MTO}^{2/3}$	(6.1)
Taballa 6 1. N	lagga dar Elugza	waystome nach Cl. 6.1 aug Scholz 1008	
Flugzeuge	m_{MTO} [kg]	Masse der Flugzeugsysteme [kg]	Abweichung [%]
A340-300	271000	24510	- 2,3
A330-200	230000	20937	-
A320-200	73500	9271	+ 15,8
m _{SYS}	Masse	der Systeme in kg	
$k_{EQUIP} = 0.08$	einmot	origes Propellerflugzeug	
$k_{EQUIP} = 0.11$	zweime	otoriges Propellerflugzeug	
$k_{EQUIP} = 0.13$	strahlge	etriebenes Schulflugzeug (jet trainer)	
$k_{EQUIP} = 0.14$	Kurzsti	ecken-Transportflugzeug	
$k_{EQUIP} = 0.11$	11 Mittelstrecken-Transportflugzeug		
$k_{EQUIP} = 0.08$	08 Langstrecken-Transportflugzeug		
<i>m_{MTO}</i>	maxim	ale Startmasse in kg	
$k_{F/C} = 0.23$	$k_{F/C} = 0.23$ für Flugzeuge mit einfacher Flugsteuerung		
$k_{F/C} = 0.44$	für Transportflugzeuge mit manueller Flugsteuerung		
$k_{F/C} = 0.64$	für Tra	nsportflugzeuge mit primärer Flugsteueru	ing mittels Sekundär-
	energie	(z.B. Hydraulik) und Landeklappenantrieb	
$k_{F/C} = 0.74$	für Transportflugzeuge mit primärer Flugsteuerung - einschließlich		
Spoilern – mittels Sekundärenergie (z.B. Hydraulik) und Landeklap-			
	penantr	ieb	
$k_{F/C} = 0.77$	für Tra	nsportflugzeuge mit primärer Flugsteueru	ing mittels Sekundär-
	energie	(z.B. Hydraulik) und Landeklappen- und	Vorflügelantrieb
$k_{F/C} = 0.88$	für Tra	ansportflugzeuge mit primärer Flugsteue	erung - einschließlich
	Spoiler	n – mittels Sekundärenergie (z.B. Hydra	ulik) und Landeklap-
	pen- un	d Vorflügelantrieb	-

Anmerkung zu Gleichung (6.1):

• Torenbeek 1988 unterscheidet zwischen Ausrüstung (equipment) und Flugsteuerung (surface controls). Hier sind beide Gruppen in einer Berechnungsgleichung zusammengefaßt worden und ergeben das Gewicht der Flugzeugsysteme (aircraft systems).

• Es soll hier angenommen werden, daß die **Gleichung 6.1** auch die Masse der Ausrüstung und Besatzung (\Rightarrow *standard and operational items*) enthält. Eine Addition der hier dargestellten Gruppenmassen liefert dann die Betriebsleermasse m_{OE} , aus Scholz 1998.

6.2 Verfahren nach Marckwardt

Liste der Formelzeichen

- D_R Rumpfdurchmesser in [m]
- *EE* Elektrik und Elektronik
- *KE* Klimaanlage und Enteisungssystem
- L_R Rumpflänge in [m]
- m_A Abflugmasse in [kg]
- m_{Hy} Masse der Hydraulik
- So Sonstiges

Bild 6.1 Abschätzung der Masse der Flugzeugsysteme (Flugsteuerung, entspricht Gl. 6.2) nach Marckwardt 1997

Flugzeuge	<i>m_{TO}</i> [kg] *	Masse der Flugzeugsysteme [kg] (Flugsteuerung)
A340-300	271000	12500
A330-200	230000	10500
A320-200	73500	4900

Tabelle 6.2: Flugzeugsysteme (Flugsteuerung) nach Bild. 6.1, aus Marckwardt 1997

* aus EADS 2000

Flugzeugsysteme Teil 1

Hier folgt die allgemeine Gleichung, mit der die Masse der Flugzeugsysteme berechnet werden kann:

$m_{syst} = 2.71 \cdot m_A^{0.671}$	(6.2)
-------------------------------------	-------

 Tabelle 6.3:
 Masse der Flugzeugsysteme nach Gl. 6.2, aus Marckwardt 1997

Flugzeuge	m_{TO} [kg]	Masse der Flugzeugsysteme Teil 1 [kg]
A340-300	271000	11981
A330-200	230000	10732
A320-200	73500	4992

Flugzeugsysteme Teil 2

г

$$m_{syst} = m_{EE} + m_{KE} + m_{HY} + m_{So}$$
(6.3)

 Tabelle 6.4:
 Masse der Flugzeugsysteme nach Gl. 6.3, aus Marckwardt 1997

Flugzeuge	<i>m</i> _{SO} [kg]	<i>m</i> _{HY} [kg]	<i>m_{KE}</i> [kg]	<i>mEE</i> [kg]	Masse der Flugzeugsysteme Teil 2 [kg]
A340-300	5009	2465	1784	2979	12237
A330-200	4456	2105	1662	2777	11001
A320-200	1976	704	821	1371	4872

Die Summe aus Flugzeugsysteme **Teil 1 und Teil 2**, ergibt die gesamte Masse der Flugzeugsysteme.

Tabelle 6.5: Masse der Flugzeugsysteme Teil 1 und Teil 2, aus Marckwardt 1997

Flugzeuge	Gesamte Masse der Flugzeugsysteme [kg]	Abweichung [%]
A340-300	24218	- 3,5
A330-200	21733	-
A320-200	9864	+ 23,3

$m_{EE} = 15.2 \cdot \left(D_R \cdot L_R\right)^{0.9}$	(6.4)
$m_{_{K\!E}}=9.1\cdot \left(D_{_R}\cdot L_{_R}\right)^{0.9}$	(6.5)
$m_{_{HY}} = 0.015 \cdot m_A^{0.96}$	(6.6)
--------------------------------------	-------

 $m_{so} = 0.67 \cdot m_A^{0.713} \tag{6.7}$

6.3 Gleichungen aus Roskam

In diesem Werk (**Roskam 1989**) befindet sich keine allgemeine Gleichung zur Ermittlung der Masse der Flugzeugsysteme. Hier werden die einzelnen Komponenten getrennt betrachtet. In diesem Werk werden zahlreiche Methode aus anderen Quelle wiedergegeben. Roskam bezieht seine Daten aus einer großen Zahl verschiedener Veröffentlichungen, wie zum Beispiel Gleichungen aus Torenbeek, aus General Dynamics oder aus Cessna. Zu den Massen der Flugzeugsysteme, werden in diesem Werk, folgende Komponenten betrachtet.

- Flugzeugsteuerungssystem *W_{fc}*
- Instrumenten, Avionik und Elektronik W_{iae}
- Klimaanlage, Druckregler, Anti- und Enteisungssystem W_{api}
- Sauerstoffsystem *W*_{ox}
- Elektrisches System W_{els}
- Hydraulik- und Pneumatiksystem W_{hps}
- Ausrüstung *W*_{ops}

6.3.1 Flugzeugsteuerungssystem aus Roskam

6.3.1.1 Allgemeine Flugzeuge (General Aviation Airplanes)

6.3.1.1.1 Gleichungen nach USAF

Für Flugzeuge mit manueller Flugsteuerung (un-powered Flight Controls)

$W_{fc} = 1.066 \cdot m_{TO}^{0.626} \tag{6}$	(6.8)
---	-------

Für Flugzeuge mit primärer Flugsteuerung mittels Sekundärenergie (z.B. Hydraulik), gilt die Gleichung 6.9. Mit dieser Gleichung kann die Masse der Flugsteuerung ermittelt werden. Die hier ermittelte Werte sind aber zu hoch in Vergleich mit den tatsächlichen Werte.

$$W_{fc} = 1.08 \cdot m_{TO}^{0.7} \tag{6.9}$$

Flugzeuge	m_{TO} [kg] *	Gesamte Masse der Flugsteuerung [kg]
A340-300	271000	5414
A330-200	230000	4827
A320-200	73500	2172

Tabelle 6.6: Masse der Flugsteuerung nach USAF aus Roskam1989

* aus EADS 2000

*m*_{TO} Startgewicht in lbs

6.3.1.1.2 Gleichung nach Torenbeek aus Roskam

$W_{fc} = 0.23 \cdot m_{TO}^{2/3}$	(6.10)
------------------------------------	--------

Diese Gleichung gilt für Flugzeuge mit manueller Flugsteuerung (*un-powered Flight Controls*) und nicht doppelte Flugsteuerung (*Flight Controls*). Diese Gleichung findet man auch in dem Werk, was Torenbeek (**Torenbeek 1988**) selbst geschrieben hat.

6.3.1.2 Kommerzielle Transportflugzeuge

6.3.1.2.1 Gleichung nach General Dynamics aus Roskam

Die unten geschriebene Gleichung gilt sowohl für *business* Jets als auch für kommerzielle Transportflugzeuge.

$W_{fc} = 56.01 \cdot ($	$\cdot \left(\frac{m_A \cdot q_D}{100000}\right)^{0.576} $ (6.11)
--------------------------	---

Tabelle 6.7: Masse der Flugsteuerung nach General Dynamics aus Roskam1989

Flugzeuge	$m_A [kg]^{-2}$	q_D [psf] *	Masse der Flugsteuerung [kg]
A340-300	271000	2280	6113
A330-200	230000	2280	5562
A320-200	73500	2101	2750

² aus EADS 2000

* wurde ausgerechnet: mit $q_D = \frac{1}{2} \cdot \mathbf{r} \cdot V^2$

 q_D dynamischer Druck in [Psf]

Tabelle 6.8: Masse der Flugsteuerung nach Torenbeek aus Roskam 1989				
Flugzeuge	<i>m</i> _{TO} [kg]	Masse der Flugsteuerung [kg]	Abweichung [%]	
A340-300	271000	2059	+ 18,1	
A330-200	230000	1846	-	
A320-200	73500	863	+ 9,8	

6.3.1.2.2	Gleichung nach	Torenbeek	aus Roskam
-----------	-----------------------	-----------	------------

 $K_{fc} = 0.44$ für Flugzeuge mit manueller Flugsteuerung (*un-powered Flight Controls*) und nicht doppelte Flugsteuerung (*Flight Controls*).

 $K_{fc} = 0.64$ für Transportflugzeuge mit primärer Flugsteuerung mittels Sekundärenergie (z.B. Hydraulik).

Diese Gleichung unterscheidet sich nicht, von der was Torenbeek selbst geschrieben hat.

6.3.2 Hydraulisches Systems

Es ist möglich, daß die Masse des hydraulischen Systems schon bei der Masse der Flugsteuerung berücksichtigt ist. Zur Berechnung der Masse des hydraulischen Systems wird folgende Gleichungen verwendet:

Für business Jets gilt,

	$W_{hs} = 0.0070$	bis	$0.0150 \cdot W_{TO}$	(6.13)
--	-------------------	-----	-----------------------	--------

und für regionale Propellerflugzeuge gilt:

 $W_{hs} = 0.0060 \quad bis \quad 0.0120 \cdot W_{TO}$ (6.14)

Für kommerzielle Transportflugzeuge:

$W_{hs} = 0.0060$	bis	$0.0120 \cdot W_{TO}$	(6.15)
-------------------	-----	-----------------------	--------

Tabelle 6.9:	Masse des H	Iydraulischen	Systems nach	Gl.	6.15	aus Roskam	1989
--------------	-------------	---------------	--------------	-----	------	------------	------

Flugzeuge	m_{TO} [kg]	Masse des hydraulischen Systems [kg]
A340-300	271000	1626 bis 3252
A330-200	230000	1380 bis 2760
A320-200	73500	441 bis 882

 $W_{fc} = K f c \cdot m_{TO}^{2/3}$

(6.12)

Für Militärflugzeuge gilt die folgende Gleichung.

$W_{hs} = 0.0060$	bis	$0.0120 \cdot W_{TO}$	(6.16)
-------------------	-----	-----------------------	--------

6.3.3 Elektrisches System

6.3.3.1 Allgemeine Flugzeuge (General Aviation Airplanes)

6.3.3.1.1 Cessna Methode

Nur für kleine Flugzeuge (Flugzeuge mit niedriger Leistung) mit einer maximalen Geschwindigkeit von $V_{max} = 200$ Kts (370 Km/h).

$$W_{els} = 0.0268 \cdot W_{TO}$$
 (6.17)

6.3.3.1.2 USAF Methode

In diesem Fall ist die Masse des elektrischen System in Abhängigkeit von der Masse des Treibstoffsystems, der Instrumenten, der Avionik und der allgemeinen Elektronik.

$W_{els} = 426 \cdot$	$ \cdot \left(\frac{W_{fs} + W_{iae}}{1000}\right)^{0.51} $ (6.18)
-----------------------	--

Tabelle 6.10:	Masse des elektrischen	Systems nach	USAF	aus Roskam 1989
---------------	------------------------	--------------	------	-----------------

Flugzeuge	<i>W_{fs}</i> [kg] *	<i>W_{iae}</i> [kg] ²	Masse des elektri- schen Systems [kg]	Abweichung [%] (electrical Generation)
A340-300	1165	2606	569,1	+ 25,6
A330-200	1119	2419	550,9	-
A320-200	389	1118	356,4	- 0,72

* nach der Gleichung 6.63 aus Raymer 1992

² nach der Gleichung 6.27 von Torenbeek aus Roskam 1989

 W_{fs} Masse des Treibstoffsystems (*fuel system*) in lbs

Wiae Masse der Instrumenten, Avionik und der allgemeinen Elektronik in Ibs

6.3.3.1.3 Methode nach Torenbeek

$W_{hps} + W_{els} = 0.0078 \cdot (W_e)^{1.2}$	(6.19)

 Tabelle 6.11: Elektrisches, hydraulisches und pneumatisches Systems nach Torenbeek aus-Roskam 1989

Flugzeuge	W_e [kg] *	$W_{hps} + W_{els} [kg]$
A340-300	129850	12499
A330-200	120200	11393
A320-200	41310	3162

* aus Arnold 2001

- *W_{hps}* Masse von Hydraulik- und Pneumatiksystem in lbs
- W_e Flugzeugleergewicht in lbs

6.3.3.2 Kommerzielle Transportflugzeuge

6.3.3.2.1 Methode nach General Dynamics

Hier wird eine ähnliche Formel wie die von USAF angewandt.

$W_{els} = 1163 \cdot$	$\left(\frac{W_{fs} + W_{iae}}{1000}\right)$)0.506 (6.20)
------------------------	--	---------------

 Tabelle 6.12:
 Masse des elektrischen Systems nach General Dynamics aus Roskam 1989

Flugzeuge	W _{fs} [kg] *	<i>W_{iae}</i> [kg] ²	Masse des elektri- schen Systems [kg]	Abweichung [%] (electrical Distribution)
A340-300	1165	2606	1541	- 23,8
A330-200	1119	2419	1492	-
A320-200	389	1118	968	- 7,0

Die Gleichung 6.20 liefert wesentlich höhere Werte als die Gleichung 6.18. Es handelt sich hier bestimmt um die Masse der elektrischen Verteilung (*Electrical Distribution*), und Gleichung 6.18 liefert die elektrische Erzeugung (*Electrical Generation*).

- W_{fs} Masse des Treibstoffsystems (*fuel system*) in lbs
- Wiae Masse der Instrumenten, Avionik und der Elektronik in Ibs

6.3.3.2.2 Methode nach Torenbeek

Für Propellerflugzeuge:

$W_{hps} + W_{els} = 0.325 \cdot (W_e)^{0.8}$	(6.21)
$W_{els} = 10.8 \cdot V_{Pax}^{0.7} \cdot \left(1 - 0.018 \cdot V_{Pax}^{0.35}\right)$	(6.22)

W_{hps} Masse des Hydraulik- und Pneumatiksystems in [lbs]

 W_E Flugzeugleergewicht in [lbs]

 V_{Pax} Volumen der Kabine in [ft³]

6.3.4 Instrumenten, Avionik und allgemeine Elektronik

In diesem Kapitel werden Gleichungen, die für moderne EFIS-Cockpit gedacht sind, ausgeführt.

6.3.4.1 Allgemeine Flugzeuge (General Aviation Airplanes)

6.3.4.1.1 Methode nach Torenbeek

Die unten angegebenen Gleichungen sind nur für Propellerflugzeuge anzuwenden:

Für einmotoriges Propellerflugzeug gilt die folgende Gleichung,

$$W_{iae} = 33 \cdot N_{Pax} \tag{6.23}$$

Und für sonstiges Propellerflugzeug gilt:

$$W_{iae} = 40 + 0.008 \cdot W_{TO} \tag{6.24}$$

N_{PAX} Anzahl der Passagiere inklusive Crew.

6.3.4.2 Kommerzielle Transportflugzeuge

6.3.4.2.1 Methode nach General Dynamics

Hier ist eine allgemeine Gleichung zur Ermittlung der Masse.

W _i	$= N_{Pil} \cdot \left(15 + 0.032 \cdot \frac{W_{TO}}{1000} \right)$	$\left(+ N_e \cdot \left(5 + 0.006 \cdot \frac{W_{TO}}{1000} \right) \right) \right)$	$+0.15 \cdot \frac{W_{TO}}{1000} + 0.012 \cdot W_{TO}$	
	flight instrument	engine instrument	other instruments	(6.25)

Tabelle 6.13: Massen der Instrumenten nach General Dynamics aus Roskam 1989

Flugzeuge	W_{TO} ² [kg]	N_{Pil} *	Masse der Instrumenten [kg]
A340-300	271000	2	3339
A330-200	230000	2	2830
A320-200	73500	2	917
* aus Endres 2000			

² aus EADS 2000

 N_{Pil} Anzahl der Piloten

6.3.4.2.2 Methode nach Torenbeek

Für regionale Maschine gilt:

$W_{iae} = 120 + 20 \cdot N_e + 0.006 \cdot W_{TO}$	(6.26)
---	--------

Und für Jets gilt folgende Gleichung:

$W_{iae} = 0.575 \cdot (W_e)^{0.556} \cdot R^{0.25}$	(6.27)
--	--------

Tabelle 6.14: Masse	der	Instrumenten,	Avionik	und	Elektronik	nach	Torenbeek	aus
Roska	m 19	89						

Flugzeuge	$W_e * [kg]$	R^{2} [km]	Masse der Instrumenten [kg]
A340-300	129850	13500	2606
A330-200	120200	11900	2419
A320-200	41310	5830	1118
* and A we ald 2001			

* aus Arnold 2001

² aus EADS 2000

- N_e Anzahl der Triebwerken
- *W_E* Flugzeugleergewicht in lbs
- *R* Maximale Reichweite in *miles* (*Nautical*)

6.3.5 Klimaanlage, Druckregler, Anti- und Enteisungssystem

6.3.5.1 Allgemeine Flugzeuge (General Aviation Airplanes)

6.3.5.1.1 Methode nach USAF

$W_{api} = 0.265 \cdot W_{TO}^{0.52} \cdot N_{Pax}^{0.68} \cdot W_{iae}^{0.17} \cdot M_{D}^{0.08}$	(6.28)
--	--------

Bei der Ermittlung der Massen mit Hilfe dieser Gleichung, wurde festgestellt, daß diese Gleichung falsche Ergebnisse liefert.

*N*_{PAX} Anzahl der Passagiere inklusive Crew.

M_D Sturzflugmachzahl

6.3.5.2 Kommerzielle Transportflugzeuge

6.3.5.2.1 Methode nach General Dynamics

Nur bei Druckkabine (pressure cabin) anwendbar.

$W_{api} = 469 \cdot \left(V_{Pax} \cdot \frac{N_{CR} + N_{PAX}}{10000} \right)^{0.419}$	(6.29)
---	--------

 Tabelle 6.15: Masse der Wapi nach General Dynamics aus Roskam1989

Flugzeuge	V_{PAX} [m ³] *	N_{PAX} ²	N_{CR} ³	W_{api} [kg]
A340-300	556	295	12	3133
A330-200	506	293	12	2981
A320-200	152	150	9	1373

² aus EADS 2000

³ aus Kreuzer 1999

* ausgerechnet, mit
$$\frac{\mathbf{p}}{4} \cdot d_R^2 \cdot L_{Kabinen} \cdot 45\%$$

- V_{PAX} Volumen der Kabine in [ft³]
- N_{CR} Anzahl der Crew

6.3.5.2.2 Methode nach Torenbeek

Nur bei Druckkabine (pressure cabin) anwendbar.

$W_{api} = 6.75 \cdot l_{PAX}^{1.28}$	(6.30)
---------------------------------------	--------

Tabelle 6.16: Masse der Wapi nach Torenbeek aus Roskam1989

Flugzeuge	<i>l</i> _{pax} [m] *	W_{api} [kg]
A340-300	50,35	2113
A330-200	45,5	1830
A320-200	27,51	975

* aus Pschirus 1999

 l_{PAX} Kabinenlänge in ft

6.3.6 Masse des Sauerstoffssystems

6.3.6.1 Kommerzielle Transportflugzeuge

6.3.6.1.1 Methode nach General Dynamics

Mit der unten stehenden Gleichung kann die Masse des Sauerstoffssystems ermittelt werden.

$W_{OX} = 7 \cdot (N_{CR} + N_{PAX})^{0.702}$	(6.31)
---	--------

Flugzeuge	N _{CR} *	N_{PAX} ²	W_{ox} [kg]
A340-300	12	295	390,0
A330-200	12	293	388,2
A320-200	9	150	245,7

* aus Kreuzer 1999

² aus EADS 2000

N_{PAX} Anzahl der Passagiere

N_{CR} Anzahl der Crew

6.3.6.1.2 Methode nach Torenbeek aus Roskam 1989

Für Flüge unter 25000 ft gilt:

$$W_{OX} = 20 + 0.5 \cdot N_{PAX} \tag{6.32}$$

Für Flüge über 25000 ft gilt:

Tabelle 6.18: Masse der Wox nach Torenbeek aus Roskam1989

Flugzeuge	N_{pax}	W_{ox} [kg]
A330-200	293	381,6
A320-200	150	210

Die hier ermittelte Massen des Sauerstoffsystems sind für die allgemeine Versorgung in der Kabine.

Und für Transatlantikflüge gilt die unten stehende Gleichung:

$W_{ov} = 40 + 2.4 \cdot N_{puv}$	(6.34)
V_{OX} 10 1 2.1 V_{PAX}	(0.51)

Tabelle 6.19: Masse der Wox nach Torenbeek aus Roskam1989

Flugzeuge	N _{pax}	W _{ox} [kg]
A340-300	295	748

 Tabelle 6.19 zeigt die Masse des Sauerstoffssystems einer A340-300.

6.3.7 Masse der Einrichtungen (*Furnishings*)

Zu der Einrichtung (Furnishings) gehören unter andern folgendes:

Seats, insulation, Trim Panels, Sound proofing, instrument panels, control stands, lighting and wiring. Galley (pantry) structure and provisions. Lavatory (Toilet) and associated systems. Overhead luggage containers, hatracks, wardrobes. Escape provisions, fire fighting equipment

6.3.7.1 Allgemeine Flugzeuge (General Aviation Airplanes)

6.3.7.1.1 Methode nach Cessna

$W_{fur} = 0.412 \cdot N_{Pax}^{1.145} \cdot W_{TO}^{0.489}$	(6.35)
--	--------

Mit der oben genannten Gleichung wird die Masse der Einrichtung von kleinen Flugzeuge ermittelt.

N_{PAX} Anzahl der Passagiere inklusive Crew.

6.3.7.1.2 Methode nach Torenbeek

Diese Gleichung gilt nur für Einmotorige Flugzeuge:

$$W_{fur} = 5 + 13 \cdot N_{row} \tag{6.36}$$

N_{row} Anzahl der Sitzreihe

Für Flugzeuge mit mindestens zwei Triebwerken gilt:

$W_{fur} = 15 \cdot N_{PAX} + 1.0 \cdot V_{PAX+C \arg o}$	(6.37)
---	--------

Tabelle 0.20. Masse del W _{fur} hach Torenbeek aus Koskam1909					
Flugzeuge	N_{pax}	V _{PAX+CARGO} [m ³]	W _{fur} [kg]	Abweichung [%]	
A340-300	307	729	5334	- 25,1	
A330-200	305	642	5217	-	
A320-200	159	191	2576	+ 7,6	

Tabelle 6.20: Masse der W_{fur} nach Torenbeek aus Roskam1989

 N_{PAX}

Anzahl der Passagiere inklusive Crew.

 $V_{PAX+Cargo}$ Kabinenvolumen und Frachtvolumen, wurden hier in ft³ eingesetzt.

6.3.7.2 Kommerzielle Transportflugzeuge

6.3.7.2.1 Methode nach General Dynamics

Nur bei Druckkabine (pressure cabin) anwendbar.

$W_{fur} =$	$55 \cdot N_{fdc} + 32 \cdot N_{fdc}$	$N_{PAX} + 15 \cdot N_{CC} + K_{law}$	$N_{Pax}^{1.33} + K_{buf} \cdot N_{Pax}^{1.12} +$	
+109.	$\left(N_{Pax} \cdot \frac{1+p_C}{100}\right)$	$+0.771 \cdot \frac{W_{TO}}{1000}$		(6.38)

Tabelle 6.21: Masse der W_{tur} nach General Dynamics aus Roskam

Flugzeuge	N _{pax}	<i>PC</i> [psi] *	W _{fur} [kg]	Abweichung [%]
A340-300	295	10,15	7385	+ 3,7
A330-200	293	10,15	7278	-
A320-200	150	10,15	2762	+ 15,3

* PC = 70000 Pa umgerechnet in [psi] = 10,5

Die Masse der Einrichtungen variiert mit dem Flugzeugtyp und Art des Einsatzes.

K_{lav}	= 3.90 für business Flugzeuge
	= 0.31 für Flugzeuge mit niedriger Reichweite
	= 1.11 für Langstreckenflugzeuge
K_{buf}	= 1.02 für Flugzeuge mit niedriger Reichweite
	= 5.68 für Langstreckenflugzeuge
P_C	maximaler Kabinendruck in [PSI]
N_{fdc}	Anzahl der Crewflugdeck (bei A340-300 sind es 2)
N_{CC}	Anzahl der Crewmitgliedern
N_{CR}	Anzahl der Crew

6.3.7.2.2 Methode nach Torenbeek

$W_{fur} = 0.211 \cdot (W_{TO} - W_F)^{0.91}$	(6.39)
---	--------

Flugzeuge	W _{TO} [kg] *	W_F [kg] ²	W _{fur} [kg]	Abweichung [%]
A340-300	271000	113125	10564	+ 48
A330-200	23000	70786	10646	-
A320-200	73500	17940	4084	70
* aus EADS 2000				

 Tabelle 6.22:
 Masse der W_{fur} nach Torenbeek aus Roskam1989

² aus Arnold 2001

84

W_F Treibstoffmasse in lbs

Wie aus der **Tabelle 6.22** zu erkennen ist, kann hier keine zuverlässige Masse der Einrichtung errechnet werden. Die Abweichungen sind in diesem Fall recht hoch.

6.4 Gleichungen aus dem luftfahrttechnischen Handbuch

In diesem Werk gibt es auch keine allgemeine Gleichung zur Berechnung der Masse der Flugzeugsysteme. Hier werden unter andern folgende Punkte behandelt.

- Steuerwerksanlage mit Hydraulik- bzw. Pneumatikanlage
- Instrumenten und Navigationsanlage
- Elektrische Anlage
- Elektronische Anlage
- Ausstattung und Einrichtung
- Klima- und Enteisungsanlage

6.4.1 Steuerwerksanlage mit Hydraulik- bzw. Pneumatikanlage

6.4.1.1 Verfahren von R. Ertinger (IABG/WTT)

Zivil-Transporter:

$m_{STW} = 0.0377 \cdot m_{E}^{0.975}$	(6.40
--	-------

Tabelle 6.23: Masse der Steuerwerkanlage nach R. Ertinger aus LTH 1981

Flugzeuge	<i>m_E</i> [kg] *	W_{STW} [kg]
A340-300	129850	3647
A330-200	120200	3383
A320-200	41310	1194

* Leergewicht aus EADS 2000

Für Militär- Transporter gilt:

$m_{STW} = 0.262 \cdot m_{E}^{-0.769}$	(6.41)
--	--------

6.4.2 Elektronische Anlage

6.4.2.1 Verfahren von R. Ertinger (IABG/WTT)

$m_{Elektro} \leq \left[1 - 1.07^{-A} - 1.117^{-A} + 1.195^{-A}\right] \cdot 1600 \cdot \left(m_{\max} \cdot 10^{-3}\right)^{0.019}$	(6.42)
--	--------

Mit der Gleichung 6.42 kann die Masse der elektronischen Anlage berechnet werden.

Tabelle 0.24: Masse von elektronischer Anage nach H. L. Koland aus L1H 1961					
Flugzeuge	A	m_{max} [kg]	$m_{ELEKTRONIK}$ [kg]		
A340-300	271	271000	1780		
A330-200	230	230000	1774		
A320-200	73,5	73500	1724		
		$A = m_{\rm max} \cdot 10^{-3}$	(6.43)		

Tabelle 6.24: Masse von elektronischer Anlage nach H. L. Roland aus LTH 1981

6.4.2.2 Verfahren von MAUCH/GEBEL (Fa. Dornier) aus LTH 1981

$m_{Elektro} = K_E \cdot \left(m_{\max} \cdot 10^{-3}\right)^{EX}$	(6.44)

Tabelle 6.25: Masse von elektronischer Anlage nach Mauch/Gebel aus LTH 1981

Flugzeuge	m_{max} [kg]	m _{ELEKTRONIK} [kg]
A340-300	271000	1271
A330-200	230000	1161
A320-200	73500	618

Transportflugzeuge:

$$\label{eq:Kuzztreckenflugzeuge:} \begin{split} K_{E} &= 17.63 \qquad EX = 0.726 \end{split}$$

Langstreckenflugzeuge: $K_E = 13.15$ EX = 0.899

Passagierflugzeuge: $K_E = 57.37$ EX = 0.553

6.5 Gleichungen nach Raymer

6.5.1 Cargo/Transport Weights

Liste der Formelzeichen

B_W	= Spannweite in [ft]
K_r	= 1,33 für bewegliche (lenkbare) Triebwerke, sonst 1,0
K_{tp}	= 0,793 für Propellerflugzeuge, sonst 1,0
L_{f}	= Rumpflänge in [ft]
N _C	= Anzahl der Crewmitglieder
N _{en}	= Anzahl der Triebwerke
N_t	= Anzahl der Tanken
S_f	= Rumpfoberfläche in [ft ²]
V_i	= Volumen des Mitteltanks in [gallon]
V_t	= Volumen des gesamten Treibstoffs in [gallon]
W_C	= Maximale Frachtmasse in [lb]
W_{dg}	= Leergewicht in [lb]
W_{UAV}	= Masse der uninstallierte Avionik. Werte liegt zwischen 800 und 1400 lb, (Ray-
	mer 1992)

Hier wird die Masse der Flugzeugsysteme auch nicht mit einer allgemeinen Gleichung ermittelt. Hier werden unter andern folgende Punkte behandelt.

- Flugzeugsteuerungssystem W_{fc}
- Instrumenten, Bordelektronik und Elektronik Wintruments
- Klimaanlage, Druckregler, Anti- und Enteisungssystem Wapi
- Sauerstoffsystem *W*_{ox}
- Elektrisches System W_{els}
- Hydraulik- und Pneumatiksystem W_{hps}
- Einrichtung *W*_{fur}

$$W_{flight}_{controls} = 145.9 \cdot \left(1 + N_m / N_f\right)^{-1.0} \cdot S_{cs}^{0.20} \cdot \left(I_y \cdot 10^{-6}\right)^{0.07}$$
(6.47)

$$W_{instruments} = 4.506 \cdot K_r \cdot K_{tp} \cdot N_c^{0.541} \cdot N_{en} (L_f + B_w)^{0.5}$$
(6.48)

Tabelle 6.26:	Masse der	Instrumenten	nach Gl.	6.48	aus Ra	ymer	1992
						-	

Flugzeuge	N_C	$L_{f}[\mathbf{m}]$	$B_W[\mathbf{m}]$	Masse der Instrumenten [kg]
A340-300	12	62,47	60,3	766
A330-200	12	57,77	60,3	376
A320-200	9	37,57	34,1	250

Die Gleichung 6.50 liefert unzuverlässige Ergebnisse. Bei der Ermittlung der Masse nach Gleichung 6.49, wurde festgestellt, daß die Ergebnisse auch sehr unzuverlässig sind.

$$W_{hydraulics} = 0.2673 \cdot N_f \cdot (L_f + B_w)^{0.937}$$
(6.49)

$W_{electrical} = 7.291 \cdot R_{_{KVA}}^{0.782} \cdot L_a^{0.346} \cdot N_{_{gen}}^{0.10}$	(6.50)

$W_{avionics} = 1.73 \cdot W$	7 0.983 UAV	(6.51)

Tabelle 6.27: Masse der Avionik nach Gl. 6.51 aus Raymer 1992

Flugzeuge	W_{UAV} [lb] *	$W_{Avionik}$ [kg]
A340-300	1400	971
A330-200	1300	903
A320-200	1000	698

* gewählt (Laut **Raymer 1992** liegen die Massen der W_{UAV} zwischen 800 und 1400 lb)

$W_{furnischengs} = 0.0577 \cdot N_{c}^{0.1} \cdot W_{c}^{0.393} \cdot S_{f}^{0.75} $ (6.52)
--

Tabelle 6.28: Masse der Einrichtung nach Gl. 6.52 aus Raymer 1992

		U		•	
Flugzeuge	S_f [m ²] *	<i>W_C</i> [kg]	N_C **	M _{Einrichtung} [kg]	Abweichung [%]
A340-300	977,2	41360 ³	12	5772	- 18,9
A330-200	894	31000 з	12	4821	-
A320-200	465	19200 ²	9	2377	- 0,75

* aus Tabelle 2.2

³ aus EADS 2000

² aus Pschirus 1999

** aus Endres 2000

Die Masse der Klimaanlage kann nach folgender Gleichung ermittelt werden.

$$W_{air}_{conditioning} = 62.36 \cdot N_p^{0.25} \cdot \left(V_{\rm Pr} / 1000\right)^{0.604} \cdot W_{uav}^{0.10}$$
(6.53)

Mit der folgenden Gleichung kann die Masse des Anti- und Enteisungssystems errechnet werden. Mit der **Gleichung** 6.54 kann keine zuverlässige Masse errechnet werden. Die hier errechnete Werte sind zu hoch.

$$W_{anti-ice} = 0.002 \cdot W_{de} \tag{6.54}$$

6.5.2 General-Aviation Weights

Mit den **Gleichungen 6.55** und **6.56** können die Massen des Treibstoffsystems ermittelt werden. Hier erfolgt nur das Beispiel für die **Gl. 6.56**, da nicht alle Daten von den Treibstofftanken vorhanden waren.

$$W_{fuel}_{system} = 2.405 \cdot V_t^{0.606} \cdot (1 + V_i / V_t)^{-1.0} \cdot (1 + V_p / V_t) \cdot N_t^{0.5}$$
(6.55)

$W_{fuel \ system} = 2.49 \cdot V_t^{0.726} \ .$	$\left(\frac{1}{1+V_i/V_t}\right)^0$	$N_t^{0.242} \cdot N_{en}^{0.157}$	(6.56)
--	--------------------------------------	------------------------------------	--------

Tabelle 6.29: Masse der W_{fuel system} nach Gl. 6.56 aus Raymer 1992

Flugzeuge	V_t [m ³] *	N_t	Nen	V_i [m ³]	Masse der Kraftstoffsystem	Abweichung
					[kg]	[%]
A340-300	148,7	8	4	50 ²	1050	+28,4
A330-200	139,1	8	2	45 ²	997	-
A320-200	23,86	8	2	8,02 ³	249	- 13,2

* aus EADS 2000

² ausgewählt anhand Beispiel von A340-600

³ aus Jane's 1992

Bei der Ermittlung der Massen mit den folgenden Gleichungen, wurde festgestellt, daß die errechneten Massen recht ungenau sind.

$$W_{flight}_{controls} = 0.053 \cdot L^{1.536} \cdot B_W^{0.371} \cdot \left(N_Z \cdot W_{dg} \cdot 10^{-4}\right)^{0.80}$$
(6.57)

$$W_{hydraulics} = 0.001 \cdot W_{dg} \tag{6.58}$$

$$W_{electrical} = 12.57 \cdot \left(W_{_{fuel system}} + W_{avionics} \right)^{0.51}$$
(6.59)

Masse der Avionik wird nach folgender Gleichung ermittelt.

 $W_{avionics} = 2.117 \cdot W_{Uav}^{0.933} \tag{6.60}$

Tabelle 6.30: Masse der Avionik nach Gl. 6.60 aus Raymer 1992

Flugzeuge	<i>W_{UAV}</i> [lb] *	W _{Avionik} [kg]
A340-300	1400	827,4
A330-200	1300	772,2
A320-200	1000	604,5

* aus **Raymer 1992** (*W_{UAV}* Masse der uninstallierten Avionik., liegt zwischen 800 und 1400 lb laut **Raymer** 1992)

Mit der folgenden Gleichung kann die Masse der Einrichtung recht genau errechnet werden. Die Abweichungen sind niedrig.

$$W_{furnischengs} = 0.0582 \cdot W_{dg} - 65 \tag{6.61}$$

Flugzeuge	W_{dg} [kg] *	Einrichtung [kg]	Abweichung [%]				
A340-300	129850	7492	+ 5,2				
A330-200	120200	6931	-				
A320-200	41310	2339	- 2,3				

 Tabelle 6.31:
 Masse der Einrichtung nach Gl. 6.61 aus Raymer 1992

* aus EADS 2000

 W_{dg} Flugzeugleergewicht in [lb]

6.6 Masse der Flugzeugsysteme nach Torenbeek

Torenbeek 1988 unterscheidet zwischen Ausrüstung (*equipment*) und Flugsteuerung (*surface controls*). In diesem Werk, wird keine allgemeine Gleichung eingegangen, mit der die Masse der Flugzeugsysteme berechnet wird. Die gesamte Masse ist dann, die Summe von der Masse der Ausrüstung und der von Flugsteuerung.

6.6.1 Masse der Ausrüstung (*equipment*)

Für Flugzeuge mit mindestens zwei Triebwerke gilt die unten angegebene Gleichung:

$W_{equip} = K_{equip} \cdot W_{TO}$			(6.62)	
Tabelle 6.32: Masse der Ausrüstung nach Gl. 6.64 aus Torenbeek 1988				
Flugzeuge	W_{TO} [kg]	Masse der Ausrüstung [kg]		
A340-300	271000	21680		
A330-200	230000	18400		
A320-200	73500	8085		
W_{equip} $k_{EQUIP} = 0.08$ $k_{EQUIP} = 0.11$ $k_{EQUIP} = 0.13$ $k_{EQUIP} = 0.14$ $k_{EQUIP} = 0.11$ $k_{EQUIP} = 0.08$ W_{MTO}	Masse der Ausrüstung (einmotoriges Propeller zweimotoriges Propeller strahlgetriebenes Schulf Kurzstrecken-Transport Mittelstrecken-Transport Langstrecken-Transport maximale Startmasse in	(equipment) in kg, lugzeug rflugzeug lugzeug (<i>jet trainer</i>) fflugzeug rtflugzeug tflugzeug kg		

6.6.2 Flugsteuerung

		$W_{sc} = 0.768$	$B \cdot K_{SC} \cdot W_{TO}^{2/3}$	(6.63)
Tabelle 6.33:	Masse der	Flugsteuerung nach Gl. 6	.65 aus Torenbeek 1988	
Flugzeuge	<i>W</i> _{TO} [kg]	Masse der Flugsteue- rung [kg]	Masse der Flugzeug- systeme [kg]	Abweichung [%]
A340-300	271000	2830	24510	- 2,3
A330-200	230000	2537	20937	-
A320-200	73500	1186	9271	+ 15,8
W_{SC} $K_{SC} = 0.23$ $k_{SC} = 0.44$ $k_{SC} = 0.64$ $k_{SC} = 0.74$	Masse d für Flugz für Tran für Tran (z.B. Hy für Tran	er Flugsteuerung in kg zeuge mit einfacher Flugs sportflugzeuge mit manue sportflugzeuge mit prima draulik) und Landeklappe sportflugzeuge mit prima	steuerung eller Flugsteuerung ärer Flugsteuerung mittel enantrieb ärer Flugsteuerung - eins	ls Sekundärenergie schließlich Spoilern
$k_{SC} = 0.77$ $k_{SC} = 0.88$	– mittels für Tran (z.B. Hy für Tran – mittels gelantrie	s Sekundärenergie (z.B. H sportflugzeuge mit prima draulik) und Landeklappe sportflugzeuge mit prima s Sekundärenergie (z.B. 1 b.	lydraulik) und Landeklap ärer Flugsteuerung mittel en- und Vorflügelantrieb, ärer Flugsteuerung - eins Hydraulik) und Landekla	penantrieb, ls Sekundärenergie schließlich Spoilern appen- und Vorflü-

6.6.3 Weitere Gleichungen zur Ermittlung der Massen der Flugzeugsysteme, aus Torenbeek

Mit den folgenden Gleichungen, lassen sich die Massen der Flugzeugsystembestandteile errechnen. Einige Bestandteile der Flugzeugsysteme wurden bereits in **Kapitel 6.3** behandelt (Verfahren nach Torenbeek aus dem Werk von Roskam).

Zunächst folgt die Gleichung, mit der das Cockpitsystem errechnet werden kann.

 $W_{ccpit} = 0.046 \cdot W_{TO}^{3/4} \tag{6.64}$

Tabelle 0.34. Masse des Cockpitsystems nach GI. 0.04 aus Torenbeek 1700				
Flugzeuge W _{TO} [kg]		Masse des Cockpitsystems [kg]		
A340-300	271000	546,4		
A330-200	230000	483,1		
A320-200	73500	205,3		

Tabelle 6.34: Masse des Cockpitsystems nach Gl. 6.64 aus Torenbeek 1988

Dann folgt die Gleichung für die Ermittlung der automatischen Fluginstrumenten (Automatik Pilot).

$W_{Autopilot} = 9 \cdot W_{TO}^{1/5}$	(6.65)
Autopiloi 10	

Tabelle 6.35: Masse des Automatischen Systems nach Gl. 6.65 aus Torenbeek 1988				
Flugzeuge	W_{TO} [kg]	Masse des Cockpitsystems [kg]	Abweichungen [%]	
A340-300	271000	109,86	+ 64,0	
A330-200	230000	106,31	-	
A320-200	73500	84,63	-15,4	

Die Masse des Treibstoffssystems wird, wie folgt ermittelt.

$W_{FS} = 0.9184 \cdot V_{ft}^{0.60}$	(6.66)
---------------------------------------	--------

Tabelle 6.36:	Masse des	Treibstoffsys	tems nach	Gl. 6.66	aus T	orenbeek	1988
---------------	-----------	---------------	-----------	----------	-------	----------	------

Flugzeuge	V _{ft} [Liter] *	Masse des Treibstoffsystems [kg]	Abweichungen [%]
A340-300	148700	1165	+42,4
A330-200	139100	1119	-
A320-200	23860	389	+35,5

* aus EADS 2000

 V_{ft} ist das gesamte Treibstoffstankvolumen in Liter

Die Masse der Hydraulik und Pneumatik wird, wie folgt errechnet. Diese Gleichung gilt nicht für Flugzeuge mit manueller Steuerung.

$W_{Pneumatik + Hydraulik} = 0,011 \cdot W_{DE} + 181$	(6.67)
--	--------

Flugzeuge	W_{DE} [kg]	Masse des Treibstoffsystems [kg]
A340-300	129000	1609
A330-200	120000	1503
A320-200	41300	635

 W_{DE} ist die Flugzeugleergewicht in kg

6.7 Masse der Flugzeugsysteme nach Boeing

In diesem Werk gibt es auch keine allgemeine Gleichung zur Berechnung der Masse der Flugzeugsysteme. Hier werden unter andern folgende Punkte behandelt.

- Instrumenten, Avionik und Elektronik
- Klimaanlage, Druckregler, Anti- und Enteisungssystem
- Sauerstoffsystem
- Elektrisches System
- Hydraulik- und Pneumatiksystem

Zur Ermittlung der Masse der Flugzeugsysteme werden hier die **Bilder A6.1** bis **A6.8** benötigt. Die Ergebnisse werden hier in Tabellen veranschaulicht.

Flugzeuge	W_{TO} [kg] ²	<i>W_{TO}</i> [lb]	Masse der Instrumenten [kg]	Abweichung [%] *
A340-300	271000	597440	431	- 18,7
A330-200	230000	507000	408	-
A320-200	73500	162000	303	- 30,0

 Tabelle 6.38:
 Masse der Instrumenten nach Bild A6.1 aus
 Boeing 1969

² aus EADS 2000

* in Vergleich mit den Zahlen von Ergebnisse aus Gl. von Torenbeek 1988

Flugzeuge	<i>b</i> [m] ²	Masse der Steuerung [kg]		
A340-300	60,3	2177		
A330-200	60,3	2177		
A320-200	34,1	1089		

Tabelle 6.39: Masse der Steuerung nach Bild A6.2 aus Boeing 1969

² aus EADS 2000

In **Tabelle 6.40** werden die Massen der Hydraulik veranschaulicht: Diese Massen sind aber abhängig von der Anzahl der Funktionen. Wenn die Anzahl der Funktionen nicht bekannt sind, wird keine Ergebnisse erzielt.

Tabelle 6.40: Masse der Hydraulik nach Bild A6.3 aus Boeing 1969

Flugzeuge	<i>W</i> _{TO} [lb]	Masse der Hydraulik [kg]
A340-300	597440	100 lb/ Funktion
A330-200	507000	92 lb/ Funktion
A320-200	162000	68 lb/ Funktion

	1 2	8
Flugzeuge	<i>W_{TO}</i> [lb]	Masse der Pneumatik [kg]
A340-300	597440	762
A330-200	507000	658
A320-200	162000	327

Tabelle 6.41: Masse des pneumatischen Systems nach Bild A6.4 aus Boeing 1969

Tabelle 6.42: Masse der Elektronik nach Bild A6.5 aus Boeing 1969

Flugzeuge	<i>W</i> _{<i>TO</i>} [lb]	Masse der Elektronik [kg]
A340-300	597440	1234
A330-200	507000	1089
A320-200	162000	522

Tabelle 6.43: Masse der Einrichtung (furnishings) nach Bild A6.6 aus Boeing 1969

Flugzeuge	Zahl der Passagiere *	Masse der Einrichtung [kg]	Abweichung [%]
A340-300	295	7484	+ 5,1
A330-200	293	7462	-
A320-200	150	3220	+ 34,4

* aus EADS 2000

 Tabelle 6.44: Masse des Klimaanlagesystems (air conditioning) nach Bild A6.7 aus Boeing 1969

Flugzeuge	Volumen des Rumpfes [ft ³] *	Masse der Klimaanlage [kg]	Abweichung [%]
A340-300	45000	1542	+ 5,3
A330-200	3180	1442	-
A320-200	2050	929,9	+ 35,0

* aus Boeing 1968 (siehe Bild A6.9)

Tabelle 0.45. Wrasse des Anti- und Entersungssystems nach Dhu Au.o aus Dueing 190	Tabelle 6.45:	Masse des Anti-	und Enteisungssystems na	ach Bild A6.8 aus	Boeing 1969
--	---------------	-----------------	--------------------------	--------------------------	-------------

Flugzeuge	<i>b</i> [m]	<i>b</i> [ft]	Masse des Enteisungssystems [kg]
A340-300	60,3	197,8	108,9
A330-200	60,3	197,8	108,9
A320-200	34,1	112	56,7

Die hier errechnete Massen sind deutlich höher als die von Airbus angegebenen Zahlen.

Mit dem Verfahren nach Boeing lassen sich die einzelnen Komponenten nach dem **Bild A6.1** bis **Bild A6.8** errechnen. Wenn man die einzelnen Massen (Massen der Komponenten) ermitteln möchte, ist das Verfahren nach **Boeing** recht geeignet.

7 Zusammenfassung

In dieser Diplomarbeit wurden die aus der Literatur bekannten Verfahren zur Masseprognose von Flugzeugbaugruppen im frühen Flugzeugentwurf behandelt. Dabei wurden auch die tatsächlichen Massen der Baugruppen von Passagierflugzeugen (A340-300 und A320-200) herangezogen. Einige Parameter wurden direkt aus der Zeichnung abgelesen, so daß mit einer gewissen Ungenauigkeit zu rechnen war. Um einen besseren Überblick zu ermöglichen sind die Ergebnisse in Diagrammen veranschaulicht. Anhand der Diagramme, kann man dann feststellen, wie unterschiedlich oder wie ähnlich die Ergebnisse sind, von Methode zu Methode.

Es stellte sich heraus, daß die Masse der Flugzeugbaugruppen für Strahlflugzeuge am besten über die Methode von Marckwardt zu berechnen ist. Die durchschnittliche Abweichung liegt in diesem Fall niedriger als die von den anderen Methoden. Die Ermittlung der Masse der Flugzeugsysteme war aufwendiger, da hier die einzelnen Komponenten getrennt betrachtet werden mußten. Nur mit wenigen Verfahren und mit Hilfe einer allgemeinen Gleichung gelange es, die Massen zu ermitteln.

Bei der Ermittlung der Triebwerksgondelmasse gibt es zwei Varianten. In einigen Quellen handelt es sich hier nur um die Triebwerksgondelmasse. Und bei den anderen geht es um die Masse der Triebwerksgondelmasse einschließlich Masse der Pylon.

Es stellte sich heraus, daß die Ergebnisse sich nicht nur von Verfahren zu Verfahren unterscheiden, sondern auch von Flugzeugtyp.

Literaturverzeichnis

Arnold 2001	URL: <u>www.arnoldpublishers.com</u> (2001)
Berry 2000	BERRY, Patrick: Sizing the Landing Gear in the Conceptual Design Phase. Linköping University. 2000
Boeing 1968	BOEING: <i>Weight Prediction Manual - Class</i> I, Renton, The Boeing Company, Commercial Airplane Division, Weight Research Group, 1968
Boeing 1969	BOEING: Weight Prediction Manual - Class I, Renton, The Boeing Company, Commercial Airplane Division, Weight Research Group, 1969
Bräunling 1997	BRÄUNLING, Willy: Skript zur Vorlesung Flugzeugtriebwerke. Ham- burg, Fachhochschule Hamburg, Fachbereich Fahrzeugtechnik, Vorle- sungs-Skript, 1997
Currey 1988	CURREY, Norman S.: Aircraft Landing Gear Design: Principles and Practices. AIIAA Education Series 1988.
CFMI 1998	URL: <u>http://www.cfm56.com/home.htm</u> (1998)
EADS 2000	European Aeronautic Defence and Space Company: <u>http://dasa.com</u> bzw. <u>http://www.eads-nv.com/eads/en/index.htm</u> (2000)
Endres 2000	ENDRES, Günter: <i>Das grosse Buch der Passagierflugzeuge</i> . Stutt- gart: Motorbuch Verlag, 2000 ISBN 3-7276-7080-0
General Electric 200	0 <u>http://www.geae.com/lrgcom/cf6/cf6_comm_80e1.htm</u> (2000)
Norris 2000	NORRIS, Guy: <i>flight international, Powerful Changes</i> , Bericht über Triebwerk. Los Angeles. Von 14. bis 20. November 2000
Jane´s 1992	JANE, Frederick Thomas (Hrsg.): <i>Jane's all the World's Aircraft</i> . Couldsen : Jane's Information Group Limited, 1992
Jane´s 1996	JANE, Frederick Thomas (Hrsg.): <i>Jane's all the World's Aircraft</i> . Couldsen : Jane's Information Group Limited, 1996

Kreuzer 1999	KREUZER, Helmut: Am Start Moderne Verkehrsflugzeuge & Business Jets. Erding Air Gallery Edition, 1999 ISBN 3-9805934-0-1
LTH 1981	ARBEITSKREIS GEWICHTE (AGE): Luftfahrttechnisches Hand- buch. Band : Gewichte. Ottobrunn : (IABG), 1981
Marckwardt 1997	MARCKWARDT, K.: Unterlagen zur Vorlesung Flugzeugentwurf. Hamburg, Fachhochschule Hamburg, Fachbereich Fahrzeugtechnik, Vorlesungsskript, 1997
Pschirus 1999	URL: <u>http://cip.physik.uni-wuerzburg.de/~pschirus/aviation/flugzeuge/</u> (1999-07-23)
Raymer 1989	RAYMER, Daniel P.: A Conceptual Approach. AIIAA Education Series 1989
Raymer 1992	RAYMER, Daniel P.: A Conceptual Approach. AIIAA Education Series 1992
Roskam 1989	ROSKAM, Jan: Airplane Design. Bd. 5: Preliminary Calculation of weight. Ottawa, Kansas, 1989.
Scholz 1998	SCHOLZ, Dieter: <i>Skript zur Vorlesung Flugzeugentwurf</i> . Hamburg, Fachhochschule Hamburg, Fachbereich Fahrzeugtechnik, Vorlesungs- Skript, 1998
Torenbeek 1988	TORENBEEK, Egbert: <i>Synthesis of Subsonic Airplane Design</i> . Delft : Delft University Press, 1982 ISBN 90-247-2724-3

Anhang A

Bild A4.1 Triebwerkszubehör nach Triebwerkschub, aus Boeing 1969

Bild A4.2 Triebwerkssteuerung in Funktion der Steuerungslänge, aus Boeing 1969

Bild A4.3 Triebwerkstartsystems in Funktion der Triebwerkanzahl, aus Boeing 1969

Bild A4.4 Treibstoffsystem eines Triebwerks in Funktion der Tankkapazität, aus Boeing 1969

Bild A4.5 Schubumkehrermasse in Funktion der Luftmassenströmung, aus Boeing 1969

Bild A6.1 Masse der Instrumenten in Funktion der *m*_A, aus Boeing 1969

Bild A6.2 Masse der Steuerung in Funktion der Spannweite, aus Boeing 1969

Bild A6.3 Masse des hydraulischen Systems in Funktion der m_A , aus Boeing 1969

Bild A6.4 Masse des pneumatischen Systems in Funktion der max. m_A, aus Boeing 1969

Bild A6.5 Elektronikmassen in Funktion der max. m_A , aus **Boeing 1969**

Bild A6.6 Masse der Einrichtung in Abhängigkeit von der N_{PAX}, aus Boeing 1969

Bild A6.7 Masse des Klimaanlagesystems in Abhängigkeit von Volumen des Druckrumpfes, aus Boeing 1969

Bild A6.8 Masse des Anti- und Enteisungssystems in Funktion der Spannweite, aus Boeing 1969

Bild A6.9 Volumen des Rumpfes (Bereich unter Druckbelastung) in Funktion der Rumpfoberfläche, aus Boeing 1969

Anhang B

Parameter		A340-300	A330-200	A320-200	
Rumpf					
Rumpflänge	[m]	62,47	57,77	37,57	4
Rumpfbreite	[m]	5,64	5,64	3,95	4
Rumpfhöhe	[m]	5,64	5,64	4,14	4
Spannweite	[m]	60,30	60,30	34,10	1
Frachtvolumen	[m³]	162,9	136	38,76	4
Passagiervolumen	[m ³]	566,1	506	152	4
Passagiere + Frachtvolu	men	729	642	191	
Höhe	[m]	16,84	17,88	11,76	1
Kabinenlänge	[m]	50,35	45,00	27,51	3
Kabinendruck	[pa]	70.000	70.000	70.000	
Rumpfdurchmesser	[m]	5,64	5,64	3,96	113
Flügelstreckung		9,39	9,26	9,26	3
Flügelpfeilung	[°]	29,70	29,70	25,00	3
Flächenbelastung	[Kg/m ²]	746	597,6	600,49	3
Max. Tankkapazität	[1]	148.700	139.090	23850	4
Max. Startgewicht	[kg]	271.000	230.000	73.500	1
Reisegeschwindigkeit	[Ma]	0,86	0,86	0,82	3
Max. Leergewicht	[kg]	129.850	120.200	41.310	4
Max. Landungsgewicht	[kg]	190.000	177.150	61.000	441
Startgeschwindigkeit	[km/h]	300	300	283	* * 3
Landungsgeschwindigkeit Min.		244	244	194	* * 3
Machzahl bei 0 km		0,24	0,24	0,23	*
Reichweite	[km]	13.500	11.900	5.830	1
LH	[m]	26,50	23,30	13,53	474
LV	[m]	25,50	22,30	12,53	474
Erdbeschleunigung	[m/s ²]	9,81	9,81	9,81	
Vstall	[km/h]	187,69	187,69	149,23	443
Volumen des Rumpfs	[ft ³]	45000,00	39000,00	17000,00	Bild A6.9
Triebwerksgondel					
Length	[m]	4,95	7,00	4,440	4
Max. Breite (width)	[m]	2,37	3,10	2,37	4
Gondelfläche	[m ²]	36,856	68,173	33,058	#

DS

hirus

nold

rris 2000

ry 2000

Errechnet, siehe Gl. 3.16 bis Gl. 3.18

* gewählt (aus Vergleich mit Daten von A340-600)

Parameter	A340-300	A330-200	A320-200	
Triebwerk				
Zahl der Triebwerke	4	2	2	
Standschub [N]	151000	300000	111200	1
Abstand von Flügel bis	2,2	1,93	1,3	7
TW-Mittelpunkt				
Nebenstromverhältnis	6,4	5,32	6	898
Туре	CFM-56-	CF6-	CFM56-5A3	1
	5C4	80E1A4		
Trockengewicht [kg]	2587	4869	2266	598
Länge [m]	2,62	4,28	2,42	898
Austrittsdurchmesser	0,5	0,66	0,47	
Fan-Durchmesser	1,84	2,44	1,73	898
Gesamtdruckverhältnis	38,3	32,6	31,3	898
Max. statischer Druck im	30	30	30	#
Kompressor [PSI]				
Zahl der Einlässe	4	2	2	
TW-Saugfläche [m ²]	2,659	4,676	2,351	*
Max. Kraftstoffmasse	113125	70786	17940	4
[kg]				
Airflow [lb/sec]	1065	-	842	

* gerechnet # aus **Roskam 1989** (Siehe Kap. 3.3.2)

1	EADS
2	Jane's
3	Pschirus
4	Arnold
5	Norris 2000
6	Berry
8	CFM
9	GE

Parameter	A340-300	A330-200	A320-200	
Fahrwerk				
Federbeinlänge (Haupt-	1,7	1,7	1,7	*
fahrwerk) [m]				
Federbeinlänge (Bug-	1,7	1,7	1,7	*
fahrwerk) [m]				
Federbeinlänge [m]	1,7	1,7	1,7	*
Hauptfahrwerkslänge [m]	4	4	2,98	** 2
Bugfahrwerkslänge [m]	3,2	3,2	2,0	*
Wheelbase in [m]	25,4	16,9	12,63	4
Anzahl der Räder eines Hauptfahrwerks	10	8	4	4
Anzahl der Räder eines Bugfahrwerks	2	2	2	4
Reifendurchmesser des Hauptfahrwerks [m]	1,27	1,27	1,143	4
Zahl der Shock Struts des Hauptfahrwerks	3	2	2	4
Landungsbruchlastfaktor	5,7	5,7	5,7	Roskam
Masse d. uninstalled avioniks [lb]	1400	1300	1000	Raymer
Max. Cargomasse [kg]	41360	31000	19200	113
Anzahl der Piloten	2	2	2	
Anzahl der Passagiere	295	293	150	1
Anzahl der Crewmitglie- der	12	12	9	Endres
Passagiere + Crewmit- glieder	307	305	159	
Treibstoffsvolumen [m ³]	148,7	139,1	23,86	1
Integraltankvolumen [m ³]	50	45	8,016	X X 2
Anzahl der Treibstoffs- tank	8	8	8	X

X Ausgewählt (in Vergleich mit A340-600)

1	EADS
2	Currey
3	Pschirus
4	Arnold