Predictive Health Monitoring for Aircraft Systems using Decision Trees and Genetic Evolution

Opponent: Professor Piotr Bilski

Committee
Professor David Baglee
Ma del Carmen Valero
Professor Giulio D'Emilia

Agenda

Background
Goals & Objectives
Methodology
Results
Conclusion

Agenda

Background

Goals & Objectives

Methodology

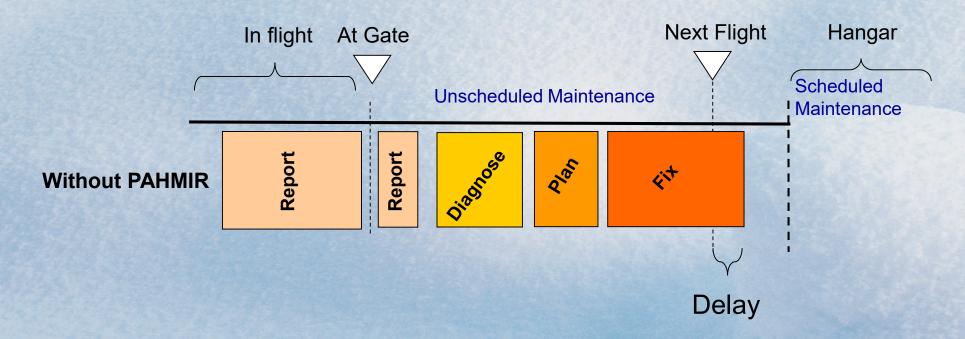
Results

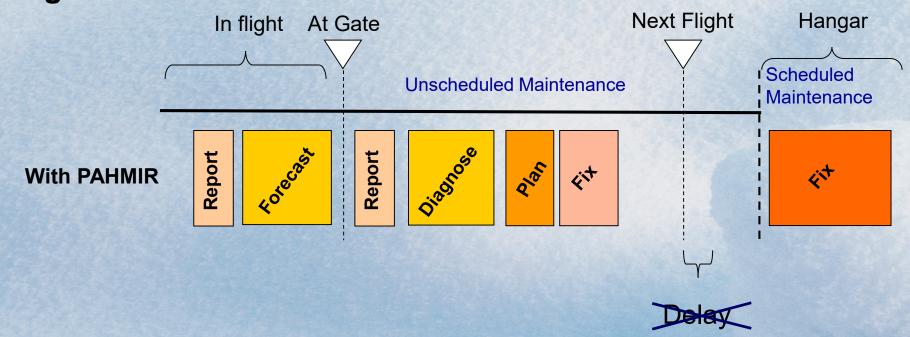
Conclusion

Background - PAHMIR

- Preventive Aircraft Health Monitoring and Integrated Reconfiguration
- Cooperative project between
 Airbus Germany (Project Lead)
 Hamburg University of Applied Sciences
- Funded by city of Hamburg
- Duration: 3 years (2008 2011)

Background - PhD


- Started 2008 at HAW Hamburg and Linköping University Prof. Dieter Scholz & Prof. Petter Krus
- Fulltime work at 2011 as software developer
- Licentiat 2016 in Linköping
- Switching to Luleå Technical University 2016
 Prof. Dieter Scholz & Prof. Diego Galar


Background - Motivation

Background - Motivation

Background - Topic Relevance

- Lufthansa Technik: Condition Analysis
- Boeing: AnalytX
- Airbus: Skywise
 - More than 20 airlines
 - Big data
 - Preventiv maintenance
 - Sensor data is transferred in real time
 - Offline monitoring

AOG = Aircraft on Ground (2017)

https://www.flightglobal.com/mro/airbus-sees-big-data-delivering-zero-aog-goal-within-10-years/126446.article

Background - Aircraft Maintenance

- Preventive Maintenance
 - Regular check intervals
 - Defined maintenance actions
 - A-Check (2 months, overnight)
 - B-Check (3-4 months, only two Boeing aircraft)
 - C-Check (18 months, 2 weeks)
 - IL-Check (4 years)
 - D-Check (6-10 years, 4-6 weeks)

Background - Aircraft Software Development

- DAL (Design Assurance Level)
 - Higher DAL = greater design restrictions (language, syntax, memory ...)
 - DAL defines amount of required testing
 - Statement coverage
 - Branch coverage
 - MCDC (Multi Condition Decision Coverage)
- DAL A Catastrophic
- DAL B Hazardous
- DAL C Major
- DAL D Minor
- DAL E No effect

Agenda

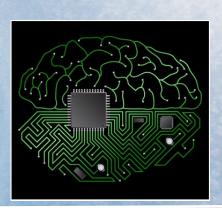
Background

Goals & Objectives

Methodology

Results

Conclusion


Goals

- Reduce Unscheduled Maintenance
 - Replace components before failure
- Reduce maintenance costs
 - Less unscheduled maintenance

- Use intelligent components
 - Integrated sensors

Objectives and Constrains

- Use existing data and sensors, if possible
- Onboard and offboard data management
- Adaptability
 - Should work with any input data
 - Should not be fixed to one aircraft (type)
- Complient to aircraft software development

- Complient to aircraft maintenance procedures
 - Not interfere with existing procedures
- Focus on air conditioning system
 - Active parts (fans)
 - Passive parts (ducts, valves)

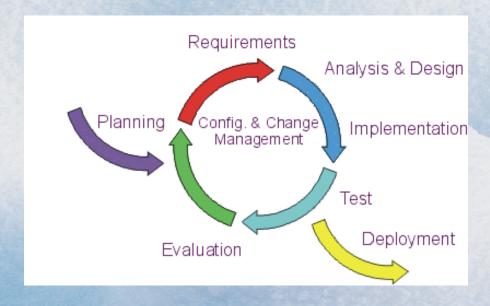
Agenda

Background
Goals & Objectives

Methodology

Results

Conclusion



Methodology

- Engineering project
 - Airbus technology development process
 - Technology Readiness Level Review Gates 1-6
- Selected Approach (Inductive Research Approach):
 - Iterative Development
 - Rapid Prototyping
- Advantages:
 - Early discovery of errors and problems
 - Validation and verification for each develoment stage
 - Functional prototype during each iteration

Methodology - Validation

- Artificial/Synthetic data
- Testrig with original aircraft parts
- Aircraft data

Agenda

Background
Goals & Objectives
Methodology

Results

Conclusion

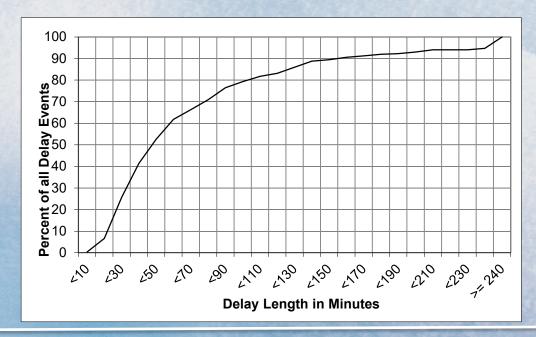
Published Papers

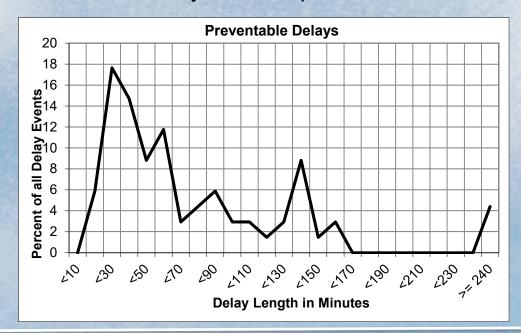
- Paper 1: Effects of Condition-Based Maintenance on Costs caused by Unscheduled Maintenance of Aircraft
- Paper 2: Decision Trees and the Effects of Feature Extraction Parameters for Robust Sensor Network Design
- Paper 3: Automated Parameter Optimization for Feature Extraction for Condition Monitoring
- Paper 4: Fuzzy Condition Monitoring of Recirculation Fans and Filters
- Paper 5: Decision Trees and Genetic Algorithms for Condition Monitoring Forecasting of Aircraft Air Conditioning
- Paper 6: Genetic Algorithms and Decision Trees for Condition Monitoring and Prognosis of A320 Aircraft Air Conditioning

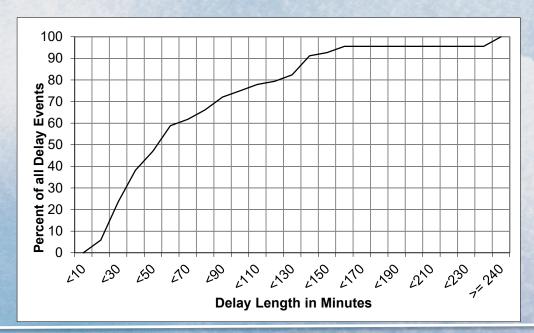
Journal of Quality in Maintenance Engineering (2016)

- Cost effects of predictive maintenance
 - Cost of 1 minute of delay is about 81 € (2015) (The Cost of Delay to Air Transport in Europe Eurocontrol)
 - Cancellation is much much higher
- Analyse delays of aircraft air conditioning

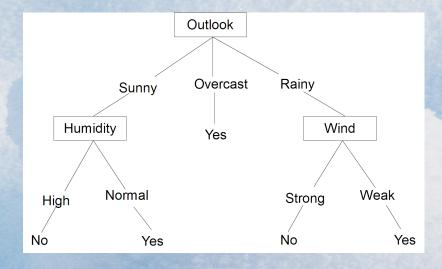
Method:


- Airbus In-Service data
 - Air Conditioning (ATA21) of A340-600 fleet
- Analysis
 - How long are delays?
 - Which are easy preventable?
 - Which are difficult to prevent?
 - Which delays are not preventable?
- Calculate costs savings based on preventable delays





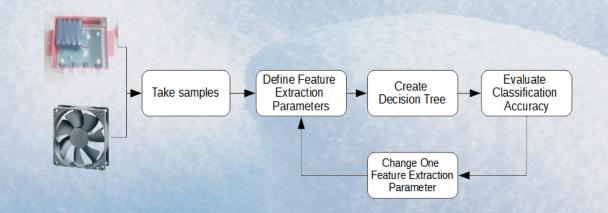
- 20% of delays can be prevented with existing sensors
- 80% of delays can be prevented with additional sensors



Paper 2: Decision Trees and the Effects of Feature Extraction Parameters for Robust Sensor Network Design

Eksploatacja i Niezawodnosc – Maintenance and Reliability (2017)

- Evaluate decision trees for classification
 - Easy to understand
 - Easy to modify
 - Established
- Evaluate influence of features



Paper 2: Decision Trees and the Effects of Feature Extraction Parameters for Robust Sensor Network Design

Method:

- PC fan data
 - · With workday noise
 - One sample every 10 minutes
 - Different added weigth
- Aircraft sensor data
- Parametric feature extraction
 - Mean/Max/Average
 - Time and Frequency domain
- Decision trees (C4.5)

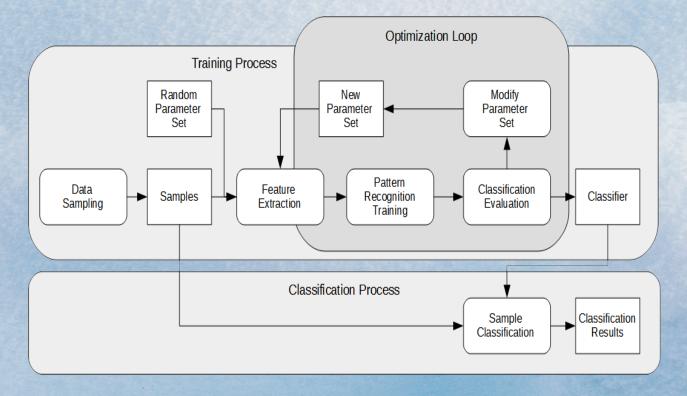
Paper 2: Decision Trees and the Effects of Feature Extraction Parameters for Robust Sensor Network Design

Results:

- Feature extraction
 - Difficult to find the best parameter set
 - Classification accuracy is strongly influenced by quality of features
- Sensor Optimization
 - Decision trees help to find significant sensors

14th IMEKO TC10 Workshop on Technical Diagnostics (2016)

- Improve accuracy of classification
 - Finding best feature extraction parameters
- Automated feature extraction
- Evaluate alternatives to decision trees



- Different search algorithms
 - Genetic evolution
 - Greedy search
 - Simulated annealing
- Different classifiers
 - Decision trees
 - Support vector machines
 - Bayesian network

- Airbus Test Rig
- Sound and vibration data of High Pressure fan
- Two inlet and one outlet valve for clogging simulation
- 600 samples collected
 - 25 combinations (0°/0°/0°, 0°/0°/45°, 0°/45°/90°)
 - 24 samples per valve combination

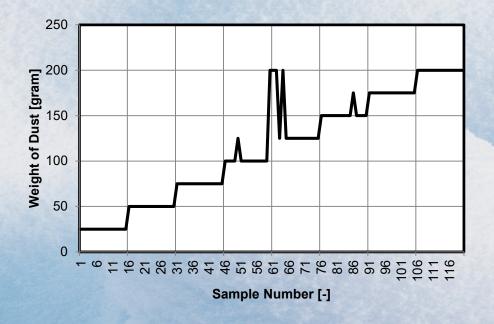
Pattern Recognition Algorithm	Correctly Classified Samples	Training Time without optimization
Decision Trees	91.7 %	71 seconds
SVM	98.9 %	1860 seconds
Bayesian Network	98.9 %	193 seconds

Pattern Recognition Algorithm	Correctly Classified Samples	Training Time with optimization and 20 generations
Decision Trees	94.4 %	1381 seconds
SVM	99.4 %	12312 seconds
Bayesian Network	99.4 %	2791 seconds

- Greedy search:
 - Fastest
 - Unlikely to find best set
- Simulated Annealing
 - Slowest
 - No better results than Greedy Search
- Genetic Evolution
 - Speed in the middle
 - Best results

Additional Validation Results (not published)

- Record sound and vibration
 - Fan
 - Filter
- Two valves
 - 1 inlet
 - 1 outlet
- Clog filter with dust
 - 25 gram steps



Additional Validation Results (not published)

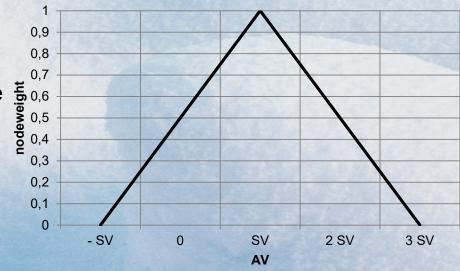
- Detection of clogging possible (sound and vibration)
- High detection rate >90%
- Forests increase accuracy

Dust	Classification results using 1 decision tree (samples per class)	Classification results using 3 decision trees (samples per class)
25 gram	15	15
50 gram	15	15
75 gram	15	15
100 gram	13	13
125 gram	13	17
150 gram	14	14
175 gram	16	16
200 gram	19	15

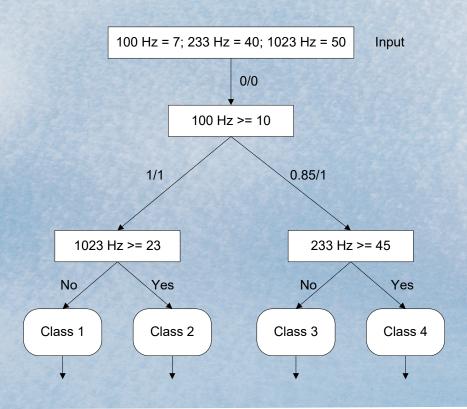
Paper 4: Fuzzy Condition Monitoring of Recirculation Fans and Filters

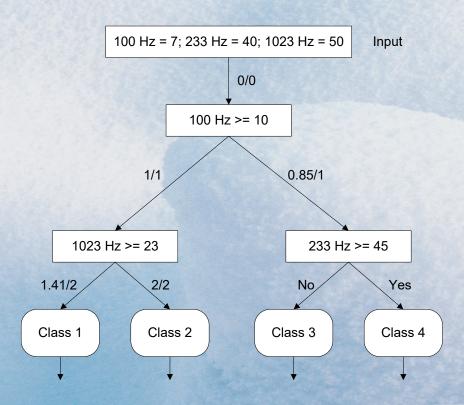
International Journal of System Assurance Engineering and Management (2016)

- Improve decision tree results
 - How reliable a classification is
- Identify other likely conditions
 - Similarity of input to different classes
 - How close to "class border"
 - For failure diagnosis

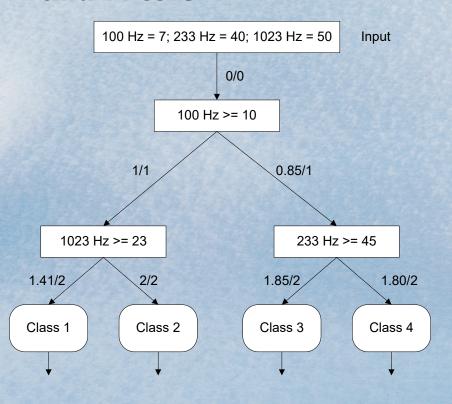


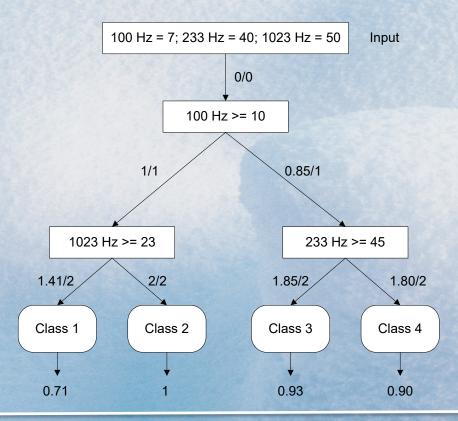
Paper 4: Fuzzy Condition Monitoring of Recirculation Fans and Filters


- Fuzzy decision tree classifications
- Weighting each tree node decision
 - Different weigthing functions
 - Decision value is based on distance from node value
- One result value for each class
 - Result value for each class is max leaf value
- Decision Tree Forest
 - Each tree with a different feature set



Paper 4: Fuzzy Condition Monitoring of Recirculation Fans and Filters





Paper 4: Fuzzy Condition Monitoring of Recirculation Fans and Filters

Paper 4: Fuzzy Condition Monitoring of Recirculation Fans

and Filters

- Airbus test rig
 - HP Fan and filter
 - One inlet (valve 1) and one outlet valve (valve 2)
- Cloggling simulation by using valves

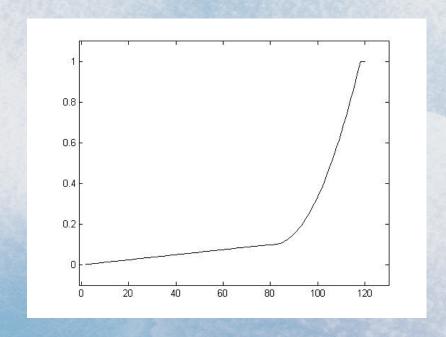
Paper 4: Fuzzy Condition Monitoring of Recirculation Fans and Filters

- Similarity measurement
 - Base class "15/0"

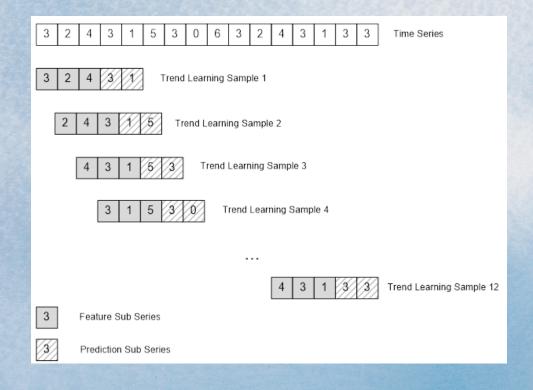
Valve2/Valve1	0	15	30	45	60	75	90
0	0.5714	1	0.9213	0.5	0.65	0.7583	0.655
15	0.672	0.8357	0.6929	0.6667	0.6512	0.7278	0.4944
30	0.75	0.5	0.5	0.6	0.4444	0.5714	0.4286
45	0.65	0.75	0.5712	0.5667	0.25	0.5	0.25

Paper 4: Fuzzy Condition Monitoring of Recirculation Fans and Filters

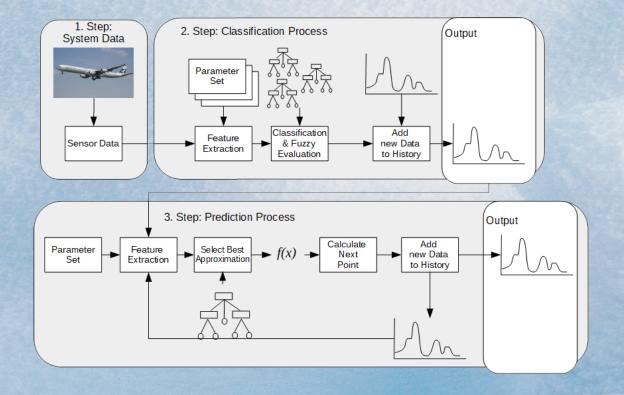
- Forest increases accuracy by 5%
 - From 94% to 99%
 - Improvement from paper 3

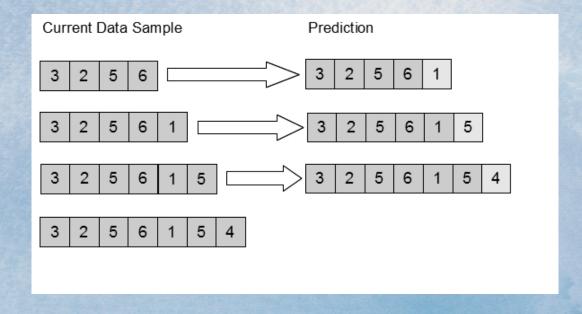

Expert Systems With Applications (2013)

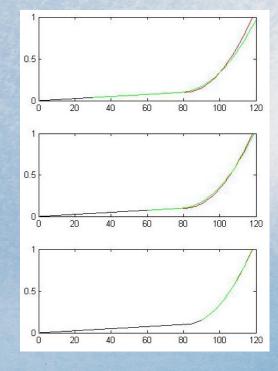
- Prediction of a health time series
 - Use time series features
 - Based on fuzzy decision tree classification



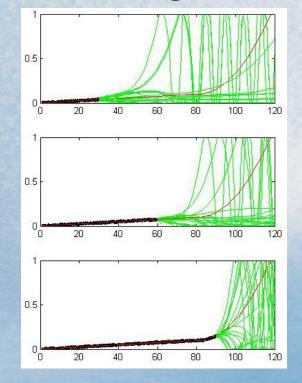
- Iterative prediction
 - Predict a single data point
 - Add data point to current history
- Training data
 - Parts of the time series
 - Set of extrapolation functions as classes
 - Class equals the best function for prediction
 - Test series contains irregularity

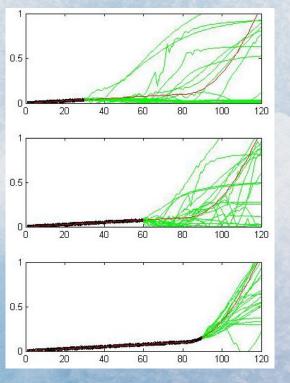






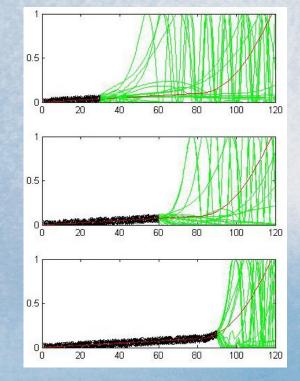
Results with 0% noise

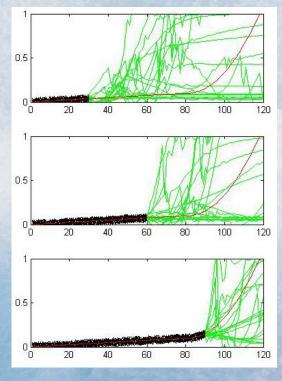




Results with 2% noise

- Only noisy test data
- Training and test data noisy





Results with 5% noise

- Only noisy test data
- Training and test data noisy

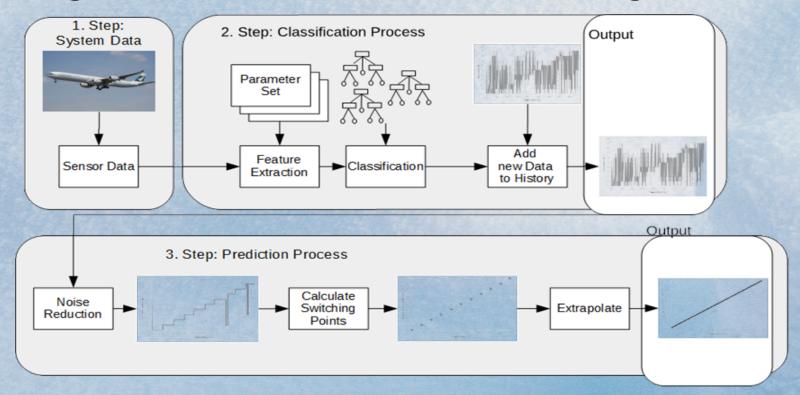
Insight - Non-Destructive Testing and Condition Monitoring (2017)

- Real World Validation of Concept
 - A320 aircraft from ETIHAD Airways
- A320 air conditioning sensor data
 - 589 flights over 6 months

- Results were not as expected
 - · Concept needed to be reworked

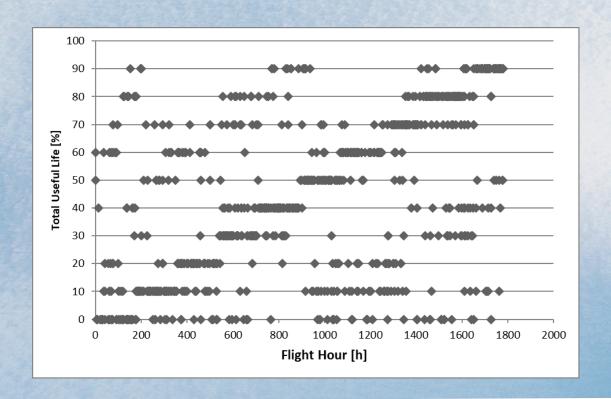
Cabin Compartment Temperature Group 1	Zone Control	Numerical
Cabin Compartment Temperature Group 2	Zone Control	Numerical
Cabin Compartment Temperature Group 3	Zone Control	Numerical
Cabin Temperature Regulation Valve Position Group 1	Zone Control	Numerical
Cabin Temperature Regulation Valve Position Group 2	Zone Control	Numerical
Cabin Temperature Regulation Valve Position Group 3	Zone Control	Numerical
Duct Overheat Warning Group 1	Zone Control	Boolean
Duct Overheat Warning Group 2	Zone Control	Boolean
Duct Overheat Warning Group 3	Zone Control	Boolean

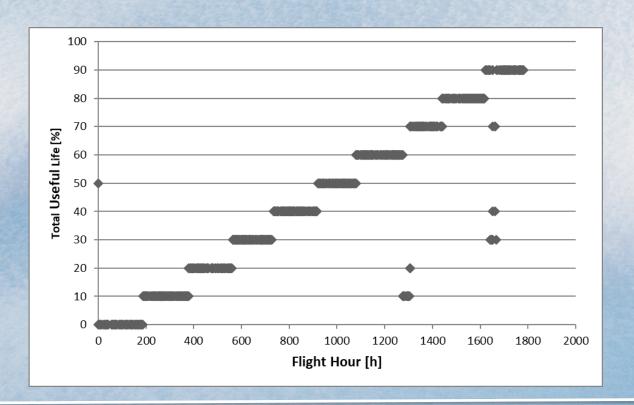
Iterative approach did not work


- Too much noise
- No clear degradation pattern

New concept

- Keep crisp classification process
- Use class switches for health prediction
- Health "classes" based on flight hours
 - Start of data is 0% degration
 - End of data is 100% degration





Classification/ Class	0	10	20	30	40	50	60	70	80	90
0	0	36	24	23	10	24	29	16	28	6
10	19	0	40	3	4	45	21	12	1	17
20	16	38	0	4	0	29	68	9	0	0
30	28	0	3	0	37	8	6	12	72	4
40	16	6	0	45	0	9	0	20	38	29
50	21	49	28	0	4	0	36	9	0	32
60	30	48	35	1	0	42	0	7	0	0
70	31	30	11	38	20	21	32	0	29	6
80	29	0	0	67	55	0	0	25	0	13
90	23	20	8	10	46	23	0	6	17	0

Classification/ Class	0	10	20	30	40	50	60	70	80	90
0	Ö	21	32	21	7	8	9	6	7	47
10	22	0	32	25	9	23	18	21	10	24
20	23	19	0	36	36	8	17	6	2	25
30	26	49	35	0	54	15	16	0	0	0
40	31	4	29	32	0	36	8	0	0	0
50	16	15	28	41	34	0	20	0	0	0
60	19	22	15	16	5	10	0	10	27	23
70	14	21	15	0	0	0	51	0	25	54
80	2	5	6	0	0	Q	68	43	0	73
90	30	28	29	0	0	0	33	48	46	0

Extrapolation of system health

- Linear prediction
- Non-Linear prediction

Prediction limited

- No prediction beginning at time 0
- 400+FH needed to prediction
- Simple and fast

Agenda

Background
Goals & Objectives
Methodology
Results

Conclusion

Conclusion - Applications

- Onboard monitoring
 - Reduce unscheduled maintenance
- Offboard fleet monitoring
 - Identification of stressing routes
 - Identification of aircraft with high maintenance requirements
 - Maintenance planning and routing
- Parallel to fixed maintenance intervals
 - Collect data to validate change to fixed intervals
 - Perform maintenance based on actual condition

Conclusion - Challenges

- Needs a lot of data
- Training not online
- Training and sampling takes a lot time
- Difficult to get samples of all system states
- More advanced method possible (depending on available computation power)
- Getting new sensoring equipment into an aircraft is a lot of work
 - Certification
 - Finding a partner

Conclusion - Future Work

- Integrate DecisionTree updating
- Use advanced feature extraction methods
 - Auto-correlation
 - Wavelets
- More Testing for Health prediction
 - More Data for validation
 - More classes for earlier and more detailed prediction
- Usage of better suited frameworks and languages

Conculsions - Summary

- The developed method allows a prediction of the health status of a complex system
- Many data samples are needed
- Basic and well researched methods were used
- Simulates expert knowledge and aircraft development methodology
- Tested with real and noise aircraft data for an unknown system

