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Reliable sensors and information are required for reliable condition monitoring. Complex systems are commonly monitored by 
many sensors for health assessment and operation purposes. When one of the sensors fails, the current state of the system cannot 
be calculated in same reliable way or the information about the current state will not be complete. Condition monitoring can still 
be used with an incomplete state, but the results may not represent the true condition of the system. This is especially true if the 
failed sensor monitors an important system parameter. There are two possibilities to handle sensor failure. One is to make the 
monitoring more complex by enabling it to work better with incomplete data; the other is to introduce hard or software redundan-
cy. Sensor reliability is a critical part of a system. Not all sensors can be made redundant because of space, cost or environmental 
constraints. Sensors delivering significant information about the system state need to be redundant, but an error of less important 
sensors is acceptable. This paper shows how to calculate the significance of the information that a sensor gives about a system by 
using signal processing and decision trees. It also shows how signal processing parameters influence the classification rate of a 
decision tree and, thus, the information. Decision trees are used to calculate and order the features based on the information gain 
of each feature. During the method validation, they are used for failure classification to show the influence of different features on 
the classification performance. The paper concludes by analysing the results of experiments showing how the method can classify 
different errors with a 75% probability and how different feature extraction options influence the information gain.

Keywords: decision trees, feature extraction, sensor optimization, sensor fusion, sensor selection.

Niezawodne monitorowanie stanu wymaga niezawodności czujników i pochodzących z nich informacji. Systemy złożone są zazwy-
czaj monitorowane przez wiele czujników, co pozwala na  ocenę stanu technicznego oraz aspektów eksploatacyjnych. Gdy jeden z 
czujników ulega uszkodzeniu, uniemożliwia to obliczenie bieżącego stanu systemu z dotychczasową niezawodnością lub uzyskanie 
kompletnych informacji o bieżącym stanie. Stan można co prawda monitorować nawet przy niekompletnych danych, ale wyniki 
takiego monitorowania mogą nie odpowiadać rzeczywistemu stanowi systemu.  Sytuacja taka ma miejsce w szczególności, gdy 
uszkodzony czujnik jest odpowiedzialny za monitorowanie istotnego parametru systemu. Problem uszkodzenia czujnika można 
rozwiązywać na dwa sposoby. Pierwszy polega na zwiększeniu złożoności systemu, co umożliwia jego sprawniejsze działanie 
w sytuacji, gdy dane są niekompletne. Drugim sposobem jest wprowadzenie nadmiarowego sprzętu (hardware'u) lub oprogra-
mowania. Niezawodność czujników stanowi krytyczny aspekt systemu. Oczywiście, ze względu na ograniczenia przestrzenne, 
ekonomiczne i środowiskowe nie wszystkie czujniki w systemie mogą być nadmiarowe. Redundancja powinna dotyczyć wszystkich 
czujników, które dostarczają istotnych informacji na temat stanu systemu, natomiast dopuszczalne są błędy mniej ważnych czujni-
ków. W niniejszej pracy pokazano jak obliczać istotność informacji o systemie dostarczanych przez poszczególne czujniki z wyko-
rzystaniem metod przetwarzania sygnałów oraz drzew decyzyjnych. Zademonstrowano również w jaki sposób parametry przetwa-
rzania sygnałów wpływają na poprawność klasyfikacji metodą drzewa decyzyjnego, a tym samym na poprawność dostarczanych 
informacji. Drzew decyzyjnych używa się do obliczania i porządkowania cech w oparciu o przyrost informacji charakteryzujący 
poszczególne cechy. Podczas weryfikacji zastosowanej metody, drzewa decyzyjne wykorzystano do klasyfikacji uszkodzeń celem 
przedstawienia wpływu różnych cech na dokładność klasyfikacji. Pracę kończy analiza wyników eksperymentów pokazujących 
w jaki sposób zastosowana metoda pozwala na klasyfikację różnych błędów z 75-procentowym prawdopodobieństwem oraz jak 
różne opcje ekstrakcji cech wpływają na przyrost informacji. 

Słowa kluczowe: drzewa decyzyjne, ekstrakcja cech, optymalizacja czujników, fuzja czujników, dobór czujników.

1. Introduction

This paper presents a condition monitoring system with sensor 
optimization capabilities to prevent unscheduled delays in the aircraft 
industry. Unscheduled delays cost airlines a great deal of money but 
can be prevented by condition monitoring [11]. The aim was to de-
velop a simple condition monitoring system that can be understood by 
humans and modified by experts to incorporate knowledge that is not 
in the learning data set, using decision trees as the main tool. Decision 

Gerdes M, GAlAr d, scholz d. decision trees and the effects of feature extraction parameters for robust sensor network design. eksplo-
atacja i Niezawodnosc – Maintenance and reliability 2017; 19 (1): 31–42, http://dx.doi.org/10.17531/ein.2017.1.5.

trees satisfy the requirements and provide a ranking of data sources 
for condition monitoring. 

The first section of the paper gives the motivation for developing 
a condition monitoring system with sensor optimization capabilities 
and explains the basic concepts of the proposed method. The second 
section explains the method in detail. Section three discusses the 
experiments validating it. The results of the validation experiments 
are given in section four. The paper concludes with a discussion of 
the results.
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New and better monitoring approaches are required for condition 
monitoring, because systems are becoming more complex and more 
difficult to monitor [32]. Condition monitoring requires reliable sen-
sors. To obtain enough sensing data, special attention should be given 
to optimizing sensor allocation to ensure system diagnosability, lower 
sensing cost and reduce time to diagnosis [37]. Sensors can be used 
to determine the system health of control systems; a failed sensor can 
lead to a loss of process control [18]. The information about a system 
is incomplete, if a sensor fails. Complex systems are often monitored 
by multiple sensors. An advantage of a multi sensor system is that 
a single failed sensor shows its effects in multiple sensors [18].This 
means the system condition is defined by all information from the 
sensors. However, the system’s health status becomes uncertain when 
a sensor fails or sends wrong data. This could trigger incorrect main-
tenance, including maintenance on a part with no failure, as well as 
long maintenance times to find the correct fault or not noticing the 
fault at all. 

The Safety Integrity Level (SIL) defines the probability that the 
system safety function for a Safety Instrumented System (SIS) can be 
executed. There are four SILs; level four is the level with the high-
est probability that an SIS can be performed. Sensor failure detection 
(sensor validation) is a critical part of the safety function of a system. 
When a failure is detected SIS is put into a safe state to avoid risk and 
damage to humans and machines [14, 13]. 

Redundancy is used to reduce the risk of model uncertainty [5]. 
One way to create sensor redundancy is hardware redundancy; another 
is analytical redundancy [5]. Analytical redundancy assumes multiple 
sensors deliver the same information, and, thus, a sensor fault can be 
compensated for. Hardware redundancy is not always possible, as it 
can be difficult to install multiple sensors because of physical or cost 
constraints [41, 22]. 

The proposed condition monitoring method uses a data driven 
model and uses machine learning methods to learn the model. Data 
driven modelling is a popular approach, especially as data harvesting 
is often cheaper than creating a physical model, offering cheap elec-
tronics, high computation power and advanced algorithms. Decision 
trees are used for machine learning because they create a compre-
hensive model, which can easily be modified and adapted. Decision 
trees are numerically stable, the learning is deterministic, and they 
are easy to test. The decision tree algorithm also sorts inputs of the 
model based on information gained. This latter feature is used for sen-
sor optimization.

The novelty of this approach is that it presents a method for condi-
tion monitoring suitable for the very restricted aircraft environment. It 
combines decision trees with very stable and simple feature extraction 
methods. The method offers fast, testable and low footprint online 
condition monitoring for aircraft. The added sensor optimization al-
lows the aircraft manufacturer to install redundant sensor hardware 
for the significant sensors, if software redundancy is not possible.

The inputs for the classifier are feature vectors (representing 
healthy and unhealthy states) and classifications of the vectors. The 
vectors for the supervised learning phase need to contain the classifi-
cation of the data, because decision tree learning is supervised learn-
ing. These vectors represent the knowledge on which the classifier is 
based and used to classify new unknown samples.

The basic condition monitoring process is shown in Figure 1. It 
consists of three steps:

Data Acquisition: All data required for the monitoring are 1. 
gathered, including data from multiple sources.
Data Processing: The collected data are processed and ana-2. 
lysed. The goal is to create a meaningful collection of fea-
tures for the decision making step. Operations include signal 
processing and feature extraction. The focus of the present 
research is on this step.
Maintenance Decision Making: The features are evaluated, 3. 
and a decision is made based on this evaluation. The result can 
be a failure classification, a maintenance action or other rel-
evant actions. Results are obtained by using a decision maker 
based on logic rules, pattern recognition, probability or some 
other method.

1.1. Civil Aerospace Software Development

Software development, documentation, testing, and certification 
in the civil aerospace industry are regulated by the DO-178B/C stand-
ard [27]. DO-187B/C defines how the software development process 
can be regulated to ensure safe software is written. More specifically, 
it defines a requirements-based development process with high and 
low level requirements. High level requirements concentrate on func-
tionality, while low level requirements are often written in pseudo 
code or source code.

The most important step in the software development process is 
to define to which DAL (Design Assurance Level) the software be-
longs. There are five DALs; each is associated with a hazard/failure 
condition class defining how dangerous a software failure can be. The 
DALs are the following:

DAL A – : Catastrophic; normally with hull loss and multiple fa-
talities.
DAL B – : Hazardous; large reduction in functional capabilities 
and serious or fatal injury to a small number of passengers or 
crew.
DAL C – : Major; significant reduction of functional capabilities 
and physical distress or injuries for passengers or crew.
DAL D – : Minor; slight reduction in functional capabilities and 
physical discomfort for passengers.
DAL E – : No effect; no effect on operational capabilities and no 
inconvenience for passengers.

The software development objectives of a software developing 
agency are based on the DAL. DAL A requires 66 objectives, DAL B 
65 objectives, DAL C 57 objectives, DAL D 28 objectives, and DAL 
E 0 objectives. The objectives are achieved by completing ten proc-
esses in the development of the software:

Software Planning Process.1. 
Software Development Process.2. 
Verification of Outputs of Software Requirements Process.3. 
Verification of Outputs of Software Design Process.4. 
Verification of Outputs of Software Coding & Integration 5. 
Process.
Testing of Outputs of Integration Process.6. 
Verification of Verification Process Results.7. 
Software Configuration Management Process.8. 
Software Quality Assurance Process.9. 
Certification Liaison Process.10. 

The most complex step besides coding for a software developer 
is testing the coded software. Based on the DAL, the testing needs to 
satisfy certain code coverages. For DAL D and E, for example, no 
code coverage is required; only the requirements need to be tested. 
DAL C adds statement coverage to the testing requirements. This 
means the tests need to address each line of code. No dead code is 
allowed. In addition to this, DAL B requires decision coverage; each 
possible path in the code must be taken. For DAL A, developers must 

Fig. 1. Basic Condition Monitoring Process [15]
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show that each variable for a decision in the code can influence the 
result (modified condition/decision coverage), as well as satisfying all 
other code coverages. All software testing needs to be done as black 
box testing. The tester cannot know the code but must work only with 
the compiled code, requirements and testing tools.

Robustness tests require border values of numerical values and 
of decisions to be tested and invalid or missing data to be identified. 
There can obviously be problems if algorithms  use the wrong data 
type.

1.2. Feature Extraction

Feature extraction is the process of reducing the dimension of the 
initial input data to a feature set of a lower dimension containing most 
of the significant information of the original data [8]. Extraction is 
done to extract important features from noisy sensor data [19, 10] 
and to avoid having too many input features (especially for vibration 
data) in the classifier learning phase [19]. For these reasons, feature 
extraction is often a first and essential step for any classification [19]. 
Accordingly, it is part of the data processing step in the basic condi-
tion monitoring process (Figure 1).

Features are extracted from the time domain and the frequency 
domain (Fourier Transformation, Wavelet Transformation [10]). Ba-
sic features to extract are maximum, mean, minimum, peak, peak-too-
peak interval etc. [15]. Complex feature extraction methods include 
principal component analysis (PCA), independent component analy-
sis (ICA) and kernel principal component analysis (KPCA) [39].

1.2.1. Time domain features

Time domain features can be direct features like the number of 
peaks, zero-crossings, mean amplitude, maximum amplitude, mini-
mum amplitude or peak-too-peak interval [15, 23]. In addition, it 
is possible to analyse a signal using probabilistic methods like root 
mean square, variance, skewness or kurtosis to get features that repre-
sent the signal [17]. Other methods include using correlation, autocor-
relation, Entropy, principal component analysis (PCA), independent 
component analysis (ICA) and kernel principal component analysis 
(KPCA)[39].

1.2.2. Frequency and Time-Frequency domain

The Fast Fourier Transformation (FFT) transforms a signal from the 
time domain into the frequency domain. FFT takes a time series and 
transforms it into a complex vector that represents the frequency 
power in frequency domain. The basis of the FFT algorithm is the 
discrete Fourier transformation (DFT), defined as shown in equation 
1 with xn… xn-1 as complex numbers:
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A FFT is performed in O(N log N) operations and can be calcu-
lated in real time due to the fact that it can be executed in parallel. It is 
a widely used and well established method [24, 5]. Recent researches 
use the discrete wavelet transformation (DWT) to represent time se-
ries in the frequency domain. The DWT represents the time series 
in a time-scale form [15] and is especially suited to represent non-
stationary signals [19].

1.2. Decision Trees

Decision trees are a method from the area of artificial intelligence 
and are used for machine learning. They are often binary trees, where 
each node has an if-then-else function on an attribute of the sample 
data. The ID3 algorithm (Iterative Dichotomiser 3, published by J. 

Ross Quinlan in 1986, used to generate decision trees [25]) was the 
first algorithm to construct decision trees. ID3 had some problems 
and was improved. The improved version of ID3 is C4.5 [26]. It en-
hances the ID3 algorithm with the ability to handle both discrete and 
continues attributes, it can handle samples with missing attributes and 
supports pruning of the tree at the end of the algorithm (removing 
branches from the tree). 

Decision trees are in the proposed method used to calculate and 
order the features based on the information gain of each feature. 
During the method validation they are used for failure classifica-
tion to show the influence of different features on the classification 
performance.

The result of the algorithm is a binary decision tree, where the 
root of the tree is the attribute with the highest normalized information 
gain. Nodes in the following levels of the tree represent attributes with 
lower normalized information gain. If pure information gain is used 
for splitting, then classes with the most cases are favoured [26].

Information entropy is the knowledge that is contained in an an-
swer depending on one’s prior knowledge. The less is known, the more 
information is provided. In information theory information entropy is 
measured in bits. One bit of information entropy is enough to answer 
a yes/no question about which one has no data [29]. The information 
entropy is also called information and is calculated as shown below. 
P(vi ) is the probability of the answer vi:

Fig. 2. Decision Tree Algorithm Flow Chart
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The information gain from an attribute test is the difference be-
tween the total information entropy requirement (the amount of infor-
mation entropy that was needed before the test) and the new informa-
tion entropy requirement. p is the number of positive answers and n is 
the number of negative answers [29]:
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C4.5 uses the normalized information gain or the gain ratio. Split 
info is the information that is gained from choosing the attribute to 
split the samples:
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Gain ratio is the normalized information gain and is defined as 
shown in equation 5 [26]:

 ( ) ( )
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Pruning is the reduction of the depth of a decision tree. The tree 
gets better at classifying unknown samples, but might get worse at 
classifying the test samples. Normally pruning increases the overall 
classification accuracy, but too much pruning can increase the number 
of false classifications. 

Decision trees are good for diagnostics in the context of condi-
tion monitoring. They classify data with low computation needs and 
the generated decision trees are highly comprehensible by humans. 
Another advantage of decision trees for condition monitoring is that 
they can be transformed into simple logical equations for each class 
that can be checked and modified by a human expert.

Decision trees are used to solve a large variety of problem e.g. tag 
speech parts [33], land cover mapping [9], text mining [1] or condi-
tion monitoring [36, 30, 31].

1.4. Basic Condition Monitoring Process Enhancements

Sensor optimization and sensor data fusion can be seen an en-
hancement of the basic condition monitoring process (Figure 1). Fig-
ure 3 shows how sensor optimization and sensor fusion can be embed-
ded in the basic CM process. 

Sensor optimization is the basis for the condition monitoring and 
is either performed before the monitoring process (sensor locations) 
or later to add new sensors [7] or to analyse the available sensor influ-
ences. Sensor fusion is done before the actual data processing to im-
prove the performance of the data processing by improving the input 
from the sensors (removing redundant and low influence features).

1.5. Sensor Optimization

Often multiple sensors (sensor network) are used to give a more 
complete overview about the environment than a single sensor can 

give [40, 15]. This increases the diagnosis ability (failure detection 
and localization [5]) of a system and makes sensor optimization criti-
cal for failure diagnosis.  The problem of designing a sensor network 
is to find a set of sensors so that costs, observability, reliability, esti-
mation accuracy and flexibility are satisfied [16]. 

Sensor optimization shall help to design a sensor network that sat-
isfies the requirements. It is a very wide topic and includes a number 
of different definitions. A few different meanings for sensor optimiza-
tion are:

Optimizing the position of sensors [35, 7].• 
Optimizing the processing of sensor data [6].• 
Optimizing the information gain of sensors.• 

Sensor optimization has the meaning of hardware redundancy 
optimization. Optimization is done by identifying significant sensors 
from a number of available sensors that give the most information 
about a system and thus increasing the information gain. 

Goal of sensor optimization is to prevent unnecessary hardware 
redundancy and to improve the reliability of the condition monitoring 
system. This optimization can be supported by identifying redundant 
information in sensor data [5]. Traditional sensor optimization meth-
ods don’t take into account the requirements for prognostic and health 
monitoring [34].

1.6. Multi-sensor Data Fusion

Having a network of different sensors that monitor a system leads 
to the problem of sensor data fusion. Multi-sensor data fusion covers 
the problem of combining sensor data from different sources into one 
consistent model. The main questions of sensor fusion are [2]:

How to get accurate and reliable information from multiple • 
and possible redundant sensors?
How to fuse multi-sensor data with imprecise and conflicting • 
data?

Techniques for sensor fusion can be grouped into these levels [15, 
28, 3]: 

Data-level fusion (e.g. combining sensor data from same sen-• 
sors directly [20]).
Feature-level fusion (e.g. combining vectors and feature re-• 
duction techniques [28]).
Decision-level fusion (e.g. vote schemes [28]).• 

Sensor data fusion is an important step for condition monitoring 
tasks. Most systems have more than one sensor and the sensor have 
different influences on the condition monitoring accuracy. Data for 
condition monitoring that needs to be fused is not only from sensors 
but can also be event and process data, which can deliver important 
information for the condition monitoring [15].

At the data-level fusion means the direct combination of sensor 
data; the data from sensors of the same kind is merged and fed into 
the condition monitoring system. The difficulty here is how to merge 
multiple sensors into one. Sensor fusion on the feature-level includes 
cleaning of sensor data and combining the sensor data after the fea-
tures have been extracted and the dimensions reduced. Decision-level 
fusion can mean implementing a condition monitoring for each sensor 
separately and then use voting to decide on the system condition. 

A condition monitoring system can use only one or multiple data 
fusion methods to detect the system conditions. This shows that the 
sensor fusion is a difficult problem that highly depends on the target 
system, and sensors. One solution would be to implement sensor fu-
sion on all levels and then use a heuristic optimization like genetic 
algorithms, simulated annealing or hill climbing to get the bet sensor 
fusion methods for the given problem (data and system conditions).

Fig. 3. Enhanced condition monitoring process
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2. Proposed methodology

Sensor selection and sensor fusion and consists of two steps. First 
a decision tree is build using feature extraction to increase the clas-
sification accuracy. The resulting decision tree may be analysed to 
generate a ranking of the involved sensors and features as the sec-
ond step. The ranking then can be used to decide which sensors add 
significant information/features and which not. A sensor fusion may 
be performed at the feature-level. The calculated decision tree repre-
sents the feature fusion sorted by information gain. Sensor fusion on 
the feature-level does have the advantage that event data can also be 
added to the feature vector. Conventional methods use a fixed set of 
features to create feature vectors for the decision tree training and ne-
glect the sensor fusion. Decision trees are used because they are good 
to use and implement in the aircraft environment. The task of the deci-
sion trees is merging of features from different sensor into one system 
health model and to use this model to classify the condition.

The focus is on hardware redundancy of sensors based on infor-
mation gain to avoid having to install all sensors redundant and only 
focus on the sensors that give significant information for the failure 
detection and identification. 

Goal of the method is to use information gain for ranking sensor 
importance and thus to have a measurement for sensor optimization. 
Feature extraction can increase the information gain and significance 
of different sensors.

2.1. Feature Extraction and Sensor Fusion

The features extraction includes features from the time and the 
frequency domain. Time-frequency domain features were specifically 
not used. The reason was that the method shall only use basic methods 
thus Fast Fourier Transformation has been used. Elementary feature 
extraction operations can be executed in any order and allow the crea-
tion of a set of feature extraction operations the can be different for 
each problem [21]. This makes elementary extraction operations also 
good for machine learning. The used operators are also fast to com-
pute and can be used for online monitoring.

The data from the different sensors is not merged at the sensor 
level; instead it is merged on the feature extraction level. A feature set 
is calculated for each input from each sensor. These features are then 
merged into one feature input vector for the decision tree learning 
phase. No frequency features are calculated for signals that are near-
ly constant (Boolean switches, discrete system settings, and certain 
process parameter). The features extraction includes features from 
the time and the frequency domain. Time-frequency domain features 
were specifically not used. The reason was that the method shall only 
use basic methods thus Fast Fourier Transformation has been used. 
Elementary feature extraction operations can be executed in any order 

and allow the creation of a set of feature extraction operations the can 
be different for each problem [21]. This makes elementary extraction 
operations also good for machine learning. The used operators are 
also fast to compute and can be used for online monitoring.

The data from the different sensors is not merged at the sensor 
level; instead it is merged on the feature extraction level. A feature set 
is calculated for each input from each sensor. These features are then 
merged into one feature input vector for the decision tree learning 
phase Figure 4. No frequency features are calculated for signals that 
are nearly constant (Boolean switches, discrete system settings, and 
certain process parameter).

2.2. Decision Tree Generation

This subsection describes the decision tree generation and signal 
processing. The decision tree is generated using algorithm C4.5. 
Algorithm C4.5 was used, because it is more advanced than the basic 
ID3 algorithm (accepts both continuous and discrete features, solves 
over-fitting problem by pruning handles, incomplete data points) 
and is available as an open source implementation J48. Input for 
the decision tree generation is a set of features that was extracted 
from sensor data. The feature extraction was controlled by different 
parameters. Table 1 shows the parameter list.

The data types can range from Boolean data generated by switch-
es or system conditions (event data) to high frequency data generated 
by sound and vibration data. Four more specific parameters will be 
explained in more detail below in this section.

2.2.1. Block Width

The block with defines how the frequency domain is partitioned to 
get features for each partition. A full transformation with the sampling 
frequency is done. After the fast Fourier transformation is done, the 
frequencies are partitioned up into blocks. The number of the frequen-
cies that are grouped in one block is determined by the calculation 
parameter Block Width. If less then Block Width frequencies are avail-
able, then all frequencies are treated as one block. After partitioning 
all blocks are transformed back into the time domain, to get informa-
tion about the behaviour of the block-signal over the time.

Table 1. Feature Extraction Parameter

Parameter Possible Values Default Value

Block Width 5/50/100/200 100

Noise Reduction Factor 0/1/2/5 1

Maximum Amplitude Yes/No Yes

Mean Amplitude Yes/No Yes

Maximum Power Yes/No Yes

Maximum Frequency Yes/No Yes

Mean Power Yes/No Yes

Number of Peaks Yes/No Yes

Peak Border 1/2/5 2

Global Maximum Am-
plitude Yes/No Yes

Global Mean Amplitude Yes/No Yes

Global Maximum Power Yes/No Yes

Global Mean Power Yes/No Yes

Global Number of Peaks Yes/No Yes

Confidence Factor 0.0001/0.001/0.01/0.1/1 0.001

Fig. 4. Feature Selection Process
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2.2.2. Noise Reduction Factor

Noise reduction is applied to the signal to remove random data from 
the samples in order to improve the feature detection of the undi-
sturbed signal. The maximum frequency power is calculated and 
then every frequency signal that is below a defined fraction of the 
maximum frequency power is reduced to zero to remove noise from 
the sample. The exact fraction of the maximum frequency power for 
noise reduction is a parameter of the experiments (Noise Reduction 
Factor). Noise reduction is done as shown in the Matlin Listing 1.

Y = fft(y);
x = mean(abs(Y)) *  NoiseReductionFactor ;
Y = Y.  * ( abs (Y)>x );

Listing 1: Noise Reduction

2.2.3. Peak Border

The peak border is used for counting the number of frequencies 
that have a power above multitude of the mean power. The Matlab 
Listing 2 shows how the peaks are calculated. peakBorder is the pa-
rameter that can be varied and it defines, when a spike counts as  a 
peak.

currPeakNum = 0; 
for X = 1: blockWidth 
    if ( Y_block (X) >= meanPower * peakBorder )
        peaks_block = peaks_block +1;
    end
end

Listing 2: Peak Calculation

The additional information is also calculated for the 
complete signal sample. Sensor Optimization

2.2.4. Confidence Factor

The confidence factor is a parameter of the software 
(WEKA [38]) that was used to create the decision trees 
and it defined how much tree pruning is done. A confi-
dence factor of greater than 0.5 means that no pruning is 
done. The lower the confidence factor is the more pruning is done.

2.3. Sensor Optimization

The calculation of the information gain and learning of the deci-
sion tree is done by the C4.5 algorithm that is used to construct deci-
sion trees for classification problems. Features are first extracted for 
each sensor signal then merged into one feature vector that is then the 
input for the C4.5 algorithm. The features are then sorted by the learn-
ing algorithm by the information gain. The feature with the highest in-
formation gain is placed at the root of the tree. Nodes with less infor-
mation gain are placed at lower levels. For a binary decision tree this 
means that two nodes are in the second level of the tree, four nodes in 
the third level and so on. Each feature corresponds to a sensor.

The features in the decision tree are replaced with the sensor 
names for sensor ranking. If a sensor name appears on a level it is 
removed from all lower levels, so that for each sensor matches to one 
level in the decision tree. The sensors are now ranked by the decision 
tree level to which they are linked. It may happen that two sensors are 
at the same level. 

3. VALIDATION

Two experiments were done to validate the concepts and ideas. 
The first experiment was done to show the effects of feature optimiza-
tion and the second experiment was done to show how feature and 
sensor selection is done.

3.1. Feature Extraction Parameter Influence

To show the performance and concepts of the algorithm, a sensi-
tivity analysis was performed by using different process parameters. 
Figure 5 shows the experiment process and how the results were gen-
erated. First samples are created and then sequentially are feature ex-
traction parameters (see Table 1) modified. The influence of the modi-
fied parameter is measured by comparing the classification accuracy.

3.1.1. Data Sampling

The data for the experiments and the feature extraction was sam-
pled with an autonomous box (Figure 6) that contained sensors and 
logic to save the data on a SD card. As a basis for the data collection 
a test rig was used. Vibration data with a sampling rate of 44 kHz of 
a simple PC fan (Figure 8) was collected. A PC fan was used to show 
the principals of the method. Data is saved in a raw wave format onto 
a SD card and then transferred onto a PC. In addition to the raw sen-
sor data the condition of the component was saved. The fan is oper-
ated with standard speed, but three different conditions were sampled. 

Data from the following conditions was collected:

No additional weight.• 
A very small weight (less than one gram) is added to one • 
blade.
A small coin (one Eurocent) is added to one blade.• 

Fig. 5. Experiment Process Diagram

Fig. 6. Data Recording Box
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For each case 900 samples were collected. Every sample contains 
the vibration data of one second. Ten minutes passed between the in-
dividual samples. Samples were collected during office work hours 
and so a variety of noise is contained in the samples. In the experiment 
900 “No weight” (no additional weight), 450 “Small weight” (a very 
small weight) and 450 “Big weight” (a small coin) samples were used. 
The decision tree of the J48 algorithm (an implementation of C4.5) 
in WEKA was validated with a 3-fold-crossvalidation (all samples 
are used for testing and training and the cross-validation process is 
repeated 3 times). 

3.1.2. Calculating the Decision Tree

The decision tree is calculated with the open 
source Java software WEKA [38]. WEKA allows 
the user to test different algorithms and shows the 
classification errors that occurred. The correct data 
format is generated by using a Java program that 
transforms the output files from Matlab into input 
files for WEKA. For classification J48 is chosen, 
which is an implementation of the C4.5 decision 
tree algorithm, and a confidence factor of 0.0001. 
The confidence factor defines how much pruning 
is done to the resulting decision tree. The complete 
processed data is used as training data. After the 
generation of the decision tree the same data is used 
for testing the decision tree. In general the training 
and the testing data should not be the same, but in 
this case it is exactly what is wanted. The goal is 
not to classify new objects correctly, but to check 
how good the available data is classified and what 
part of the data gives us the most information about 
the system.

3.1.3. Experiment Parameters

Calculations with the same input data, but dif-
ferent parameter values, were performed to show 
the influence of the parameters on the results; Table 
1 shows the available parameters with their pos-
sible values. All ”Yes/No”-parameters are Boolean 
parameters, that toggle the calculation of that pa-
rameter during the processing. Default parameters are the values that 
are used, when the effect of a parameter onto the algorithm is tested. 
Only one value per test varies, while all other parameters keep their 
default value. The data processing with Matlab generates a number of 
different input sets for the J48 algorithm. For every input set a deci-
sion tree is generated and the influence of the modified parameter is 
then evaluated.

3.2.   Sensor Optimization

The method was evaluated by using aircraft sensor data from the 
air conditioning system of an A320 aircraft. The aircraft was oper-
ated by ETIHAD Airways and was operating in the Middle East. The 
sensor data from the aircraft includes 589 flights over the duration 
of two years. Each sensor reading includes over 80 values consisting 
of continuous (numerical) and discrete data (Boolean). The data was 
sampled with a frequency of 1 Hz. Source of the data are different bus 
systems from the air conditioning system. Most data are temperature 
data and valve states. The sensor data includes: 

4. Result analysis

This section analyses the results of the data processing of the 
previous section. It begins by evaluating the experiments and their 
parameters and goes on to discuss the results of the best parameter 
configuration.

Figure 9 summarises the validation process. Results were created 
using the default parameter set; then, each parameter was varied based 
on its type. Boolean values were simply inverted but continuous val-

Fig. 7. Data Recording Box Architecture
Fig. 8. Used PC Fan

Table 2. A320 sensor data description

Description Bus Type

Cabin Compartment Temperature Group 1 Zone Control Numerical

Cabin Compartment Temperature Group 2 Zone Control Numerical

Cabin Compartment Temperature Group 3 Zone Control Numerical

Cabin Temperature Regulation Valve Position Group 1 Zone Control Numerical

Cabin Temperature Regulation Valve Position Group 2 Zone Control Numerical

Cabin Temperature Regulation Valve Position Group 3 Zone Control Numerical

Duct Overheat Warning Group 1  Zone Control Boolean 

Duct Overheat Warning Group 2  Zone Control Boolean 

Duct Overheat Warning Group 3  Zone Control Boolean 

Duct Temperature 4 Times Limit Exceedance Group 1  Zone Control Boolean 

Duct Temperature 4 Times Limit Exceedance Group 2  Zone Control Boolean 

Duct Temperature 4 Times Limit Exceedance Group 3  Zone Control Boolean 

Duct Temperature Group 1 Zone Control Numerical

Duct Temperature Group 2 Zone Control Numerical

Duct Temperature Group 3 Zone Control Numerical

G + T Fan OFF  Zone Control Boolean 

Hot Air Switch Position ON  Zone Control Boolean 

Minimum Bleed Air Pressure Demand Zone Control Numerical
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ues were changed. A sensitivity analysis was performed after each 
parameter variation. After the parameter variation, a new decision tree 
with the same sensor data was created, and the change in the number 
of correctly classified samples was noted.

4.1. Parameter Evaluation

This section examines the results of the different input sets, based 
on the parameter variation. The influence of a parameter is judged by 
the number of correctly classified samples for every input set. Finding 
an optimal set of all parameters for the given samples, i.e., those giv-
ing the lowest overall false classification rate, is a complex problem. 
The complexity of the problem is so high that it is not possible to 
solve it in a fixed time; rather, heuristic methods have to be used. The 
results below are not the optimal parameter values; they only show 
the influence of the different parameter values on the classification 
accuracy and suggest the importance of optimizing the feature extrac-
tion parameters.

The first calculation was performed using the default parameters 
(see Table 1). The results are shown in Table 3. The numbers imply 
that about three quarters of the test cases are correctly classified. The 
error rate is quite high, but that is to be expected, because a non-
optimal parameter set was selected as the default parameter set.

Table 4 splits the classification error into different classes. As the 
table shows, the majority of the samples are correctly classified. For 
samples with no additional weight and a big additional weight, the 
classification is very good, but samples with a small additional weight 
are often classified as samples with no additional weight. The results 
are still good, however, because the small attached weight is quite 
light, and sensing accuracy is not very high.

When only no additional weight and big ad-
ditional weight samples are used, the number of 
wrongly classified samples dropps to 5 %. This 
is to be expected, because the features of both 
these classes have bigger differences than those 
found between the “Small” and “No” classes.

Table 6 shows the results achieved when 
the block width varies. The decreasing num-
bers imply that, at some point, an optimal block 
width can be reached and a minimum of false 
classified samples can be obtained. The error 
rate increases after the optimal point if the block 
width is too wide. The block width significantly 
affects how many features are calculated in to-
tal. Some features are calculated for each block. 
More features are calculated if the block width 
is low and, thus, the number of blocks is high.

Table 7 shows the experimental results for a 
varying noise reduction. The results indicate the 
accuracy of the classification can be improved 
by removing all frequencies with a power be-

low the mean level. However, removing more frequencies with a high 
power can reduce the classification accuracy significantly because 
significant information about the signal is removed. This result also 
shows the noise frequency features have a significant influence on the 
accuracy of the classification. 

The calculation of the maximum amplitude can be turned on or 
off. Table 8 and Table 9 show the results. Results show the maximum 
amplitude does not have a big influence on the classification in this 
problem. This indicates a high resilience of the input data to noise, 
something relevant to entropy, or the information content in a mes-
sage or information. The finding suggests the data samples contain 
a lot of information, and there is not much uncertainty in them [23]. 
This is even more interesting, because amplitude is the value recorded 
by the vibration sensors; it can be taken as an input without additional 
processing.

Fig. 10. Validation Process

Table 3. Results for the Default Parameter Set

Correct Classified False Classified

73.4 % 26.6 %

Table 4. Distribution of Wrongly Classified Samples

Sample Class Classified as No Classified as Small Classified as Big

No 755 103 76

Small 175 218 57

Big 41 61 348

Table 5. Results for the Default Parameter Set with no Small Weight Sam-
ples

Sample Class Classified as No Classified as Big

No 862 38

Big 60 390

Table 6. Results for Block Width

Block Width False Classified

5 43.3%

50 27.4%

100 26.6%

200 24.3%

Table 7. Noise Reduction

Noise Reduction False Classified

0 26.6%

1 24.2%

2 27.6%

5 42.6%
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Table 10 and Table 11 show the influence of the mean amplitude 
values. Again, the influence is quite small, similar to the influence 
of the maximum amplitude features. This is to be expected when the 
previous results are taken into account. The amplitudes are the only 
features based on the time domain data. This can indicate that the 
time domain features are not very significant for the classification as 
is often the case for rotary movements. More time domain features 
should be added to the feature extraction operations (like probabilistic 
moments) to give more information about the significance of the time 
domain signal.

Table 12 and Table 13 show the results of the parameter variations 
for the maximum frequency power. Again, these features do not influ-
ence the result of the classification very much. It is interesting to note 
that the classification error is reduced if the block based maximum 

frequency power feature is turned off. This example clearly shows 
that having many features and features with little information gain can 
decrease the classification performance. It also highlights the impor-
tance of good feature selection. 

Table 14 and Table 15 show the results of the parameter variations 
for the frequency with the maximum power. The Hertz of the frequen-
cy with the highest power (local for each block or for the complete 
signal) does not influence the result in a significant way. This is to be 
expected because the maximum power also has little influence.

Table 16 and Table 17 show the influence of the parameter vari-
ations for the mean frequency power. Mean frequency power is a big 
factor and can improve the classification by nearly 4 %. The global 
mean values give no information about the condition of the fan. This 
result is especially interesting, because the other frequency based fea-
tures have little influence on the classification error. However similar 
to the maximum frequency power feature, the error rate decreases if 
this feature is not used.

Table 18 and Table 19 show the influence of the number of peaks 
on the calculation. The number of peaks has an even bigger influence 
on the classification than the mean frequency power, and the false 
classification rate can be improved by nearly 5 %. To this point, this is 
the largest performance increase.

The peak border (the value defining what a peak is) also influ-
ences the calculation, as shown in Table 20. Results for the peak bor-
der show no clear trend, but the numbers suggest an optimum exists. 
These results are interesting if we take into account how much the 
error rate improves when peaks per block are not calculated. Very few 
peaks are generated if the peak border is set to 5. This is quite similar 
to having no peaks at all.

The confidence factor determines how much the decision tree is 
pruned and has an influence on the classification accuracy. With less 
pruning, more samples are wrongly classified. Over-fitting is reduced 

Table 9. Results for Global Maximum Amplitude

Global Maximum Amplitude False Classified

Yes 26.6%

No 26.6%

Table 11. Results for Global Mean Amplitude

Global Mean Amplitude False Classified

Yes 26.6%

No 26.6%

Table 12. Results for Maximum Frequency Power per Block

Maximum Frequency Power False Classified

Yes 26.5%

No 25.0%

Table 14. Results for Frequency with Highest Power per Block

Frequency with Highest Power False Classified

Yes 26.6%

No 26.3%

Table 16. Results for Mean Frequency Power per Block

Mean Frequency Power False Classified

Yes 26.6%

No 22.8%

Table 19. Results for Global Number of Peaks

Number of Peaks False Classified

Yes 26.6%

No 26.6%

Table 8. Results for Maximum Amplitude per Block

Maximum Amplitude False Classified

Yes 26.6%

No 26.5%

Table 10. Results for Mean Amplitude per Block

Mean Amplitude False Classified

Yes 26.6%

No 27.7%

Table 13. Results for Global Maximum Frequency

Maximum Frequency Power False Classified

Yes 26.6%

No 26.6%

Table 15. Results for Global Frequency with Highest Power

Frequency with Highest Power False Classified

Yes 26.6%

No 26.6%

Table 17. Results for Global Mean Frequency Power

Mean Frequency Power False Classified

Yes 26.6%

No 26.6%

Table 18. Results for Number of Peaks per Block

Number of Peaks False Classified

Yes 26.6%

No 21.8%
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when pruning is used. More pruning increases the generalisation abil-
ity of the decision tree, generally a good feature, but tree that is too 
small is not good. As in all other features, it is important to find the 
best value for the given classification problem. 

It is interesting to note that the most significant feature seems to 
be the block based mean amplitude feature. The error rate increases 
for all other features if they are used. More experiments with different 
settings could ascertain how the different parameters are correlated, 
but finding the optimal parameter set can be really difficult. The best 
result (for the default parameter set and if only one parameter is modi-
fied) can be reached if the peak number is turned off. These results 
emphasise the importance of good feature selection and remind us of 
the difficulty of performing feature selection by hand. An automated 
feature selection is needed to find an optimal parameter set which 
improves the classification accuracy.

4.2. Sensor Optimization

This section shows the sensor optimization using the aircraft data 
with 80 sensors. Figure 10 contains a sample decision tree. The most 
important feature is the overall (global) number of peaks for the data 
source 31, followed by the overall (global) mean amplitude for sensor 
45. Based on the decision tree, the sensors can be ranked as:

Sensor 31,1. 
Sensor 48/Sensor 45,2. 
Sensor 47/Sensor 5/Sensor 28/Sensor 1.3. 

Sensor 31 is the most relevant sensor for the classification; sen-
sors 48 and 45 are the second most significant ones. Redundancy, 
thus, applies to sensors 31, 48 and 45. 

The decision tree also shows that the overall peak number and 
mean amplitude are the most relevant features. The significance of 
the amplitude is easily explained because the data contain switch and 
valve values which change slowly. The mean amplitude gives the 
classifier an indication of how often the switch is true and how often 
false. It is interesting to see that the peak number has more influence 
here than in the previous experiment. 

5. Conclusions and Discussions

The method discussed here has been developed to handle a spe-
cific problem (classification of a small number of classes with sim-
ple features) in a specific domain (civil aircraft operation with online 
monitoring). Decision trees are a good solution, given these con-
straints. However, decision trees have limitations, and more powerful 
algorithms are available, if a similar problem needs to be solved out-
side the given constraints. More complex problems may need a differ-
ent tool set. The methods used here are already well known and well 
researched, but their usage in this particular environment is novel. 
A previous paper [12] addressed the topic but evaluated the classi-
fication; it did not address sensor optimization and used an artificial 
experiment setup. This paper shows the result of sensor optimization 
by using real world data; it also explains the results and classification 
process in more detail than the earlier paper.

The architecture shown in Figure 4 is a good way to rank sensors 
by their significance for condition monitoring. The basic idea is to use 
a decision tree for feature ranking and feature fusion. Not all available 
features are used in the final decision tree thanks to tree pruning. As 
a result, fewer data are needed, and some sensors may not be used for 
the condition monitoring at all. It also improves the classification er-
ror rate and generalisation ability. 

The validation experiment shows good failure classification can 
be performed with the proposed algorithms and methods. The feature 
extraction offers a modular system of elementary operations that can 
be used to extract features for a given problem.

The sensor optimization is best used for existing systems where 
reliability can be improved by additional hardware. The design is suit-
able when no online computation is available or data are logged but 
not evaluated but must be available in case of a failure for offline 
fault identification. The method can also be used for all systems with 
multiple sensors.

While the features improve the accuracy of the decision tree, it 
would be even better if more advanced feature extraction methods 
were used. Wavelet Package Transformation and KPAC are two sug-
gestions. The method in this paper does not address how the best fea-
ture extraction parameter set is generated, but as the paper shows, this 
task is extremely important. Optimization algorithms are required. 
Future work could include using a genetic algorithm to search for the 
best parameter combination to classify a given dataset. The condition 
monitoring results can be used for trending and remaining useful life 
prediction.

Table 21. Results for Confidence Factor

Confidence Factor False Classified Tree Size

1 (no pruning) 27.4% 275 Nodes

0.1 26.7% 225 Nodes

0.01 26.2% 185 Nodes

0.001 26.0% 163 Nodes

0.0001 26.6% 109 Nodes

Table 20. Results for Peak Border

Peak Border False Classified

1 24.3%

2 26.6%

5 22.3%

Fig. 9. Example Decision Tree
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