

FUEL CONSUMPTION DUE TO SHAFT POWER OFF-TAKES FROM THE ENGINE

2013-04-24

Dieter Scholz, Ravinkha Sereshine, Ingo Staack, Craig Lawson

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Fluid and Mechatronic Systems

Table of Contents

- Research Question
- Secondary Power Off-Takes
- Literature Review
- \succ k_P and k_P^*
- Jet Engine Shaft Power Off-Take Performance Model
- Proposed Unified Equations for Estimation of Fuel Consumption due to Power Off-Takes
- Insert: SFC Calculation
- Shaft Power Off-Take Efficiency
- Conclusions

Research Question

- Aircraft performance and direct operation cost (DOC) estimation depending on subsystems (design): Knowledge of △SFC due to secondary power (shaft power / bleed air) needed for:
- > Aircraft sub-systems benchmark: architecture trade-off between:
 - power demand
 - > weight
 - initial & maintenance costs
 - safety & reliability
- Future trends due to advanced engine technology level and raised secondary power demand
- Target: Wide-range valid △SFC estimation model with "as few as possible" significant input parameters

Secondary Power Off-Takes

> Two off-takes sources:

High-Power demanding systems:

ECS (bleed air)

4th AST Wokshop, Hamburg; Ingo Staack; LiU

2013-04-24

Literature: Power Off-Takes Increased influence of Λ SFC due to \succ secondary power off-takes: ECS (bleed air) influence on different engine technology designs No recirculation 1.6 5:1 bypass 1.4 2:1 bypass 1.2 Increase in fuel ······ No bypass consumption due Aodern turbofans 50% to bleed air only 1.0 recirculation (percent) 0.8 0.6 Early turbofans 0.4 Turbojets 0.2 0 50 100 Bleed air (percent)

NOTE: Fuel consumption based on average performance for two engines at continuous cruise.

Literature: Power Off-Takes

Example: Fuel burn due to conventional ECS system:

- bleed air (83%)
- ram air (12%)
- > system weight (5%)

Literature: Power Off-Takes

Future secondary power demand trends:

LiU

Secondary power demand lowering effects	Secondary power demand increasing effects
More efficient sub-systems	Higher comfort level:
(mainly due to feedback control	 IFE (power consumption)
power adaption)	Cabin pressure level
Electric <u>de-</u> /anti-ice systems	High density seat configuration
instead of bleed anti-ice system	
	Enhanced safety assessment (e.g.
	anti-ice active in cruise)
	Higher BPR of the engines $ ightarrow$ less
	core flow \rightarrow higher adverse
	effects \rightarrow limitation of bleed air
	amount

Measurements: A320 Power Off-Takes

Thrust rating	Shaft power off-take [kW]	Max. bleed air off-take from fan [kg/s]	Max. bleed air off-take from HP compressor [kg/s]
take-off (to 1500 ft)	73.8	0.463	0.579
climb (to 31000 ft)	83.5	0.308	0.710
cruise (in 31000 ft)	79.0	0.186	0.481
descent (to 1500 ft)	68.6	0.332	0.429
approach	68.6	0.453	0.453

Thrust rating	Fuel [kg]:	Fuel [kg]:	Fuel [kg]:	Fuel [kg]:
0	no off-takes	max. shaft power	no shaft power	max. shaft power
		no bleed air	max. bleed air	max. bleed air
take-off	71	71	72	72
climb	491	496	501	505
cruise	1504	1528	1542	1565
descent	54	55	57	57
approach	7	7	8	8
total fuel	2127	2157	2180	2207
off-take fuel		30	53	80
relative off-take fuel		1.4 %	2.5 %	3.8 %

Engine limitations:

V2527-A5 shaft power limit: 131 [kW] (total)

k_P versus k_P * Approach

A T_{req}/T_{TO} of 0.2 is valid in cruise condition only. The cruise sector time is dominant, therefore k_P is usually given for cruise conditions.

Literature Summary: Values for k_P Factor

Author / organization /	6	Shaft power Specific Fuel	Engine Specific Fuel	Shaft power factor
engine	Source	Consumption	Consumption	ŀ
		$[kg/(kW^{-}h)]$	[kg/(N [·] s)]	[N/W]
SAE	[21]	0.304	4.25 10-5	0.00199
CF6-80C2	[2] [14]	0.125	1.64 10-2	0.00212
EPI TP400-D6	[2] [15]	0.167	$1.07 \cdot 10^{-5}$	0.00434
SCHOLZ ^{1,4}	[17]			see (15):
SCHOLZ	[1/]			≈ 0.00188
Young ²	[24]			
Trent 775 ⁴	[23]			0,00204
CF6-80C2-A2 ⁴	[23]			0,00177
CFM-56-5C-2 ⁴	[23]			0,00182
RB211-22 ⁴	[12]			0,00182
RB211-535E4 ⁵	[24]			0,00177
Trent 772 ⁵	[24]			0,00147
Ahlefelder ^{3, 5}	[1]			new evaluation:
3 shafts, mixed nozzle				0.00296
3 shafts, unmixed nozzle				0,00213
2 shafts, mixed nozzle				0,00226
2 shafts, unmixed nozzle				0,00308
DOLLMAYER 3	[7]			LP shaft: 0.00256
DOLLMATER	[/]			HP shaft: 0.00320
LAWSON	[10]			
BR 715-38				0.00175
Adour				0.00175
Average		0.199		0.00226
 data from engine decks, average of different altitudes and Mach numbers data generated with TURBOMATCH (Chapter 5) 				

³ data generated with ForboliviAren (C. data generated with GasTurb [8]

⁴ data generated at maximum cruise thrust

⁵ data generated at maximum eruise thrust

k_{P}^{*} Value of Different Engines

2013-04-24

Jet Engine Shaft Power Off-Take Performance Model

- Used tool: TURBOMATCH (Cranfield University)
 - "0-D-simulation" tool (comparable to GasTurb, GSP)
 - based on component efficiency/operation point performance maps
 - Analyze of design point and offdesign conditions

Examined engine

> 3 spool engine:

Rolls-Royce	RB211-524D4
application	B747-200 B747-300
BPR	5.0 [-]
OAPR	29.5 [-]
FREF	231 [kN]
SFC	ca. 0.392 [lb/lbf/h]

- model parameter deviation < 5% of published engine data
- shaft power off-take on LP spool

Model Investigation: Reference SFC Performance Map

Parameter deviation:

- Altitude 0; 5,000; 10,000m
- ≻ M = 0…0.8
- Turbine inlet temperature: 1100K...1600K
 - → Total mesh size: 64 points
- Engine control: constant turbine entry temperature [K]
- Shaft off-take: 0...1600 kW
 - \rightarrow thrust deviation

Shaft Power Off-Take Variations (LP Spool)

- Slope is a result of the absolute SFC value at the flight condition and the shaft off-take efficiency

data for flight altitude of 5000m

Proposed Unified Equation for Estimation of Fuel Consumption due to Power Off-Takes (1/3)

Proposed Unified Equation for Estimation of Fuel Consumption due to Power Off-Takes (2/3)

Unified k_p factor as function of Mach number and altitude calculated using RB211-524-D4 engine

4th AST Wokshop, Hamburg; Ingo Staack; LiU

2013-04-24

Proposed Unified Equation for Estimation of Fuel Consumption due to Power Off-Takes (3/3)

4th AST Wokshop, Hamburg; Ingo Staack; LiU

2013-04-24

Why calculating \triangle SFC related to k_P respectively k_P^* ?

Benefits:

- Universal: engine technology/efficiency already captured in SFC
- Good agreement with simulations:
 SFC rise linear in common off-take power/thrust ratios (to be shown in case of bleed air)
- SFC often known
- Good knowledge of SFC alterations with the flight conditions
- Simplicity favorable for case-studies/conceptual design
- → SFC based shaft power off-take penalty estimation seems to be a good way of representation

Insert: SFC Estimation

- Engine deck data
- simulation tools (e.g. GasTurb, GSP)
- Thermodynamic/physics calculation
- Statistical/Empirical estimation methods;
 e.g. updated Torenbeek

$$SFC = \frac{0.697 \sqrt{\frac{T(h)}{T_0}} \left(\phi - \vartheta - \frac{\chi}{\eta_{comp}}\right)}{\sqrt{5 \eta_{noz} \left(1 + \eta_{fan} \eta_{turb} BPR\right) \cdot \left(G + 0.2 M^2 BPR \frac{\eta_{comp}}{\eta_{fan} \cdot \eta_{turb}}\right)} - M (1 + BPR)}$$

$$G = \left(\phi - \frac{\chi}{\eta_{comp}}\right) \cdot \left(1 - \frac{1.01}{\eta_{gargen} \frac{\gamma - 1}{\gamma} \cdot (\chi + \vartheta) \cdot \left(1 - \frac{\chi}{\phi \cdot \eta_{comp} \cdot \eta_{turb}}\right)}\right)$$

$$\vartheta = 1 + \frac{\gamma - 1}{2} \cdot M^2 ; \quad \phi = T_{TE} / T(h) ; \quad \chi = \vartheta \cdot \left(OAPR^{\frac{\gamma - 1}{\gamma}} - 1\right); \quad \eta_{gargen} = 1 - \frac{0.7M^2(1 - \eta_{inlet})}{1 + 0.2M^2}$$

- in combination with Breguet, SAE AIR 1168/8 or mission simulation
- mission fuel estimation / fuel weight penalty

Turbine entry temperature in cruise:
$$T_{TE} = \frac{-8000 \text{ K} \cdot \text{kN}}{T_{TO}} + 1520 \text{ K}$$

$$\begin{split} OAPR &= 2.668 \cdot 10^{-5} \ 1/\text{kN} \cdot T_{TO} + 3.517 \cdot BPR + 0.05566 \\ \eta_{comp} &= \frac{-2 \ \text{kN}}{2 \ \text{kN} + T_{TO}} - \frac{0.1171}{0.1171 + BPR} - M \cdot 0.0541 + 0.9407 \\ \eta_{turb} &= \frac{-3.403 \ \text{kN}}{3.403 \ \text{kN} + T_{TO}} + 1.048 - M \cdot 0.1553 \\ \eta_{inlet} &= 1 - (1.3 + 0.25 \ BPR) \cdot \frac{\Delta p}{p} \\ \eta_{fan} &= \frac{-5.978 \ \text{kN}}{5.978 \ \text{kN} + T_{TO}} - M \cdot 0.1479 - \frac{0.1335}{0.1335 + BPR} + 1.055 \end{split}$$

→ Target: SFC as a function of PR, TET, BPR and T_{TO} (representing engine technology level and scale)

fidelity

Shaft Power Off-Take Efficiency

Shaft power off-take efficiency:

$$\eta_P = \frac{P}{\dot{m}_{F,P} \cdot H} = \frac{1}{k_P \cdot SFC \cdot H} = \frac{1}{0.002 \cdot 16 \cdot 42.5} = 74\%$$

2013-04-24

- Compare with Carnot/Ericsson/Ackerer-Keller cycle
- Praxis values:
 - > Stationary "combined cycle" (gas & steam turbine): ≈ 0.58
 - Stationary gas turbine: ≈ 0.38
 - Aviation turboprop shaft power (A-400M) with SFC_{shaftP} = 0.167 [kg/kWh] but SFC_{propP} = 0.213 [kg/kWh] Shaft power off-take better than (turbo-prop) shaft power?

> Possible explanation for unexpected high efficiency:

Off-Take is only small amount of total engine power and does not change much the way the engine works

Conclusion

✓ Fuel consumption due to shaft power off-take calculation: $\dot{m}_{FP} = k_P \cdot SFC \cdot P$

$$k_{p} = 0.0057 + 4.60 \cdot 10^{-8} \frac{1}{m} h - 0.0106 M - 4.44 \cdot 10^{-13} \frac{1}{m^{2}} h^{2} + 1.85 \cdot 10^{-7} \frac{1}{m} h \cdot M + 0.0049 M^{2}$$

- Main result is the shaft power factor k_P found to be in the order of 0.00225 N/W
- Simulation k_P results matches well with average of literature values
- Linear SFC rise behavior within reasonable shaft power off-takes
- Unexpected high resulting efficiency value (explanation still missing)
- Future action:
 - Simulations with additional tools
 - Bleed air off-take investigation and comparison with shaft power off-takes
 - Comparison with more measured values (?)

FUEL CONSUMPTION DUE TO SHAFT POWER OFF-TAKES FROM THE ENGINE

www.iei.liu.se/flumes

Linköping University

info@ProfScholz.de

ingo.staack@liu.se

r.w.seresinhe@cranfield.ac.uk

Cranfield