

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

AERO – AIRCRAFT DESIGN AND SYSTEMS GROUP

A HANDBOOK METHOD FOR THE ESTIMATION OF POWER REQUIREMENTS FOR ELECTRICAL DE-ICING SYSTEMS

Oliver Meier Hamburg University of Applied Sciences

Dieter Scholz Hamburg University of Applied Sciences

Deutscher Luft- und Raumfahrtkongress 2010

German Aerospace Congress 2010

Hamburg, Germany, 31.8.-02.09.2010

DLRK2010-1291

MOZART – Health <u>Mo</u>nitoring von <u>Brennstoffz</u>ellen<u>s</u>ystemen in der Luftf<u>ahrt</u>

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

A HANDBOOK METHOD FOR THE ESTIMATION OF POWER REQUIREMENTS FOR ELECTRICAL DE-ICING SYSTEMS

Contents

- Motivation
- Aim
- Today's Aircraft Anti-Icing and De-Icing Systems
- Present and Future Electrical Wing De-Icing Systems
- State-of-the-Art in CFD approaches
- State-of-the-Art in Handbook Methods
- Assumptions for a New Handbook Method
- Calculation of Power Requirements
 - Cyclically Heated Surfaces
 - Continuously Heated Surfaces
 - Generic Heater Layout
- Absolute Power Requirements for De-Icing
- Conclusion

Motivation

- Vision of an "More Electric Aircraft"
- Mike Sinnett, Director, 787 Systems:
 "787 No-Bleed Systems: Saving Fuel and Enhancing Operational Efficiencies"
- Prove benefits in trade off studies during early phase of a project
- Required: Quick and easy to use handbook method

www.boeing.com/commercial/aeromagazine, aero quarterly, 04 | 07

24.08.2010, Folie 3

Deutscher Luft- und Raumfahrtkongress 31.8.2010-02.09.2010 Hamburg

Aero - Aircraft Design and Systems Group

Aim

- Estimation of power requirements for electrical de-icing systems
- Review and improve handbook methods
- Contribution to the preliminary sizing of electrical de-icing systems
- Simplification of trade-off studies

Today's Aircraft Anti-Icing and De-Icing Systems

- Present System
 - classically done with bleed air taken from the engines

 boot surfaces remove ice accumulations mechanically by alternately inflating and deflating tubes

FAA: Aircraft Icing Handbook, 1993

AIRBUS

Oliver Meier, Dieter Scholz Electrical de-icing systems

Deutscher Luft- und Raumfahrtkongress 31.8.2010-02.09.2010 Hamburg 24.08.2010, Folie 5 Aero - Aircraft Design and Systems Group

Present and Future Electrical Wing De-Icing Systems

- Electrical power taken from generators on board
- (maybe too) high power demands
- Solution:
 - Cycling heating of main surfaces
 - Only parting strips permanently heated
- Energy saving:
 - Only melting of ice in contact to surface
 - Most of solid ice carried away by aerodynamic forces

FAA: Aircraft Icing Handbook, 1993

State-of-the-Art in CFD Approaches for Ice Accretion with Heat Transfer

- Icing CODES:
 - FENSAP-ICE CODE
 - CANISE CODE
 - ONERA CODE
- The methods include the whole process from flow solver to accretion and remeshing tools
- Consider the heat transfer and distribution

FENSAP : Mesh Movement

CHT3D: Conjugate Heat Transfer

Wagdi G. Habashi, Pascal Tran, Guido Baruzzi Martin Aubé and Pascal Benquet, Design of Ice Protection Systems and Icing Certification Through the FENSAP-ICE System, Newmerical Technologies, Paper, 2002

Deutscher Luft- und Raumfahrtkongress 31.8.2010-02.09.2010 Hamburg

State-of-the Art in Handbook Methods

- SAE: Ice, Rain, Fog and Frost Protection, 1990 (AIR 1168/4)
 - Mainly based on empirical equations
 - Imperial Units

- But: Necessity for ...
 - International approach with ...
 - Equation from thermodynamic first principals
 - SI units

Assumptions for a New Handbook Method

- Only two-dimensional effects are considered
- Only one point along the airfoil's leading edge is evaluated (average values used)
- Certification rules from CS-25 required but only one design point that is considered critical is taken into account

Deutscher Luft- und Raumfahrtkongress 31.8.2010-02.09.2010 Hamburg

Assumptions for a New Handbook Method

- Selected design point from CS-25:
 - Temperature (0 °F = -17.78 °C)
 - Liquid water content (LWC) (guideline from CS-25 2008)
 - Droplet diameter (20μm)
 - Pressure altitude

(0 ft)

Majed Sammak , Anti-Icing in Gas Turbines, Master Thesis, LUND UNIVERSITY , 2006

Oliver Meier, Dieter Scholz Electrical de-icing systems

Deutscher Luft- und Raumfahrtkongress 31.8.2010-02.09.2010 Hamburg

Assumptions for a New Handbook Method

- Input from CS-25.1419:
 - **Continuous icing** (Cumuliform Clouds):
 - » From sea level to 22.000 ft
 - » Typical droplet diameter: 20 μm
 - » LWC from 0.1 to 3.0 g/m³
 - » vertical extent: 6,500 ft
 - » Horizontal extent: 17.4 nm
 - Intermitted icing (Stratiform Clouds):
 - » 4.000 to 22.000 ft
 - » Typical droplet diameter: 5 to 50 μm
 - » LWC from 0.1 to 0.8 g/m³
 - » Horizontal extent: 2.6 nm

Power Requirements for Continuously Heated Surfaces

Power requirements calculated from a power balance:

Oliver Meier, Dieter Scholz Electrical de-icing systems

Deutscher Luft- und Raumfahrtkongress 31.8.2010-02.09.2010 Hamburg 24.08.2010, Folie 12 Aero - Aircraft Design and Systems Group

Power Requirements for Continuously Heated Surfaces

- The power balance consists of:
 - Latent heat (energy to turn ice into water)
 - **Sensible** heat (water warming up from higher surface temperature)
 - Evaporation (in a running-wet system: water needs energy to evaporate)
 - Convective cooling (energy taken away from cold airflow over surface)
 - Kinetic heating (impinging droplets add energy)
 - Aerodynamic heating (friction in boundary layer adds energy)

Results based on A320 parameters:

source	$q_{_{PS}}^{\cdot}$ [kW/m²]
Example Calculation for parting strip power Requirements	11.81
AIR 1168/4 calculation scheme	14.13
AIR 1168/4 suggested value (p. 28)	18.60

Power Requirements for Cyclically Heated Surfaces

- Zones are heated up sequential in a row
- Assumptions:
 - Ice accretions is allowed to a certain degree
 - equilibrium temperature = ambient temperature
 - Amount of ice to be melted to destroy the bond between ice and the surface: 0.6 mm
 - Heating efficiency is assumed to be 70%.
- The calculated value does not dependent on any specific aircraft parameter.

Results based on A320 parameters:

source	q . [kW/m²]
Calculated	27.25
AIR 1168/4 (p. 28)	34.10

Power Requirements for Generic Heater Layout

- cyclic de-icing uses two basic principles
 - Decrease of the continuous heated area (<u>parting strips</u>)
 - Decrease of the heat-on time (<u>cyc</u>lic de-icing)
- k_{PS} gives the ratio of continuously heated parting strips against total heated area Here: **20,7%**
- k_{cycl} gives the ratio of cyclic heat on time against total cycle time. Here: **5,0%**
- Hence: $\dot{q}_{total} = \dot{q}_{PS} \cdot k_{PS} + \dot{q}_{cycl} \cdot k_{cycl}$
 - With k-factors as given above
 - $q_{PS}^{\cdot} = 17.43 \text{ kW/m}^2$
 - q_{cycl}^{+} 32.69 kW/m²
 - The average heat load \dot{q}_{total} = 5,5 kW/m²

Absolute Power Requirements for De-Icing

- Absolute power requirements are based on $S_{ice} = t \cdot b_{ice}$
- Required power: $P_{req} = \dot{q}_{total} \cdot S_{ice}$
- Required power for electrical de-icing of <u>A320</u>
 - 3 heated slats with b_{ice} = 15,2 m
 - Chord at middle slat (slat 4): c = 2,5 m
 - $S_{ice} = 37,2 \text{ m}^2$

 $P_{req} = 200 kVA$

Available electrical power of A320 with one 90 kVA generator on each engine:
 $P_{elec} = 180kVA$

Conclusion

- Calculated specific power requirements are in good agreement with
 AIR 1168/4 results under the chosen assumptions
- Handbook Method allows quick calculation of specific de-icing power requirements
 - 1. use of given specific power requirements \dot{q}_{total} (given design point, A320, k-factors)
 - 2. based on specific power requirements \dot{q}_{total} calculated from
 - a) individual design point (CS-25) and
 - b) individual aircraft parameters
 - c) Individual k-factors describing the heater layout
- Handbook Method with k-factors allows a description of heater layouts
 - with de-icing sequence (ratio of on time against cyclic heating period)
 - with specific parting strip area (ratio of parting strip area against total heating area)

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

A HANDBOOK METHOD FOR THE ESTIMATION OF POWER REQUIREMENTS FOR ELECTRICAL DE-ICING SYSTEMS

Contact

info@profscholz.de

Oliver Meier, Dieter Scholz Electrical de-icing systems

Deutscher Luft- und Raumfahrtkongress 31.8.2010-02.09.2010 Hamburg

Aero - Aircraft Design and Systems Group