

	-		,
-	-		
-	_	-	
_	-	_	
	_	-	•

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Investigation of the ATR 72 in CEASIOM-50

Kolja Seeckt

Hamburg University of Applied Sciences

Francisco Gómez

Hamburg University of Applied Sciences

SimSac Design Workshop Simulating aircraft Stability And Control Liverpool, UK, 27. - 29.04.2009

Content

Hochschule für Angewandte Wissenschaften Hamburg Ramburg University of Applied Sciences

- Input of aircraft geometry
- Input of flight envelope
- Results
- Findings and comments
- Outlook

Input of aircraft geometry

ATR72 aircraft data

- Twin-engine, turboprop
- 27 m x 27 m
- MTOW: 22 t
- Max. payload (freighter): 8.1 t

Input directly into xml-file

"Edit Geometry"- function for setup of completely new aircraft very slow and complicated

<?xml version="1.0" ?>

- <--- Kolja Seeckt, Hamburg University of Applied Sciences --> - <root xml_tb_version="3.2.1" idx="1" type="struct" size="1 1">
- <!-- ok --> - <Fuselage idx="1" type="struct" size="1 1">
- <!-- Fuselage --:
- <Forefuse_X_sect_vertical_diameter idx="1" type="double" size="1 1">2.64</Forefuse_X_sect_vertical_diameter>
- <!-- ok -->
- <Forefuse_Xs_distortion_coefficient idx="1" type="double" size="1 1">0.7</Forefuse_Xs_distortion_coefficient> <!-- ok -->
- <Forefuse_X_sect_horizontal_diameter idx="1" type="double" size="1 1">2.865</Forefuse_X_sect_horizontal_diameter>
- <!-- ok --<omega_nose idx="1" type="double" size="1 1">58</omega_nose>
- <!-- ok -->
- <phi_nose idx="1" type="double" size="1 1">6.3</phi_nose>
- <!-- ok --> <epsilon nose idx="1" type="double" size="1 1">1.28</epsilon nose>
- <!-- ok
- <shift fore idx="1" type="double" size="1 1">0</shift fore>
- <!-- ok --> <fraction_fore idx="1" type="double" size="1 1">0.295</fraction_fore>
- <!-- ok -->
- <Total_fuselage_length idx="1" type="double" size="1 1">27</Total_fuselage_length>
- <!-- ok --: <Aftfuse_X_sect_vertical_diameter idx="1" type="double" size="1 1">2.64</Aftfuse_X_sect_vertical_diameter>
- <!-- ok -->
- <Aftfuse_Xs_distortion_coefficient idx="1" type="double" size="1 1">0.7</Aftfuse_Xs_distortion_coefficient> <!-- ok -->
- <Aftfuse_X_sect_horizontal_diameter idx="1" type="double" size="1 1">2.865</Aftfuse_X_sect_horizontal_diameter>
- <!-- ok ·
- <omega_tail idx="1" type="double" size="1 1">4</omega_tail>
- <!-- ok --> <phi_tail idx="1" type="double" size="1 1">6</phi_tail>
- <1-- ok -->
- <epsilon_tail idx="1" type="double" size="1 1">3.07</epsilon_tail>
- <!-- ok --> </Fuselage>
- <!-- ok -->

Comparison of original aircraft vs. model

Comparison of original aircraft vs. model

Definition of flight conditions in 'reasonable' orders of magnitude (450 conditions in total)

Property Name	Value
Minimum Angle of Attack (Deg)	-5.00
Maximum Angle of Attack (Deg)	15.00
Number of AoA Increments	5.00
Minimum Mach number	0.10
Maximum Mach number	0.60
Number of Mach Increments	6.00
Minimum Side-slip angle (Deg)	-5.00
Maximum Side-slip angle (Deg)	5.00
Number of Beta Increments	2.00
Minimum pitch rate (Deg/s)	[-10.00
Maximum pitch rate (Deg/s)	10.00
Number of q Increments	2.00
Minimum roll rate (Deg/s)	[-10.00
Maximum roll rate (Deg/s)	10.00

Definition of flight conditions in 'reasonable' orders of magnitude (450 conditions in total)

Number of p Increments	2.00
Minimum yaw rate (Deg/s)	-10.00
Maximum yaw rate (Deg/s)	10.00
Number of r Increments	2.00
Minimum Elevator Angle(Deg)	-5.00
Maximum Elevator Angle(Deg)	5.00
Number of Elev. Increments	2.00
Minimum Rudder Angle(Deg)	-5.00
Maximum Rudder Angle(Deg)	5.00
Number of Rud. Increments	2.00
Minimum Aileron Angle(Deg)	-5.00
Maximum Aileron Angle(Deg)	5.00
Number of Ail. Increments	2.00
Minimum Inboard Flap Angle(Deg)	0.00
Maximum Inboard Flap Angle(Deg)	0.00
Number of Flap1. Increments	0.00

Hochschule für Angewandte Wissenschaften Hamburg Ramburg University of Applied Sciences

\mathbf{C}_{L} over alpha

- ⇒ Tornado delivers unrealistic results
- ⇒ DATCOM delivers results in a realistic order of magnitude
- ⇒ Check: see below

C_D over alpha

- ⇒ Tornado delivers unrealistic results
- ⇒ DATCOM delivers results in a realistic order of magnitude
- ⇒ Check: see below

Check: Tornado

⇒ Same (unrealistic) results as when started from inside CEASIOM (see to GAV-presentation)

⇒ Reason: tail configuration?

SDSA: Computation of Eigenvalues gets stuck

SDSA: Simulation is running (principally)

Tornado: Inverted sweep angle definition? (1)

Tornado: Inverted sweep angle definition? (2)

Is "IsoViewer" "AircraftBuilder"?

⇒ IsoViewer is best (only) possibility to visually check control surface positions and sizes

Aircraft Builder doesn't work

```
??? Error using ==> acbuilder
Too many output arguments.
Error in ==> <u>acbuilder at 17</u>
    ACB=AcBuilder;
Error in ==> <u>AMB>open_viewer_Callback at 2786</u>
    acbuilder(viewergeo)
Error in ==> <u>gui_mainfcn at 96</u>
    feval(varargin(:));
Error in ==> <u>AMB at 138</u>
    gui_mainfcn(gui_State, varargin(:));
Error in ==>
guidemfile>@ (hObject, eventdata) AMB('open_viewer_Callback', hObject, eventdata, guidata(hObject))
??? Error while evaluating uimenu Callback
```


How are the geometry parameters defined?

Examples:

- F12 template has negative root and positive tip incidence angle (irritating)
- Definition of dorsal and ventral fin,
- Aerofoil technology, fractional_change_vortex_induced_drag_factor,

_ ...

⇒ **Documentation**

Sweep angles and kink positions of zero degree / zero percent not possible

Template files of some airfoils (e.g. NACA0012.DAT) contain too many sections for use inside DATCOM

Adaptation of aircraft (fuel) mass very concealed

...\CEASIOM\W&B\wb_struct_init.m

Findings and comments

CEASIOM-48 + Matlab V7 (R14)

Wrong geometry display (behind message box)

Findings and comments

CEASIOM-48 + Matlab V7 (R14)

and AMB)

Hochschule für Angewandte Wissenschaften Hamburg Ramburg University of Applied Sciences

Combination of PreSTo (HAW's Aircraft <u>Preliminary Sizing Tool</u>) and CEASIOM

Hochschule für Angewandte Wissenschaften Hamburg Ramburg University of Applied Sciences

Thank you for your attention!

For further information please contact:

kolja.seeckt@haw-hamburg.de +49 40 / 428 75 - 88 27