

AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO)

Design Aspects of Passenger Box Wing Aircraft

Dieter Scholz Ricardo Caja Calleja

Hamburg University of Applied Sciences Hamburg University of Applied Sciences

Ţ

3rd Symposium on Collaboration in Aircraft DesignLinköping, Sweden19 to 20 September 2013

Abstract

Future passenger aircraft strive for less fuel consumption, but their design is driven by the requirement at airports of a maximum of e.g. 36 m wing span for short/medium range aircraft. A box wing aircraft staying within the 36 m limit could achieve a drastic reduction in induced drag and hence fuel consumption. Indeed, box wing aircraft have been considered since decades, but so far very little has been done proposing a type that can be certified and is suitable to be used by every day airline operation. This investigation selects the best configuration from a modified morphological analysis, looks at performance, aerodynamic and longitudinal static stability, cabin/fuselage layout, family concepts and ground handling. A model of such proposed aircraft was built with rapid prototyping. With all this, the presented material and facts should serve as a baseline for a realistic discussion about the chances of a box wing configuration to be the next generation short/medium range aircraft.

Content

Requirements at Airports Morphological Analysis Performance Aerodynamics Longitudinal Static Stability Cabin and Fuselage Layout Aircraft Family Ground Handling Rapid Prototyping

Requirements at Airports ...

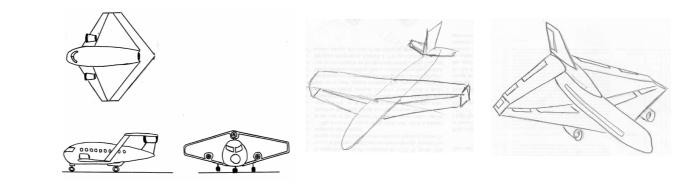
... are Driving Todays Aircraft Design!

Annex 14 — Aerodromes

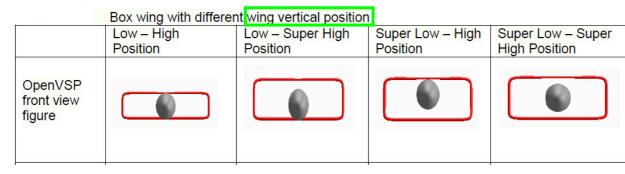
Volume I

	Code element 1		Code element	2	
Code number (1)	Aeroplane reference field length (2)	Code letter (3)	Wing span (4)	Outer main gear wheel span ^a (5)	
1	Less than 800 m	А	Up to but not including 15 m	Up to but not including 4.5 m	
2	800 m up to but not including 1 200 m	В	15 m up to but not including 24 m	4.5 m up to but not including 6 m	
3	1 200 m up to but not including 1 800 m	С	24 m up to but not including 36 m	6 m up to but not including 9 m	
4	1 800 m and over	D	36 m up to but not including 52 m	9 m up to but not including 14 m	
		E	52 m up to but not including 65 m	9 m up to but not including 14 m	
		F	65 m up to but not including 80 m	14 m up to but not including 16 m	

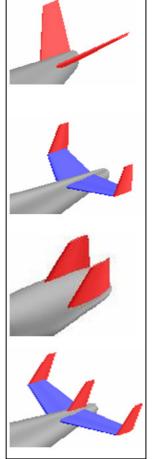
Table 1-1. Aerodrome reference code (see 1.6.2 to 1.6.4)


a. Distance between the outside edges of the main gear wheels.

Morphological Analysis


- Hand Sketches
- Creative Methods
 - Brainstorming
 - Gallery Method

Morphological Analysis



	Horiz	contal tail surface position a	long the fuselage length	
		Canard	No Horizontal tail	Horizontal surface
Ope figu	enVSP 3-D Ire			

Engine positions for box wing aircraft

	Fuselage Aft	Fuselage Middle	On the wing
OpenVSP 3-D figure		C	

Example of possible vertical tails

All possible variations together (from Bachelor thesis) would lead to 31104000 combinations

Dieter Scholz Box Wing Aircraft

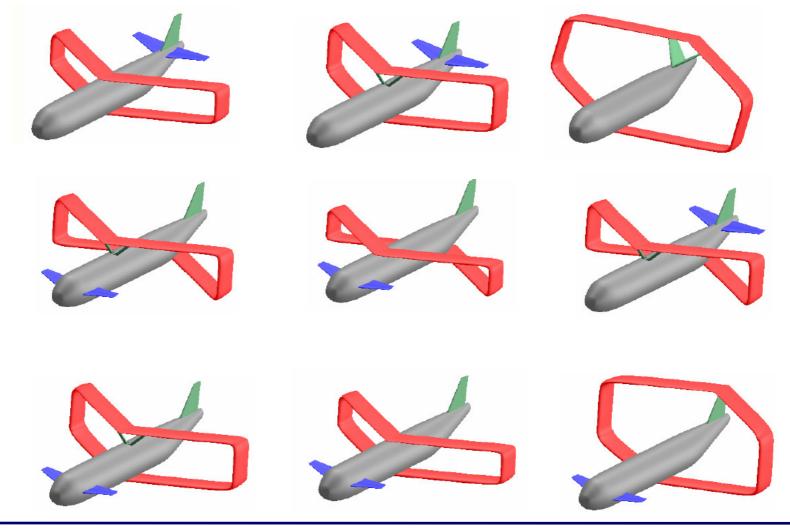
Morphological Analysis

Morphological Analysis

Morphological Analysis Matrix created after down selection

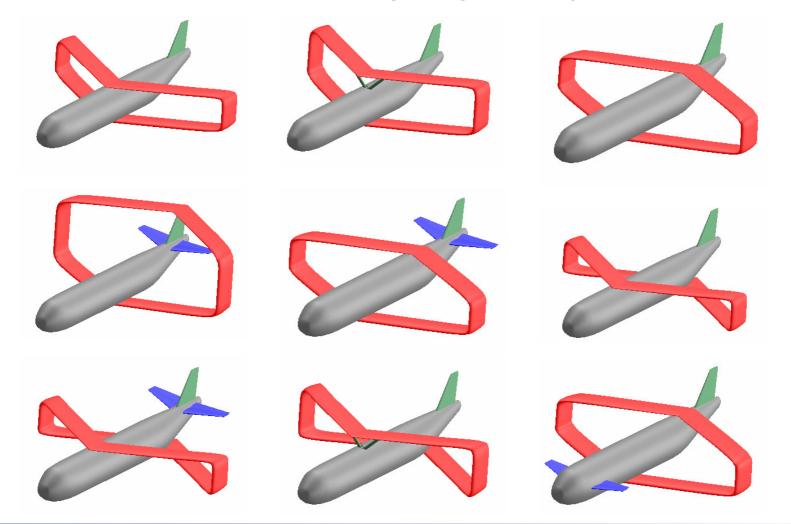
Stagger	Sweep	Box Wing Vertical Position	Horizontal Stabilizer Position	Vertical Stabilizer Position	Engine Position
=	<<	L-H	Can	Aft	Fuse – aft
	>>	L – SH	No		Fuse – mid
	<>		Aft		Wing

Number of Combinations: $3 \cdot 3 \cdot 2 \cdot 3 \cdot 1 \cdot 3 = 162$


Modified Morphological Analysis

Successive combination (in "best" order) followed by immediate down selection => 18

18 Candidates from Modified Morphological Analysis ...

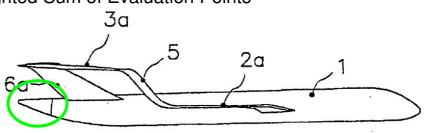

Dieter Scholz Box Wing Aircraft 3rd Symposium on Collaboration in Aircraft Design Linköping, Sweden, 19. - 20.09.2013

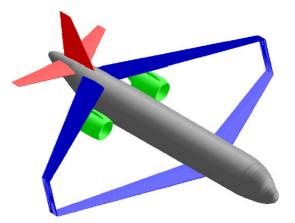
18.09.2013, Slide 8 Aircraft Design and Systems Group (AERO)

... 18 Candidates from Modified Morphological Analysis

Dieter Scholz Box Wing Aircraft 3rd Symposium on Collaboration in Aircraft Design Linköping, Sweden, 19. - 20.09.2013

18.09.2013, Slide 9 Aircraft Design and Systems Group (AERO)

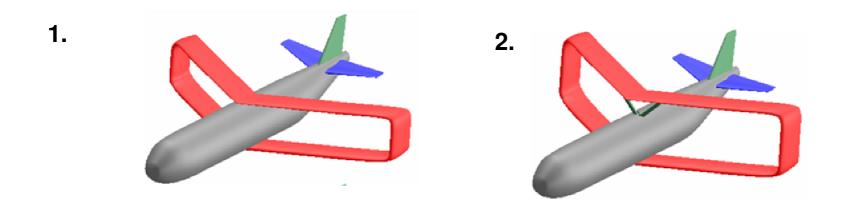


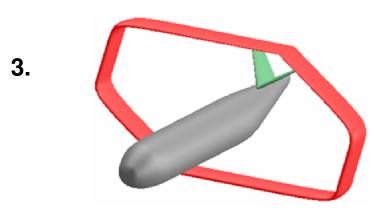


Morphological Analysis – Evaluation

German: "Nutzwertanalyse" (ZANGEMEISTER): Weighted Sum of Evaluation Points

- Configuration
 - Force Fighting
 - Family Concept
- Drag
 - Zero Lift Drag
 - Induced Drag
- Weight
 - Empty Weight
- Flight Mechanics
 - Longitudinal Static Stability and CG Range
- Operation
 - Ground Handling
- Development
 - Time and Cost
 - Risk





Morphological Analysis – Results

Best unconvential configuration

General Box Wing Performance

Box Wing flies at reference Aircraft Altitude

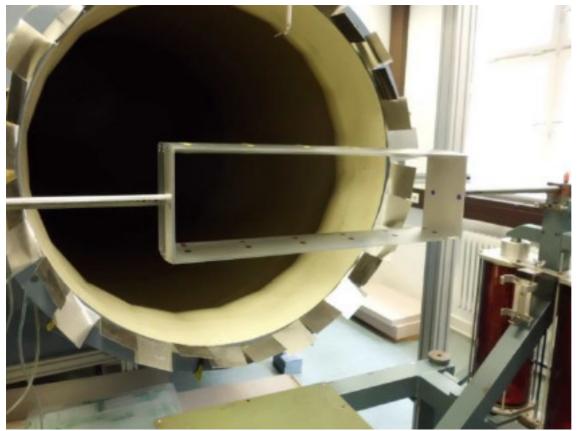
 $\frac{E_{BW}}{E_{ref}} = \frac{4}{3} = 1.33$

Reference Aircraft flies at Box Wing Altitude

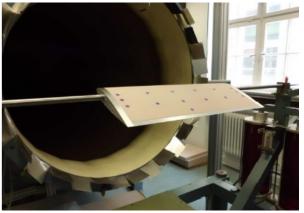
 $\frac{E_{BW}}{E_{ref}} = \frac{3}{2} = 1.5$

"Fair" comparison:

$$\frac{E_{max,BW}}{E_{max,ref}} = \sqrt{2} \cdot \sqrt{\frac{A_{BW}}{A_{ref}}} = 1.4142 \cdot \sqrt{\frac{A_{BW}}{A_{ref}}}$$


Considering a realistic ratio h/b = 0.25, it yields to $D_{i,ref}/D_{i,BW} = 0.6385$ and:

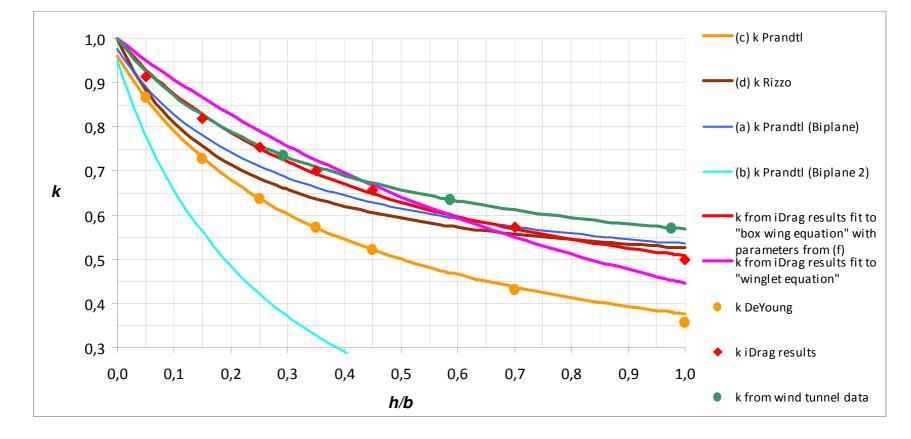
$$(17) \ \frac{E_{max,BW}}{E_{max,ref}} = 1.25$$



Box Wing Aerodynamics

Measurements of induced drag of different box wings in the wind tunnel of HAW Hamburg

The reference wing


Dieter Scholz Box Wing Aircraft

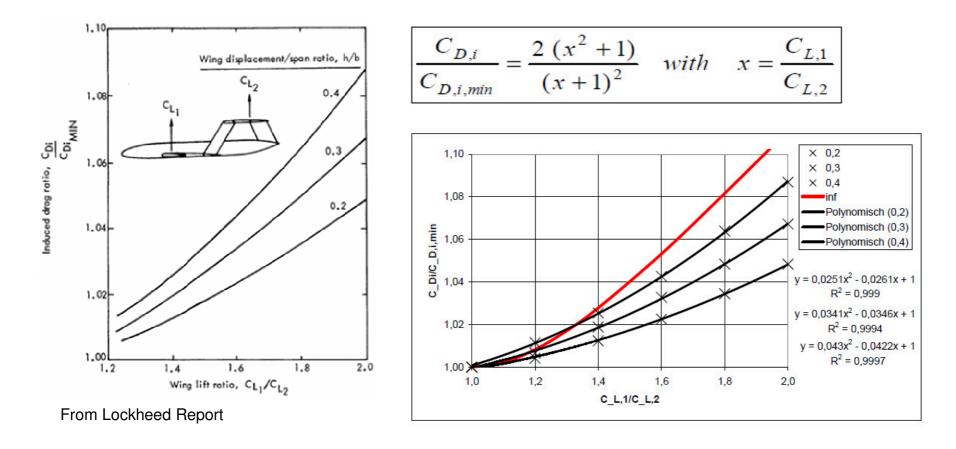
Box Wing Aerodynamics – Induced Drag

$$\frac{D_{i,box}}{D_{i,ref}} = \frac{e_{ref}}{e_{box}} = k$$

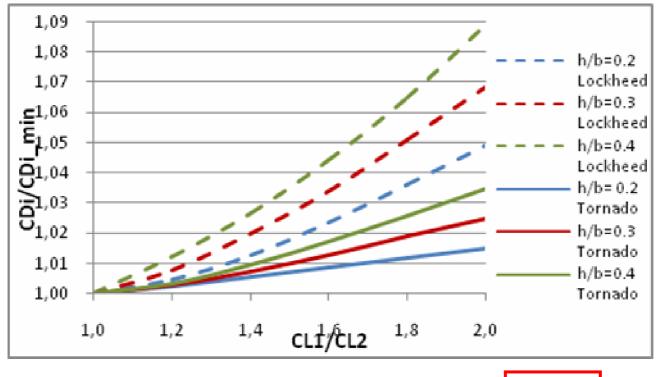
Dieter Scholz Box Wing Aircraft 3rd Symposium on Collaboration in Aircraft Design Linköping, Sweden, 19. - 20.09.2013

18.09.2013, Slide 14 Aircraft Design and Systems Group (AERO)

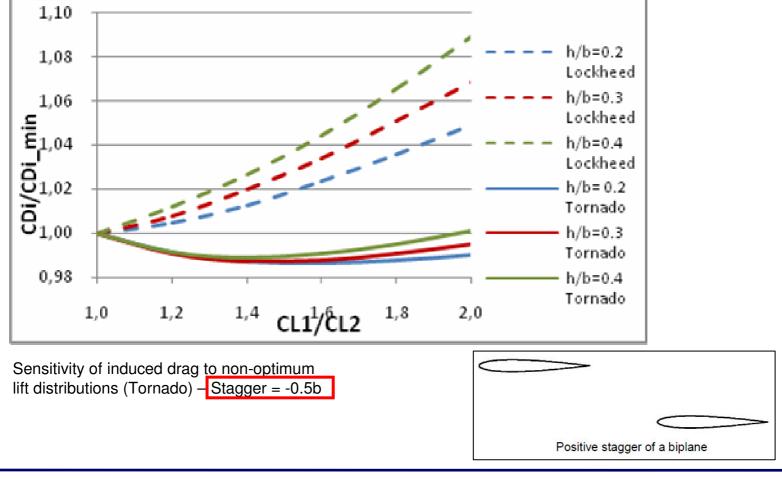
Box Wing Aerodynamics – Induced Drag


$$\frac{D_{i,box}}{D_{i,ref}} = \frac{e_{ref}}{e_{box}} = k \qquad \qquad \frac{D_{i,box}}{D_{i,ref}} = k = \frac{k_1 + k_2 \cdot h/b}{k_3 + k_4 \cdot h/b}$$

Case	Configuration	Author	<i>k</i> ₁	<i>k</i> ₂	<i>k</i> ₃	<i>k</i> ₄	k for $h/b \rightarrow 0$	k for $h/b \rightarrow \infty$
(a)	Biplane	Prandtl*	1	-0.66	2.1	7.4	0.976	-0.089
(b)	Biplane (2)	Prandtl	1	-0.66	1.05	3.7	0.952	-0.178
(c)	Box wing	Prandtl	1	0.45	1.04	2.81	0.962	0.160
(d)	Box wing	Rizzo	0.44	0.959	0.44	2.22	1	0.432
(e)	Box wing	iDrag best fit	1.304	0.372	1.353	1.988	0.964	0.187
(f)	Box wing	iDrag $k_1 = k_3$	1.037	0.571	1.037	2.126	1	0.269
* here, a	here, a different equation is used: $k = 0.5 + \frac{k_1 + k_2 \cdot h/b}{k_3 + k_4 \cdot h/b}$.						*	

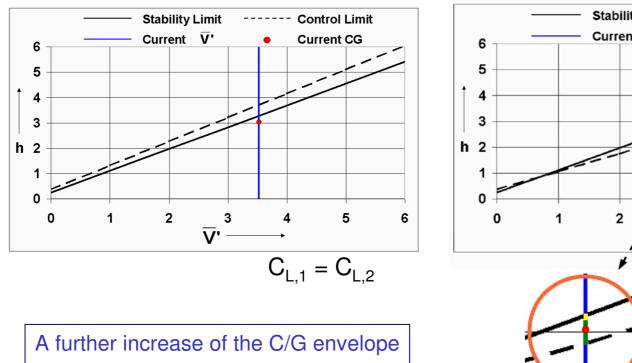

Box Wing Aerodynamics – Induced Drag and Lift Share

Box Wing Aerodynamics – Lockheed versus Tornado – No Stagger



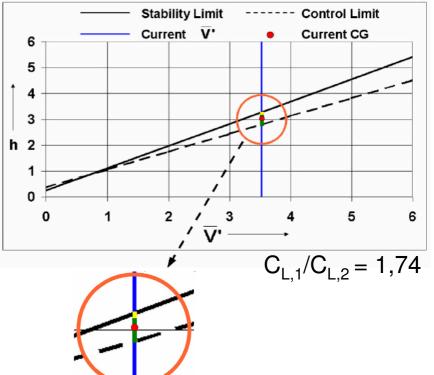
Sensitivity of induced drag to non-optimum lift distributions (Tornado) - Stagger = 0

Box Wing Aerodynamics – Lockheed versus Tornado – Negative Stagger



h

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences


Box Wing Longitudinal Static Stability

C/G Envelope Diagrams

unstable!

Dieter Scholz Box Wing Aircraft

requires a higher $C_{L,1}/C_{L,2}!$

3rd Symposium on Collaboration in Aircraft Design Linköping, Sweden, 19. - 20.09.2013

18.09.2013, Slide 20 Aircraft Design and Systems Group (AERO)

Box Wing Longitudinal Static Stability

Design Measures for Stability

With the help of the spreadsheet it was determined that an increase of the ratio of $C_{L,1}/C_{L,2}$ is the most effective way of expanding the CG envelope. It is important to pay attention to the consequences, e.g. airfoil choice and stall characteristics. Depending on the aircraft geometry, a value of 1,5 to 3 for the $C_{L,1}/C_{L,2}$ ratio is probable.

A general increase of the CG envelope can also be achieved by placing the wings further apart longitudinally. This way the the parameter \bar{V} is increased which makes it also possible to decrease the ratio $C_{L,1}/C_{L,2}$ for a given CG envelope.

An adjustment of the wing sweep can be treated as a supporting measure.

Cabin and Fuselage Layout

Figure 8.2 Fuselage cross section for economy class and business class (modelled with PreSTo Cabin)

Figure 8.3 Cabin floor plan of the box wing aircraft (modelled with PreSTo Cabin)

Dieter Scholz Box Wing Aircraft

Aircraft Family

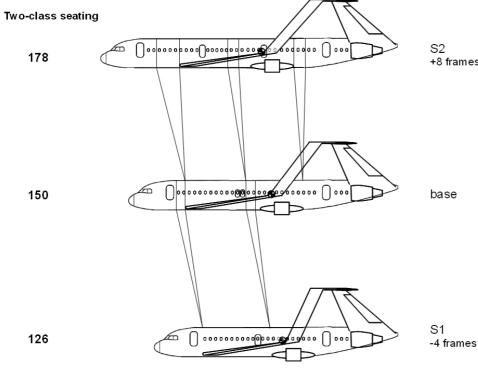
Box Wing General Familiarization

Twin Aisle Family Highlights

Two-class seatin	ng					
		V200		base	V100	V200
218		+6 frames	Fuselage Length	33.1 m	37.21 m	41.28 m
			Underfloor Volume	34.17 m³	38.42 m ³	42.62 m ³
178		V100 +7 frames	Longitudinal distance from AC1 to AC2 (I')	12.50 m	15.50 m	19.57 m
			Winglets Sweep (at 25% chord)	28.67°	43.44°	56.12°
148		base				

3rd Symposium on Collaboration in Aircraft Design Linköping, Sweden, 19. - 20.09.2013

18.09.2013, Slide 23 Aircraft Design and Systems Group (AERO)

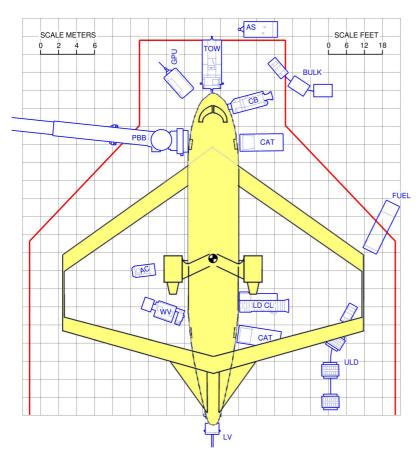


Aircraft Family

Box Wing <u>General Familiarization</u>

Single Aisle Family Highlights

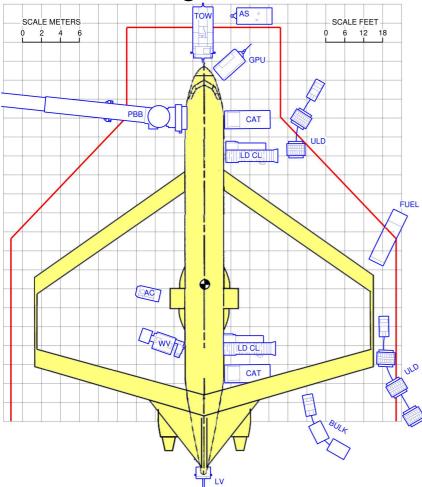
nes		base	S100	S200
	Fuselage Length	37.44 m	34.09 m	41.51 m
	Underfloor Volume	38.6 6m³	35.20 m³	42.86 m ³
	Longitudinal distance from AC1 to AC2 (I')	14 m	12.9 m	16 m
	Winglets Sweep (at 25% chord)	36.76°	30.97°	45.39°


3rd Symposium on Collaboration in Aircraft Design Linköping, Sweden, 19. - 20.09.2013

18.09.2013, Slide 24 Aircraft Design and Systems Group (AERO)

Ground Handling

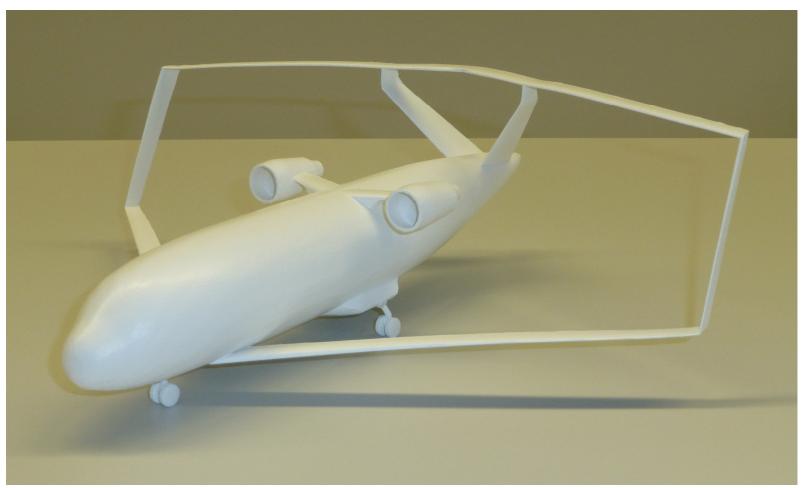
Groun	d Support Equipment
AC	Air Conditioning Unit
AS	Air Starting Unit
BULK	BulkTrain
CAT	Catering Truck
СВ	Conveyor Belt
CLEAN	CleaningTruck
FUEL	Fuel Hydrant Dispenser or Tanker
GPU	Ground Power Unit
LD CL	Lower Deck Cargo Loader
LV	Lavatory Vehicle
PBB	Passenger Boarding Bridge
PS	Passenger Stairs
TOW	Tow Tractor
ULD	ULD Train
WV	Potable Water Vehicle


Summary of Ground handling equipment on V100 and the ramp layout

Dieter Scholz Box Wing Aircraft

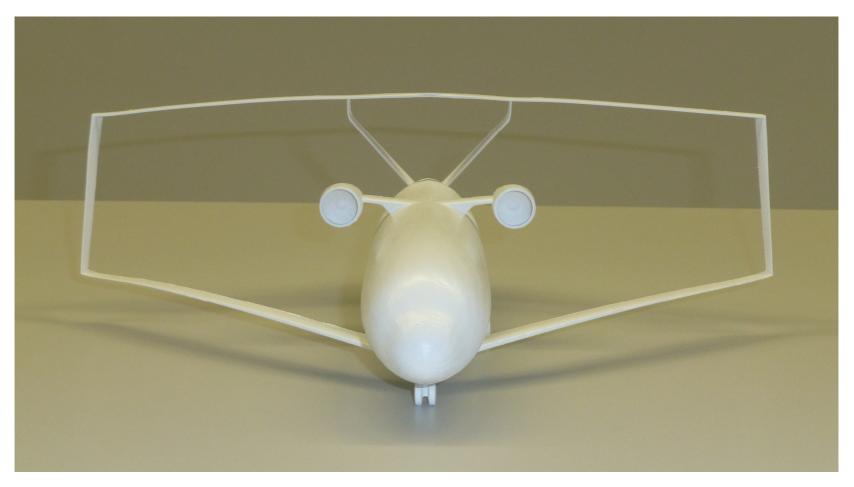
Ground Handling

Groun	d Support Equipment
AC	Air Conditioning Unit
AS	Air Starting Unit
BULK	Bulk Train
CAT	Catering Truck
СВ	Conveyor Belt
CLEAN	Cleaning Truck
FUEL	Fuel Hydrant Dispenser or Tanker
GPU	Ground Power Unit
LD CL	Lower Deck Cargo Loader
LV	Lavatory Vehicle
PBB	Passenger Boarding Bridge
PS	Passenger Stairs
TOW	Tow Tractor
ULD	ULD Train
WV	Potable Water Vehicle


Summary of Ground handling equipment on S200 and the ramp layout

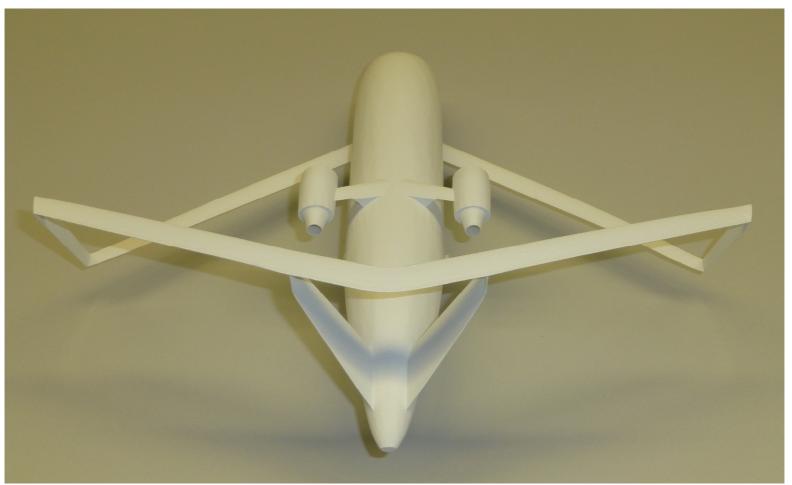
Dieter Scholz Box Wing Aircraft

Rapid Prototyping



Dieter Scholz Box Wing Aircraft

Rapid Prototyping



Dieter Scholz Box Wing Aircraft

Rapid Prototyping

Dieter Scholz Box Wing Aircraft

http://Airport2030.ProfScholz.de

