

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO)

Understanding the

Aircraft Mass Growth and Reduction Factor

Dieter Scholz

Hamburg University of Applied Sciences

EWADE 2020 - 15th European Workshop on Aircraft Design Education
 READ 2020 - Research and Education in Aircraft Design
 Online, 21st and 22nd October 2020

Initially a short message:

Continuous Special Issue "Aircraft Design" of the Open Access Journal "Aerospace" at MDPI

Dieter Scholz: Aircraft Mass Growth Factor EWADE / READ 2020 Online, 21./22.10.2020

"Aircraft Design" our "Journal"

Purpose – Establish a "journal" for the aircraft design community.

Approach – Aircraft design is too small as a topic for a journal. Use a continuous Special Issue i.e. only a subset of a journal. Follow the Open Access publishing model that can life already on a low number of papers annually.

Findings – The well established publisher MDPI published already one Special Issue "Aircraft Design" in "Aerospcae" (ISSN 2226-4310) and was willing to follow the approach. The journal has a CiteScore (2019) of 2.6 from Scopus and is part of the Emerging Sources Citation Index - Web of Science (Clarivate Analytics).

Tradition – The tradition of the journal Aircraft Design at Elsevier (ISSN: 1369-8869) which was published from 1998 to 2002 with Prof. Egbert Torenbeek and Prof. Dr. Jan Roskam as Editors is continued.

Limitations – Article Processing Charges (APC) have to be paid. A 30% discount is available for authors from EWADE and READ. Further discounts a granted based on reviews.

Originality and Value – This is the only "journal" fully dedicated to aircraft design.

http://journal.AircraftDesign.org

Aerospace (ISSN 2226-4310) - An Open Access Journal

with Special Issue

Aircraft Design

Usually special issues of a journal are introduced for "hot topics" and are titled as such. The idea is here, to use the subset "Special Issue" of the journal "Aerospace" at MDPI for a specialized scientific domain - Aircraft Design.

Closing Date: The current special issue (SI-2/2020) has a closing date of 31 December 2020.

Keywords: aircraft, design, OAD, configuration, requirements, payload, range, certification, safety, constraints, objectives, synthesis, optimization, aerodynamics, drag, highlift, structure, mass, performance, stability, control, aeroelasticity, engine, systems, operating costs, DOC, passenger, cabin, ticket, price, environment, profit, asset, wing, fuselage, tail, undercarriage, landing gear, engine, systems.

Paper Type and Content: In addition to original research articles also review papers, letters or communications, technical reports, and extended version of conference papers are accepted. An interest exists also in aircraft design education.

High Visibility: Papers will be visible <u>Open Access</u> at the journal "Aerospace" and also alongside the Special Issue "Aircraft Design" as soon as they are ready. The journal "Aerospace" is covered by many <u>databases and archives</u> including <u>Web of Science</u> (Clarivate Analytics) and <u>Scopus</u> (Elsevier).

Rapid Publication: Manuscripts at the journal "Aerospace" are peer-reviewed and a first decision provided to authors approximately 18 days after submission; acceptance to publication is undertaken in 6.3 days. Once accepted, the manuscripts undergo professional copy-editing, proofreading by the authors, final corrections, and publication on the www.mdpi.com website.

Tradition: The current Special Issue <u>Aircraft Design (SI-2/2020)</u> follows the Special Issue <u>Aircraft Design (SI-1/2017)</u> and continues the tradition of the journal <u>Aircraft Design</u> (ISSN: 1369-8869), which Prof. Egbert **Torenbeek** had started together with Prof. Dr. Jan **Roskam** as Editors at Elsevier in 1998. The subscription-based publishing model proved inadequate to serve the rather small aircraft design community. For this reason, the Elsevier title had to be <u>discontinued in 2002</u>. This pitfall is avoided with the <u>Open Access</u> publishing model used by MDPI for all its journals including this Special Issue.

Article Processing Charges (APC): 1000 CHF. A 30% discount applies for authors from EWADE / SCAD / TCAD (1). Reviewers who provide timely, thorough peerreview reports receive vouchers entitling them to an additional discount on the APC of their next publication. This means APC can be reduced to a bearable amount, which is usually acceptable to the author's institution.

Guest Editor

Honorary Guest Editor Prof. em. Egbert Torenbeel

Prof. Dr. Dieter Scholz

Dieter Scholz: Aircraft Mass Growth Factor EWADE / READ 2020 Online, 21./22.10.2020

Special Issue Editors

Dieter Scholz

Egbert Torenbeek

Slide 4 Aircraft Design and Systems Group (AERO)

The Editorial Explains the Setup

Dieter Scholz: Aircraft Mass Growth Factor EWADE / READ 2020 Online, 21./22.10.2020

Aircraft Design and Systems Group (AERO)

Slide 5

The Publisher: MDPI

MDPI is a member of

MDPI Headquarters, Basel

EWADE / READ 2020 Online, 21./22.10.2020

Aircraft Design and Systems Group (AERO)

Slide 6

MDPI Office in Wuhan, China

WUHAN CHINA

Slide 7

Dieter Scholz: Aircraft Mass Growth Factor

EWADE / READ 2020 Online, 21./22.10.2020

Aircraft Design and Systems Group (AERO)

Now to my presentation:

Understanding the Aircraft Mass Growth and Reduction Factor

Dieter Scholz: Aircraft Mass Growth Factor EWADE / READ 2020 Online, 21./22.10.2020

Abstract

Purpose – This project work shows a literature survey, clearly defines the mass growth factor, shows a mass growth iteration, and derives an equation for a direct calculation of the factor (without iteration). Definite values of the factor seem to be missing in literature. To change this, mass growth factors are being calculated for as many of the prominent passenger aircraft as to cover 90% of the passenger aircraft flying today. The dependence of the mass growth factor on requirements and technology is examined and the relation to Direct Operating Costs (DOC) is pointed out.

Methodology – Calculations start from first principles. Publically available data is used to calculate a list of mass growth factors for many passenger aircraft. Using equations and the resulting relationships, new knowledge and dependencies are gained.

Findings – The mass growth factor is larger for aircraft with larger operating empty mass ratio, smaller payload ratio, larger specific fuel consumption (SFC), and smaller glide ratio. The mass growth factor increases much with increasing range. The factor depends on an increase in the fixed mass, so this is the same for the payload and empty mass. The mass growth factor for subsonic passenger aircraft is on average 4.2, for narrow body aircraft 3.9 and for wide body aircraft (that tend to fly longer distance) 4.9. In contrast supersonic passenger aircraft show a factor of about 14.

Practical implications – The mass growth factor has been revisited in order to fully embrace the concept of mass growth and may lead to a better general understanding of aircraft design.

Social implications – A detailed discussion of aircraft costs as well as aircraft development requires detailed knowledge of the aircraft. By understanding the mass growth factor, consumers can have this discussion with industry at eye level.

Originality/value – The derivation of the equation for the direct calculation of the mass growth factor and the determination of the factor using the method for 90% of current passenger aircraft was not shown.

Acknowledgment

This presentation is based on the project of

John Singh Cheema

prepared at

Hamburg University of Applied Sciences

Aircraft Design and Systems Group (AERO)

Download from:

http://library.ProfScholz.de

Referenced here as:

Cheema 2020

Project	
The Mass Snowball	Growth Factor – Effects in Aircraft Design
The Mass Snowball Author:	Growth Factor – Effects in Aircraft Design John Singh Cheema Prof. DrIng. Dieter Scholz, MSME

Contents

- Background
- Literature Review (Overview)
- Definition & Overall Picture
- Iteration of the Mass Growth Factor
- Mass Growth Factor Considering 90% of Passenger Aircraft
- Mass Growth Factor
 - Obtained from Payload Fraction
 - Obtained from Technology and Range
 - Linked to Direct Operating Costs (DOC)
- Summary

Background

- The aircraft mass growth factor is fundamental to aircraft preliminary design. Due to the fact that mass during some aircraft design phases seems rather to increase than to decrease compared to initial estimates, the factor is called mass growth factor.
- However, a mass reduction factor is mathematically the same. The mass reduction factor can lead to even substantial mass reduction and is as such the secret to efficient aircraft design. For simplicity and tradition we may just talk about mass growth.
- It is usually defined as the ratio of an increase in the total mass (take-off mass) due to an arbitrary increase in local mass (empty mass) determined after a full iteration in aircraft design to achieve the original performance requirements (payload and range).
- The aircraft design iteration sees after each loop another increment in the take-off mass, so that an initial (local) mass increase aggravates the situation like a snow ball transforming into an **avalanche**. Hence the pseudonym **snowball factor**.
- The concept of the mass growth factor is probably as old as aviation. It has been discussed heavily from the 1950th to the 1970th and has continued to be mentioned until today. Nevertheless, it seems not to be well enough understood today. Maybe its importance has declined due to modern computing power providing quite accurate mass estimates in each design phase, but detaching the engineer from the feel for the numbers.

Avalanche – Snow Ball Effect

Avalanche by Dahu1, wikimedia.org, CC BY-SA

Dieter Scholz: Aircraft Mass Growth Factor EWADE / READ 2020 Online, 21./22.10.2020

Literature Review (Overview)

Aircraft Design Books

Torenbeek 1976 Roskam 1989 Jenkinson 1999 Howe 2000 Müller 2003

See Cheema 2020 for details.

SAWE: Society of Allied Weight Engineers LTH: Luftfahrttechnisches Handbuch

Literature Review (Overview)

Definition

Change in Gross Weight

$G = \frac{G}{\text{Fixed Weight Added or Change in Fixed Weight}}$

Ballhaus 1954

Aircraft Design Mass Growth (Overall Picture)

Performance requirement (Such as range or payload)

New curve may become asymptotic at a mass less than the design value

Howe 2000

Iteration of the Mass Growth Factor (Equations)

 $\Delta m_L = 1 \text{ kg}$

$$m_{MTO,0} = m_{MTO} + \Delta m_{G} = m_{MPL} + m_{OE} + \Delta m_{L} + m_{F}$$

$$m_{MTO,1} = m_{MPL} + \frac{m_{OE}}{m_{MTO}} \cdot m_{MTO,0} + \Delta m_{L} + \frac{m_{F}}{m_{MTO}} \cdot m_{MTO,0}$$

$$\Delta m_{G} = m_{MTO,X} - m_{MTO}$$

$$k_{MGW} = \frac{\Delta m_{G}}{\Delta m_{L}}$$

$$m_{MTO} = m_{MTO,X} - m_{MTO}$$

$$m_{MTO} = m_{MTO}$$

$$m_{MTO} = m_{MTO,X} - m_{MTO}$$

$$m_{MTO} =$$

Iteration of the Mass Growth Factor (Excel Table)

1			Ma	ss Growth	Factor by Iteration								
2													
З					1 For the iteration math	ed, the margar must be recearch	od and thus	the mass					
4	Local Mass Growth	DmL	1	kg	1. For the iteration met	ou, the masses must be research	eu anu unus		<hr/>				
5	Maximum take-off mass	mMTO	73000	kg	fractions determined								
6	Operating empty mass fraction	mOE/mMTO	0.5	-	2 Enter the units is the	blue fields							
7	Operating empty mass	mOE	36500	kg	2. Enter the values in the blue fields								
8	Fuel mass fraction	mF/mMT0	0.25		2 The investigation of the second	• • • • • • • • • • • • • • • • • • •	6 t						
9	Fuel mass fraction	mF	18250	kg	5. The iteration starts au	comatically and the mass growth	Tactor is call	ulated		,	•	Determination of	mass fraction
10	Maximum Payload	mMPL	18250	kg				~					
11													
12						Iteration			×		m _{MTO}	73000	kg
13				i	mMTO,i	Global mass growth: DmG	Change	DmG/DmL	kMGW		m _{PL}	18250	kg
14				0	73001.000 kg	1.00000			4.00		moe	36500	kg
15				1	73001.750 kg	1.75000	75.0000%	1.75000			m _e	18250	kg
16				2	73002.313 kg	2.31250	32.1429%	2.31250					
17				3	73002.734 kg	2.73438	18.2432%	2.73438					
18				4	73003.051 kg	3.05078	11.5714%	3.05078					
19				5	73003.288 kg	3.28809	7.7785%	3.28809			m _{PL} /m _{MT}	o 0.250	
20				6	73003.466 kg	3.46606	5.4128%	3.46606			moe/m _{MT}	o 0.500	
21				7	73003.600 kg	3.59955	3.8512%	3.59955			m _F /m _{MTO}	0.250	
22				8	73003.700 kg	3.69966	2.7813%	3.69966					
23				9	73003.775 kg	3.77475	2.0295%	3.77475					
24				10	73003.831 kg	3.83106	1.4918%	3.83106					
25				11	73003.873 kg	3.87329	1.1024%	3.87329					
26				12	73003.905 kg	3.90497	0.8178%	3.90497					
27				13	73003.929 kg	3.92873	0.6084%	3.92873					
28				14	73003.947 kg	3.94655	0.4535%	3.94655					
29				15	73003.960 kg	3.95991	0.3386%	3.95991					
30				16	73003.970 kg	3.96993	0.2531%	3.96993					
31				17	73003.977 kg	3.97745	0.1893%	3.97745					
32				18	73003.983 kg	3.98309	0.1417%	3.98309					
33				19	73003.987 kg	3.98732	0.1062%	3.98732					
34				20	73003.990 kg	3.99049	0.0795%	3.99049					

HARVARD Dataverse

Data and tools uploaded to Harvard Dataverse: https://doi.org/10.7910/DVN/6NHDDP

Iteration of the Mass Growth Factor (Convergence)

Convergence of the mass growth factor using the example of the Boeing 767-300

Dieter Scholz:
Aircraft Mass Growth Factor

Considering 90% of Passenger Aircraft

World Fleet

Aircraft Type	Number in Operation	Percent of total	Sum of most aircraft types in percent
Boeing 737-800	4804	16.83%	16.83%
A320	4135	14.48%	31.31%
A320neo	658	2.30%	33.61%
A321neo	160	0.56%	34.18%
A321	1650	5.78%	39.95%
Boeing 737 Max 8		0.00%	39.95%
A319	1249	4.37%	44.33%
Boeing 737-700	1005	3.52%	47.85%
ATR72	775	2.71%	50.56%
Boeing 777-300(ER)	829	2.90%	53.47%
Embraer 175	595	2.08%	55.55%
Boeing 787-9	451	1.58%	57.13%
A330-300	707	2.48%	59.61%
Boeing 767-300	622	2.18%	61.79%
A350-900	261	0.91%	62.70%
Boeing 757-200	600	2.10%	64.80%
A330-200	547	1.92%	66.72%
Boeing 737-900	550	1.93%	68.64%
De Havilland Canada Dash 8-400	502	1.76%	70.40%
Embraer 190	495	1.73%	72.14%
Boeing 737 Max TBD		0.00%	72.14%
Bombardier CRJ900	444	1.56%	73.69%
A220	77	0.27%	73.96%
Boeing 777-200	431	1.51%	75.47%
Embraer ERJ-145	422	1.48%	76.95%
Boeing 737 Max 10		0.00%	76.95%
Boeing 787-8	328	1.15%	78.10%

e.g. 27 aircraft, 78.1% of fleet

Slide 21

Dieter Scholz: Aircraft Mass Growth Factor EWADE / READ 2020 Online, 21./22.10.2020

Considering 90% of Passenger Aircraft

with data from Flight 2016

Dieter Scholz:
Aircraft Mass Growth Factor

EWADE / READ 2020 Online, 21./22.10.2020

Mass Growth Factor – Considering 90% of Passenger Aircraft

Tak	مار	2	2	
1 au	ле	Э,	.J	

Evaluation of 90% of all current flying commercial aircraft including two supersonic aircraft

Aircraft	m _{MTO} [kg]	m _{OE} [kg]	m _{MPL} [kg]	k_{MGW}	Sources
Boeing 737-800	78220	41480	14690	5.32	Jenkinson 2019
A320-200	73500	42100	18633	3.94	Jackson 2011
A320neo	79000	44300	20000	3.95	Airbus 2005, Wiki 2020
A321neo	97000	50100	25500	3.80	Airbus 2005a, Wiki 2020
A321-200	89000	48000	22780	3.90	Jenkinson 2019
A319-100	64000	39200	17390	3.68	Jenkinson 2019
Boeing 737-700	69400	37585	11610	5.97	Jenkinson 2019
ATR 72-500	22500	12950	7350	3.06	Jackson 2011
Boeing 777-300 ER	299370	155960	68570	4.36	Jackson 2011
Embraer 175	37500	21810	9890	3.79	Jackson 2011
Boeing 787-9	244940	128850	52587	4.65	Boeing 2018, Wiki 2020c
A330-300	217000	118189	48400	4.48	Jenkinson 2019
Boeing 767-300	156489	87135	39140	3.99	Jenkinson 2019
A350-900	280000	142400	53300	5.25	Airbus 2005b, Wiki 2020a
Boeing 757-200	115900	58040	25690	4.51	Jenkinson 2019
A330-200	230000	120200	36400	6.31	Jenkinson 2019
Boeing 737-900	74389	42901	19831	3.75	Boeing 2013, Wiki 2020e
DHC Dash 8-400	24993	14968	7257	3.44	Lambert 1991
Embraer 190	50300	28080	13530	3.71	Jackson 2011
Bombardier CRJ900	36500	21430	10320	3.53	AirlinesInform 2020
A220-100	63049	35221	15127	4.16	Airbus 2019, Wiki 2020d
Boeing 777-200	242670	135875	54635	4.44	Jenkinson 2019

90% of aircraft considered globally with more than 19 seats by looking at 44 aircraft types.

ATR 72: propeller aircraft, short range

Cheema 2020

Slide 23

Wisdom Gained

- 1.) Larger aircraft do not necessarily have a higher mass growth factor.
- 2.) It does not matter how large the local mass growth is; the mass growth factor remains unaffected.*

 $m_{MTO} + \Delta m_G = m_{MPL} + m_{OE} + \Delta m_L + m_F$

- 3.) It does not matter whether there is one kg more operating empty mass or one kg more payload on board. The mass growth factor for a growth in the operating empty mass is therefore the same factor as for a growth in the payload.
- 4.) Old long-range aircraft are more sensitive to local mass growth than new short-range aircraft.
- This as long as the local mass growth is much smaller than the fixed mass.
 The position of the local mass growth does not matter, if the wing is not yet fixed and is positioned according to the new weight and balance situation.

Mass Growth Factor – Aircraft Categories

Table 4.1 Mass growth factor for different aircraft categories

	Aircraft categories					
	Wide-Body	Narrow-Body	J	Subsonic	Supersonic	
k _{MGW}	4.91	3.85	J	4.23	13.82	

Mass Growth Factor – Obtained from Payload Fraction

After a longer derivation (Cheema 2020), we find a simple equation:

$$k_{MGW} = rac{m_{MTO}}{m_{MPL}} = rac{1}{1 - rac{m_F}{m_{MTO}} - rac{m_{OE}}{m_{MTO}}}$$

Table 4.2Mass growth factor for typical mass fractions

	Range type		
	Short-range	Medium-range	Long-range
m _{OE} /m _{MTO}	0.60	0.525	0.45
m_F/m_{MTO}	0.15	0.3	0.45
k _{MGW}	4	5.7	10

Dieter Scholz	:	
Aircraft Mass	Growth	Factor

Mass Growth Factor – Can Go to Infinity

$$k_{MGW} = \frac{m_{MTO}}{m_{MPL}} = \frac{1}{1 - \frac{m_F}{m_{MTO}} - \frac{m_{OE}}{m_{MTO}}}$$

As soon as

$$\left(\frac{m_F}{m_{MTO}} + \frac{m_{OE}}{m_{MTO}}\right)$$

approaches 1.0 the mass growth factor, k_{MGW} goes towards infinity!

This means the design task has no solution!

Mass Growth Factor – Payload Fraction from Statistics

$$k_{MGW} = \frac{1}{\frac{m_{MPL}}{m_{MTO}}}$$

Dieter Scholz: Aircraft Mass Growth Factor EWADE / READ 2020 Online, 21./22.10.2020

Slide 28

Mass Growth Factor – Obtained from Technology and Range

Aircraft Mass Growth Factor

EWADE / READ 2020 Online, 21./22.10.2020

Mass Growth Factor – Linked to Direct Operating Costs (DOC)

Seat-Mile-Costs:

Summary

- The mass growth (and reduction) factor is well known, but not well understood:
 - Derivation missing => added
 - Numerical values missing => added
- Average value for subsonic passenger aircraft: 4.2 range from 3.1 (ATR-72) via 6.2 (A380) and 6.5 (B747-400) to 15.6 (Concorde)
- The mass growth factor important for the design phase (snow ball effect) and also a good indicator to quickly understand the aircraft's economy.
- The mass growth factor can be estimated from basic parameters: range, R; E = L/D; c = SFC; cruise speed, V:

$$k_{MGW} = \frac{1}{1 - (0.5967 - 0.0000166(1/NM) \cdot R) - (1 - e^{-\frac{R}{B}})} \uparrow B = \frac{E \cdot V}{c \cdot g}$$

b	_	1
<i>⊾</i> MGW	_	m_{MPL}
		m_{MTO}

Contact

info@ProfScholz.de

http://www.ProfScholz.de

http://library.ProfScholz.de (Projects and Theses)

Quote this document:

SCHOLZ, Dieter: Understanding the Aircraft Mass Growth and Reduction Factor (EWADE/READ 2020, Online, 21./22.10.2020), 2020. – Available at: <u>http://reports-at-aero.ProfScholz.de</u>

© Copyright by Author, CC BY-NC-SA, <u>https://creativecommons.org/licenses/by-nc-sa/4.0</u>

References

BALLHAUS, William F., 1954. Clear Design Thinking Using the Aircraft Growth Factor. In: 14th National Conference, Hilton Hotel, Fort Worth, Texas, May 2-5. Los Angeles, California: Society of Allied Weight Engineers, Inc. Available from: <u>https://www.sawe.org/papers/0113</u>

FLIGHT INTERNATIONAL, 2016. *World Airliner Census 2016*. Archived at: <u>https://bit.ly/35oZqn4</u>

- FÜRST, A., 1999. *Masseeinfluß-/Massezuwachsfaktor (growth-factor)*. Ottobrunn, Germany: IABG LTH-Koordinierungsstelle, Aeronautical manual.
- HOWE, Denis, 2000. *Aircraft Conceptual Design Synthesis*. London: Professional Engineering Publishing.
- JENKINSON, Lloyd; SIMKIN, Paul; RHODES, Darren, 1999. *Civil Jet Aircraft Design*. Oxford, UK: Butterworth-Heinemann.
- LEHNERT, Jan, 2018. *Methoden zur Ermittlung des Betriebsleermassenanteils im Flugzeugentwurf.* Hamburg, Germany: Department of Automotive and Aeronautical Engineering, University of Applied Science of Hamburg, Master Thesis. Available from: <u>https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2018-05-24.014</u>

- MÜLLER, Friedrich, 2003. Flugzeugentwurf : Entwurfssystematik, Aerodynamik, Flugmechanik und Auslegungsparameter für kleinere Flugzeuge. Fürstenfeldbruck: TFT-Verlag.
- ROBSON, Melanie, 2019. *Flight Magazine: Perfect formation*. Sutton: Flight Global, 2019-07-30.
- ROSKAM, Jan, 1989. *Aircraft Design. Vol.1: Preliminary Sizing of Aircraft*. Ottawa, Kansas: Design Analysis and Research Corporation.
- SAELMAN, B., 1973. *The Growth Factor Concept*. In: 32nd Annual Conference, London, England, June 25-27. Los Angeles, California: Society of Allied Weight Engineers, Inc. Available from: <u>https://www.sawe.org/papers/0952</u>
- SAWE, 2019. *Introduction to Aircraft Weight Engineering*. Los Angeles, California: Society of Allied Weight Engineers, Inc.

Available from: https://www.sawe.org/technical/publications/aircrafttextbook

- SCHOLZ, Dieter, 2015. Aircraft Design. Hamburg, Germany: Department of Automotive and Aeronautical Engineering, University of Applied Science of Hamburg, Lecture Notes.
 Available from: <u>http://HOOU.ProfScholz.de</u>
- SCHOLZ, Dieter, 2018. Evaluating Aircraft with Electric and Hybrid Propulsion. In: *UKIP Media & Events: Conference Proceedings : Electric & Hybrid Aerospace Symposium 2018* (Cologne, 08 -09 November 2018), 2018. – Download: <u>http://EHA2018.ProfScholz.de</u>

- SINKE, Jos, 2019. *How Aircraft Fly*. Delft, Netherlands: Department of Aerospace Engineering, Delft University of Technology, Lecture Notes.
 Available from: <u>https://bit.ly/3jakseW</u>
 Archived as: <u>https://perma.cc/NKX9-WKLY</u>
- TORENBEEK, Egbert, 1982. Synthesis of Subsonic Aircraft Design. Delft: Delft University Press.

Available from: https://bit.ly/3dLSeVQ

