

_		
	_	
_		
_		_
		_

Promising Aircraft Modifications for Low Handling Costs

Francisco Gómez Carrasco

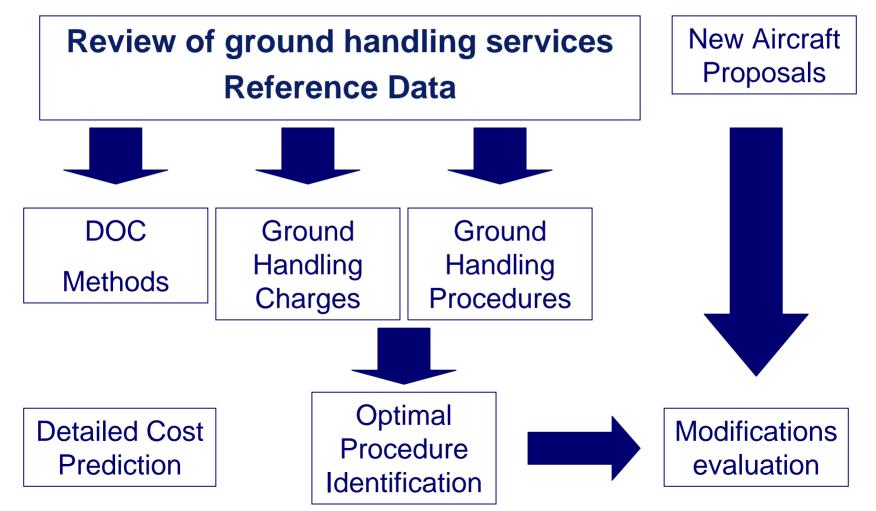
Hamburg University of Applied Sciences

Dieter Scholz

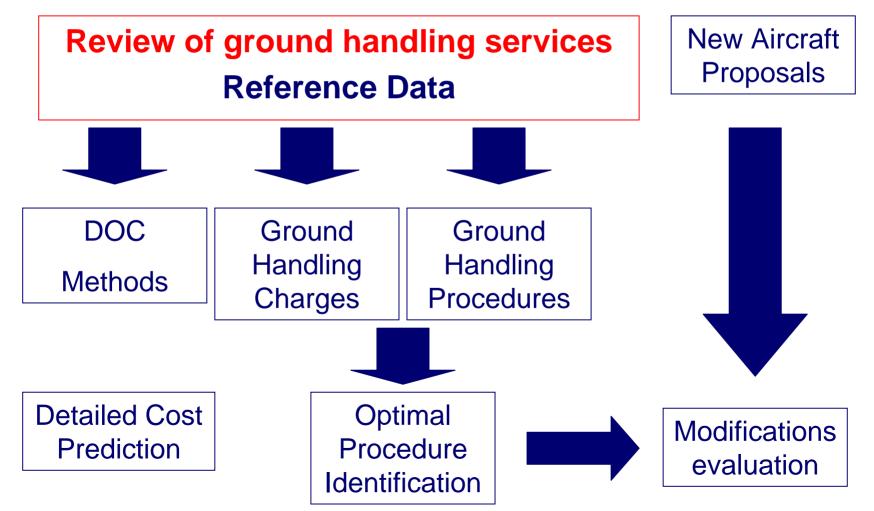
Hamburg University of Applied Sciences

Deutscher Luft- und Raumfahrtkongress 2008

German Aerospace Congress 2008


Darmstadt, Germany, 23.-25.09.2008

DLRK2008-81169

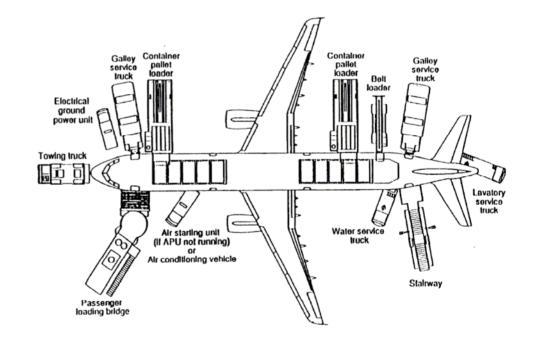


Ground Handling Activities - Classification

- Cabin service
- Ramp services
- Passenger services
- Field Operation Services

Ground Handling Activities - Classification

- Cabin services
- Ramp services
- Passenger services
- Field Operation Services



Ground Handling Activities – Ramp Services

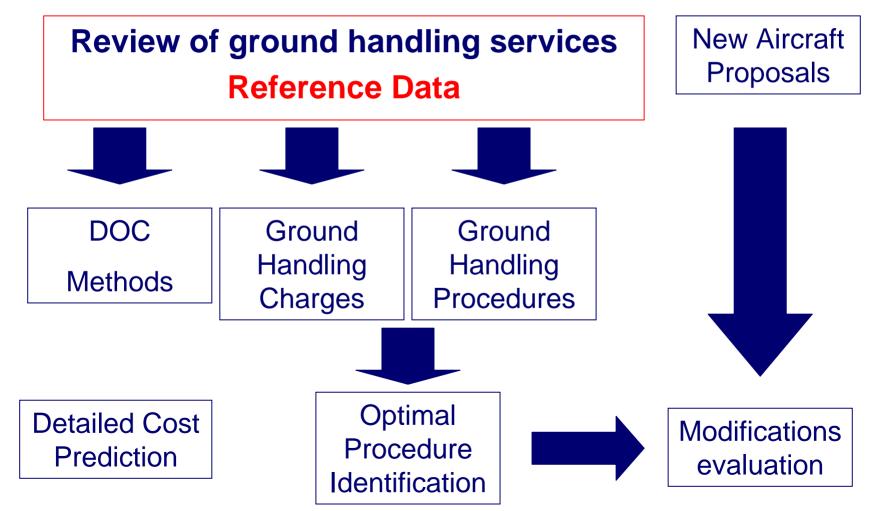
- Cargo and Luggage Handling
- Catering
- GPU
- Refuelling
- Transport
 Passengers
- Pushback

Ground Handling Activities – GSE

<u>Ground Support Equipment:</u> Equipment that involve ground power operations, aircraft mobility, and loading operations.

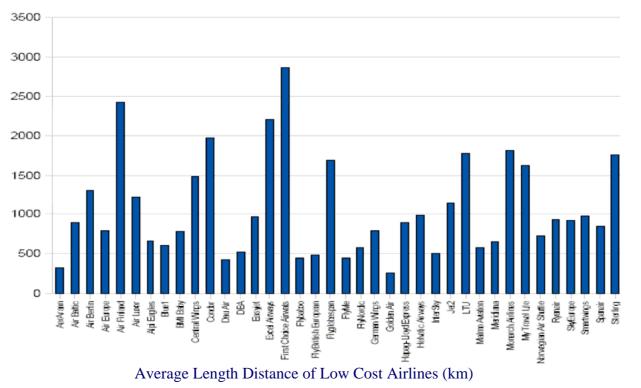
- Refuelers
- Tractors
- Ground power units
- Buses
- Container loader
- Transporters

- Potable water trucks
- Belt loader
- Passenger stairs
 - Pushback tugs Container loader
 - De-icing vehicles
 - Air starter



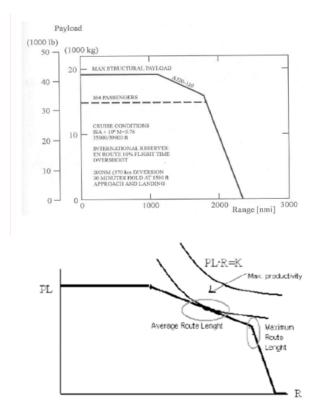
Reference Data: Aircraft

• The Airbus A320 has been chosen, as it is the most commonly used Airbus aircraft at Low Cost Carriers.



Reference Data: Mission

• A research have been carried out in order to find the low cost airline's average route length.

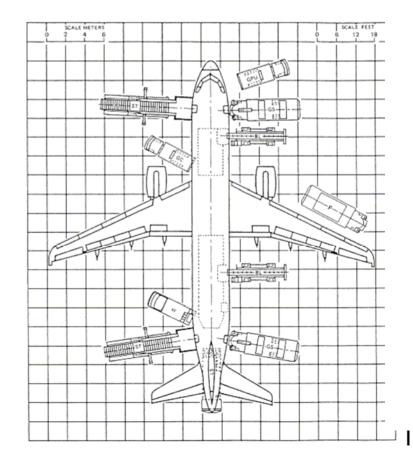


Reference Data: Mission

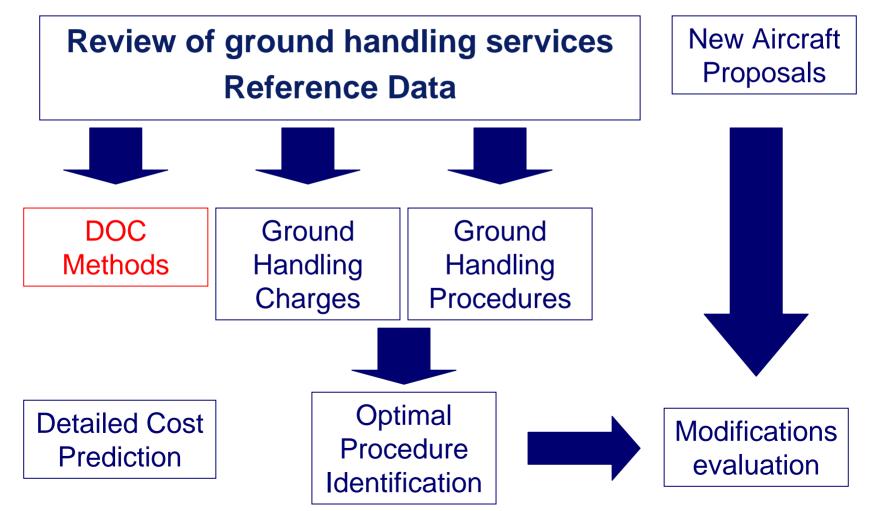
• Low cost airline's average route length.

Category	Average Route length (km)
Regional	560,08
Charter	1835,89
Original	911,05
Full Service	1034
All Airlines	1028,53
3 Main Airlines	1066,33

Average Length Distance of Low Cost Airlines 1028 km

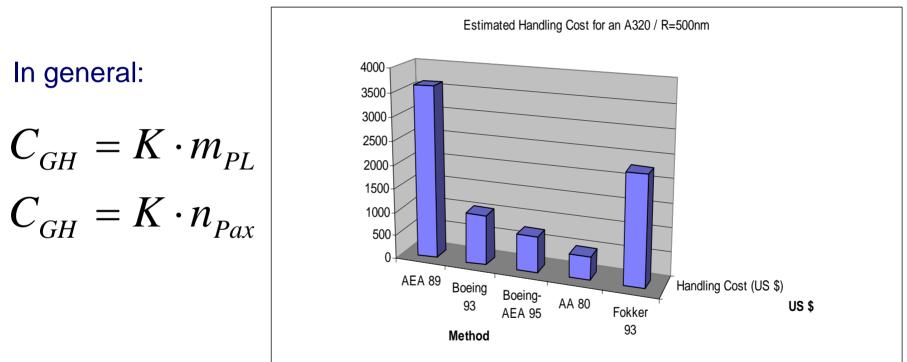


Reference Data: Ground Handling Procedure *A320 manual*

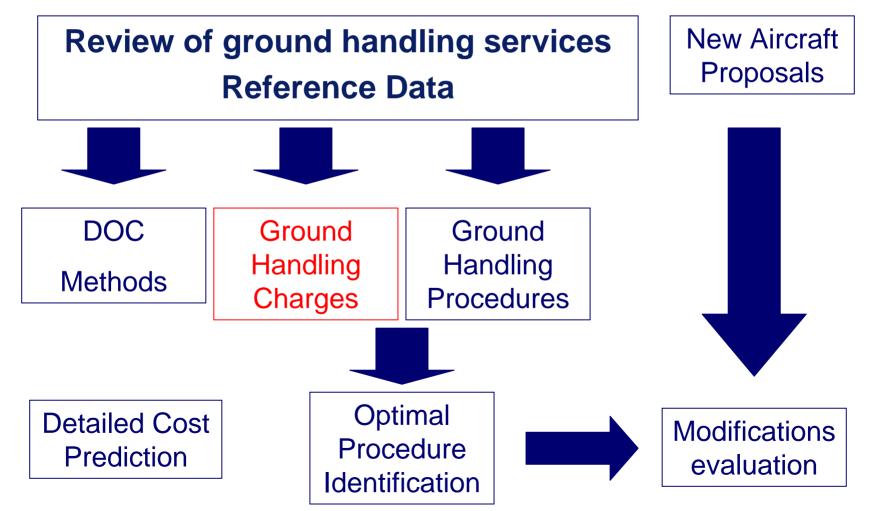

		-	-	-		_	-	-	10/	100		100					_	-			-	_
ID	TASK NAME		ELAPSED TIME IN MINUTES 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 4													_						
1	PAX DEBOARDING	Ĕ	2	Ľ	•	0	ľ		14	10	18	20	22	24	20	28	30	32	34	36	38	4(
2	POSITION BRIDGE DOOR L4 + DOOR OPENING	Bh.	-	┢	+	\vdash	┢	┢	t	\vdash				-								-
3	POSITION BRIDGE DOOR L1 + DOOR OPENING	Ы																				
4	180 PAX DE BOARD L1/L4 (30pax/min)	2			5		t	+	t	\vdash					-							-
5	NO CATERING	1																				
6	NO CLEANING	\square	F	t	Н		t	t	t	t										-		-
7	PRE FLIGHT CHECK	1			3		h															
8	PAX BOARDING					1	H	t	F	-	-	-	-				-					-
9	180 PAX BOARDING L1/L4 (18pax/min)						ß	╈	*	-	-	h										
10	HEAD COUNTING		Γ		Γ		T	t	t	T			z								1	-
11	CLOSE DOOR L1 AND L4	1											Z									
12	REFUELLING		-	F			-	1	T													-
13	POSITION DEVICE		- 1																			
14	REFUEL			-	-	φ ₁		T	Γ													-
15	REMOVE DEVICE					2	þ															
16	AFT CC UNLOAD/LOAD			F					-				-	-							1	
17	POSITION BELT LOADER + AFT DOOR OPEN		11																			
18	OFF LOAD 1500kg (13kg/pax) / 3 OPERATORS				¢	-	-	\$														
19	LOAD 1500kg							2	-	þa	202		-12	h								
20	REMOVE LOADER + AFT DOOR CLOSE									Γ			_	5								-
21	FWD CC UNLOAD/LOAD	H		-	+			+	+	-				-								
22	POSITION BELT LOADER + FWD DOOR OPEN	200	h						Γ												1	
23	OFF LOAD 900kg / 2 OPERATORS		Ł	<u>*</u>	***	-	-	\$														
24	LOAD 900kg						Γ	2	-	-	w	-		5							1	
25	REMOVE BELT LOADER + FWD DOOR CLOSE	1												5								

DOC Methods

Available DOC methods:


- AEA $C_{FEE,GND} = K_1 \cdot m_{PL}$
- Boeing $C_{FEE,GND} = (K_1 + K_2 \cdot K_3 \cdot \text{Seats}) \cdot 5,05 + FHC$
- AEA-Boeing $C_{FEE,GND} = (K_3 + \text{Total Seats} \cdot K_4 \cdot K_5) \cdot K_6 + K_7 \cdot \frac{\text{Block Fuel}}{6.75}$
- Airbus No Method
- American Airlines $C_{FEE,GND} = K_1 \cdot \text{seats} \cdot \frac{12,98}{\text{man} \text{hour}} + K_2 \cdot \text{seats}$
- Lufthansa Tables
- Fokker $C_{FEE,GND} = K_1 + K_2 \cdot \text{seats}$
- Those constants depend on number of seats, range, type of airline and country.

DOC Methods

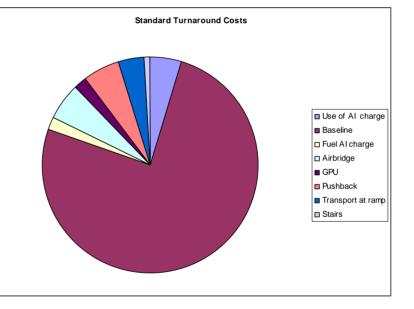


DOC methods for handling cost do not take into account detailed aircraft parameters
Available DOC method cannot accurately predict the handling cost for all scenarios
Influence of the A/C configuration on the GH costs cannot be studied with DOC methods

Ground Handling Charges

- Airport schedules of charges have been investigated.
- The charges can be divided in three categories:
 - Airport Infrastructure Charges
 - Baseline service
 - Additional services

 $C_{HC} = \sum C_{AI}(operation) + C_{BL}(MTOW, n_{pax}) + \sum C_{AD}(operation)$



Ground Handling Costs: Airport Charges

These costs have been listed and a ground handling cost breakdown tool has been produced

Use of AI charge	100.3225
Baseline	1612.41
Fuel AI charge	42.97797
Airbridge	116.19
GPU	42.51
Pushback	114.43
Transport at ramp	86.235
Stairs	17.18

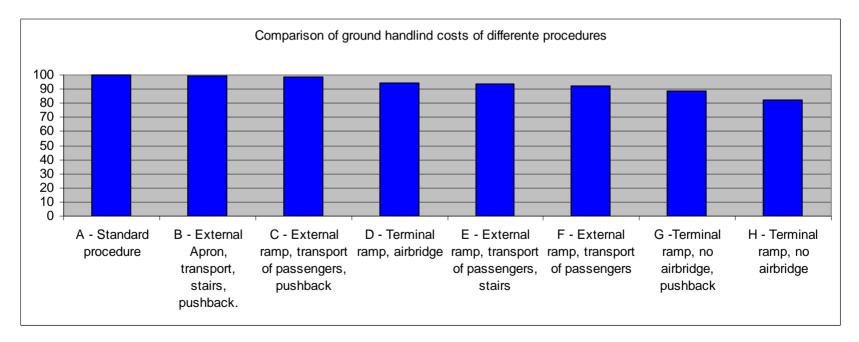
Ramp standard Service Cost for an A320

Airport	Ramp standard Service Cost (euros)
Madrid MAD (AENA 2008)	1756.27
Salzburg SZG (Salzburg 2007)	1280.00
Aarhus AAR (Aarhus 2007)	1620.86

Ground Handling Costs: Airport Charges

- •These costs only depend on operational aspects (services and time)
- •Aircraft parameters are also not taken into account.

Aircraft class	Airplane type	Aircraft class	Airplane type	MTOW	Coefficient
ciuss	AEROSPATIALE AS350	ciuss		Aircraft between 0 and less than 16 Tons	13,16%
4A	Ecureuil CESSNA TWIN PISTON	71	AIRBUS 320	Aircraft between 16 and less than 22 Tons	17,51%
	AEROSPATIALE SN365	=-	50500 707 000	Aircraft between 22 and less than 38 Tons	28,04%
4B	Dauphin AVIOCAR CN212-200	72	BOEING 727-200	Aircraft between 38 and less than 56 Tons	77,88%
4C	EMBRAER 120 BRASILIA AVIOCAR CN235	81	BOEING 757-300 AIRBUS A310	Aircraft between 56 and less than 72 Tons	100,00%
31	AEROSPATIALE ATR 42	82	AIRBUS A300 B4/C4/F4	Aircraft between 72 and less than 86 Tons	120,33%
	DE HAVILLAND DHC-8 AEROSPATIALE ATR 72		BOEING 767-300	Aircraft between 86 and less than 121 Tons	135,30%
41	CANADAIR REGIONAL JET	83	AIRBUS 340-200 BOEING 777-200	Aircraft between 121 and less than 164 Tons	150,28%
	BRITISH AEROSPACE 146-		McDONNELL DOUGLAS MD-11	Aircraft between 164 and less than 191 Tons	179,37%
51	300 McDONNELL DOUGLAS DC-9	91	BOEING 777-300	Aircraft between 191 and less than 231 Tons	202,50%
61	BOEING 737 MCDONNELL DOUGLAS MD	93	BOEING 747-200/400	Aircraft between 231 and less than 300 Tons	264,81%
01	83	33	AIRBUS A340-600	Aircraft over 300 Tons	314,64%

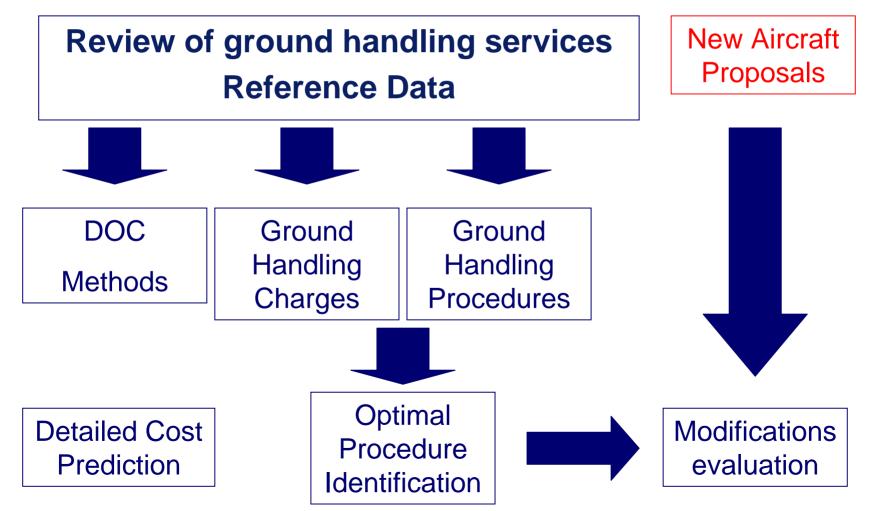


Ground Handling Costs: Airport Charges

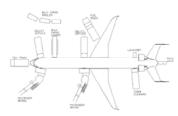
However, different handling procedures can be compared with this tool.

Ground Handling : Optimal GH procedure

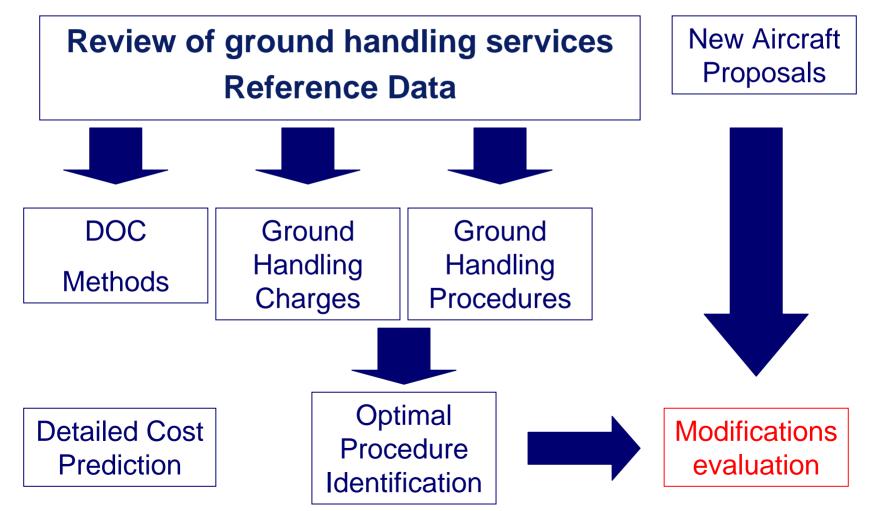
- •Handling is carried out at a terminal ramp without need of pushback or transporting passengers.
- •This cost-efficient procedure in the most used by the LCA.
- •Examples:


Ground Handling : Conclusions

- •To decrease the ground handling costs, LCA avoid as much ground handling services as possible.
- •In order to achieve this, a more automous aircraft are required.
- •For example
 - •Pushback can be avoided by Autonomous Pushback Systems
 - •Airbridge use can be switched by stairs.


New aircraft proposals

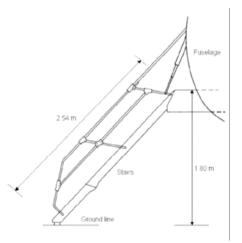
Model	Developer	Criteria	Results
A2007	Delt University	Minimize turnaround	High wing, APS, Integrated stairs
StartXpress	Stuttgart University	More Electrial A/C.	High wing, New Engine
Orca	Stuttgart University	Minimize turnaound	New cofiguration. Double stairs at tail.
Larus	Stuttgart University	GH optimization	New configuration.
Globalspirit	Stuttgart University	DOC	High wing
Gastornis	Stuttgart University	GH and turnround	New systems. Fuel cell APU



There is no studies about Ground Handlig Costs

Integrated Stairs

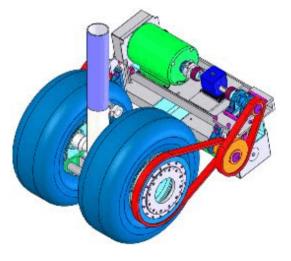
Weight Penalty of about 65kg. Increase of DOC 0.06% (8USD/Trip)


Avoid Delays and Utilization of Airport Equipement. Stairs -> 20USD Airbridge -> 110USD

Possibility of boarding using two doors

Compatibilty with airbrigdes.

A clear decrease on costs


Autonomous Pushback System

Weight Penalty of about 100kg. Increase of DOC 0.1% (15USD/Trip)

Small maintenance and depreciation cost.(5USD/trip)

Avoid Delays and Utilization of Airport Equipement. Pushback -> 172USD/trip

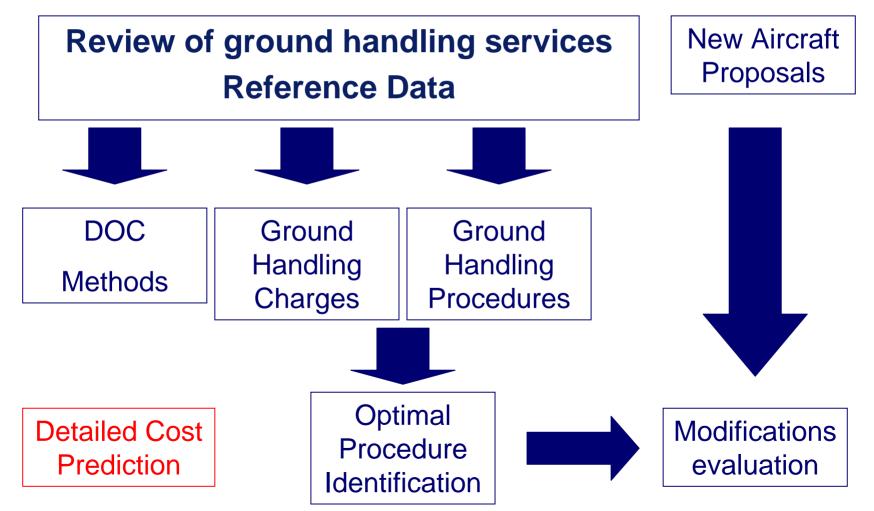
It saves around 2 minutes in the turnaround time.

Wheeltug

Potential to use fuel cells.

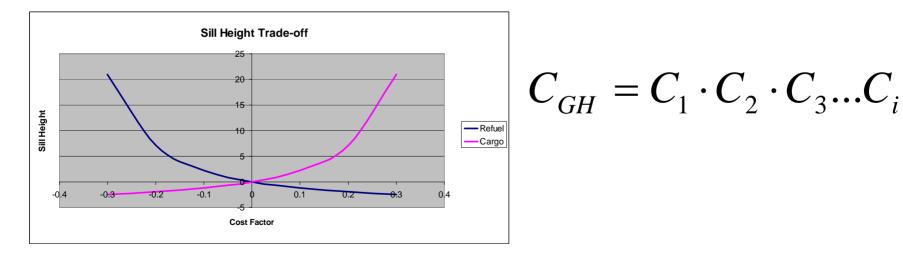
A clear decrease on costs

Kneeling system


- Lower sill height leads to lower loading costs.
- Very high weight penalty.
- Difficult to asses loading activitiy improvement
 - Belt and container loaders can be adapted to different geometries already.
 - Containers and pallets have standard sizes.
- Do not save costs.

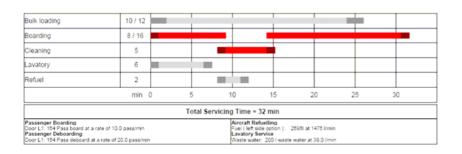
Summary and future steps

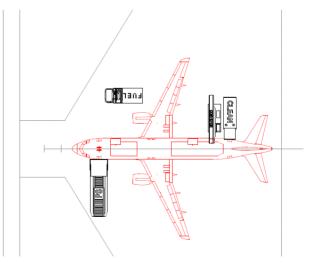
- Despite these findings, aircraft configuration and geometry cannot be evaluated regarding GH costs yet.
- A new tool has to be developed for this purporse.
 - Ground Handling studies in detail.
 - Identification of Ground Handling parameters. P_i
 - Assign cost values to each element. $C_i = C(P_1, P_{2,...}, P_i)$
 - Connection between GH costs and Aircraft parameters
 - Evaluation of different configurations



Summary and future steps

- A modelization of the ground handling costs is being carried out.
- Delays, geometrical compatibilities, staff, service precision parameteres are taken into account.





Summary and future steps

•Software Simba 2D from ARC is able to perform ground handling simulations and calculate costs.

•Once the ground handling cost breakdown is totally defined, it is possible to calculate turn-around times and costs in parallel.

Thank you for your attention

Further information can be found on:

- http://ALOHA.ProfScholz.de
- http://Aero.ProfScholz.de